
echT PressScience

Doi:10.32604/cmc.2025.062526

ARTICLE

TRLLD: Load Level Detection Algorithm Based on Threshold Recognition for
Load Time Series

Qingqing Song1,*, Shaoliang Xia1 and Zhen Wu2

1Faculty of Applied Mathematics and Computer Science, Belarusian State University, Minsk, 220030, Belarus
2Higher School of Management and Business, Belarus State Economic University, Minsk, 220070, Belarus
*Corresponding Author: Qingqing Song. Email: fpm.sunc@bsu.by
Received: 20 December 2024; Accepted: 04 March 2025; Published: 16 April 2025

ABSTRACT: Load time series analysis is critical for resource management and optimization decisions, especially
automated analysis techniques. Existing research has insufficiently interpreted the overall characteristics of samples,
leading to significant differences in load level detection conclusions for samples with different characteristics (trend,
seasonality, cyclicality). Achieving automated, feature-adaptive, and quantifiable analysis methods remains a challenge.
This paper proposes a Threshold Recognition-based Load Level Detection Algorithm (TRLLD), which effectively
identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.
By utilizing distribution density uniformity, the algorithm classifies data points and ultimately obtains normalized
load values. In the feature recognition step, the algorithm employs the Density Uniformity Index Based on Differences
(DUID), High Load Level Concentration (HLLC), and Low Load Level Concentration (LLLC) to assess sample char-
acteristics, which are independent of specific load values, providing a standardized perspective on features, ensuring
high efficiency and strong interpretability. Compared to traditional methods, the proposed approach demonstrates
better adaptive and real-time analysis capabilities. Experimental results indicate that it can effectively identify high
load and low load regions in 16 groups of time series samples with different load characteristics, yielding highly
interpretable results. The correlation between the DUID and sample density distribution uniformity reaches 98.08%.
When introducing 10% MAD intensity noise, the maximum relative error is 4.72%, showcasing high robustness.
Notably, it exhibits significant advantages in general and low sample scenarios.

KEYWORDS: Load time series; load level detection; threshold recognition; density uniformity index; outlier detection;
management systems engineering

1 Introduction
Load time series, also referred to as time series load flow (TLF), refers to the resource consumption

data recorded over specific time intervals [1], such as cloud computing resource loads, website and database
access volumes, or electricity consumption. In the context of the rapid development of the internet, cloud
computing, and engineering management, massive amounts of load time series data are continuously
generated across various fields. As an important and complex data object, load time series accurately captures
valuable information about applications and plays a crucial role in different domains. By analyzing the
characteristics of load time series, it is possible to perform anomaly detection, optimize real-time resource
allocation strategies, or forecast future loads [2].

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.062526
https://www.techscience.com/doi/10.32604/cmc.2025.062526
mailto:fpm.sunc@bsu.by


2620 Comput Mater Contin. 2025;83(2)

Despite the significant applications of load time series analysis across various fields, there exist notable
gaps in the current research within this domain. Firstly, existing studies primarily focus on identifying
extreme points such as peaks and troughs in load time series. However, the classification of load levels often
relies not only on these extremes but also on the overall load variation within specific time intervals [3,4].
Therefore, it is essential to incorporate load level labeling data, normalized load values at different load levels,
and load rates [5] into the analysis. Secondly, the current research generally lacks a dynamic description of
load levels, often employing simple fixed thresholds for classification, which limits sensitivity and adaptability
to load variations. Simple fixed thresholds may fail to capture the subtle differences in load variations, leading
to incorrect load classification. Lastly, while load time series are widely applicable across different fields and
scenarios, there are substantial numerical differences between various datasets [6,7], and a standardized
perspective independent of specific values is lacking to assess the characteristics of load time series across
different domains. Addressing these gaps will provide researchers with effective tools to quickly evaluate the
applicability of existing methods to specific load time series datasets.

The main contributions of this paper are summarized as follows:

a A Threshold Recognition-based Load Level Detection Algorithm (TRLLD) has been implemented,
characterized by non-parametric properties, low sample friendliness, low spatiotemporal complexity,
and high robustness. The algorithm leverages the inherent features of the time series samples, enabling
it to effectively identify high load level regions and low load level regions based on sample distribution
density uniformity, ultimately yielding normalized load values to facilitate understanding of sample
patterns and identification of anomalies. This distinguishes it from peak and trough detection methods,
which focus solely on local data points, providing a holistic analytical perspective for load time series.

b A Density Uniformity Index Based on Differences (DUID) and its computation method have been
proposed, applied directly in this algorithm. The DUID uses samples with absolutely uniform distri-
bution density as a reference, effectively representing the distribution density uniformity of load time
series samples. When the sample distribution density is uneven, the algorithm sets a higher threshold to
prevent noise interference; conversely, when the density is uniform, a lower threshold is set to capture
more data features, enabling comprehensive identification of valid signals. Existing statistical measures
of density uniformity, such as the chi-squared test, rely on fixed intervals to determine whether to
reject the null hypothesis, which prevents automatic adjustment based on the actual distribution of
the samples. Furthermore, the chi-squared test requires the construction of a frequency table and the
calculation of statistics, which can increase computational complexity when handling large-scale data.
In contrast, the DUID dynamically compares the density differences of reference samples, effectively
reflecting distribution characteristics and enabling sample adaptivity.

c The concepts of High Load Level Concentration (HLLC) and Low Load Level Concentration (LLLC)
have been introduced, along with a statistical interpretation based on the algorithm described in
this paper. HLLC and LLLC provide a standardized perspective independent of load values, allowing
horizontal comparisons of load levels across different time periods and scenarios. They effectively
explain load distribution characteristics, reflect relative differences in load levels, and indicate volatility
within corresponding load level regions, serving as an important reference when load capacity limits
are uncertain.

d The proposed DUID was verified and confirmed to effectively reflect the uniformity of sample distri-
bution density. The performance of the TRLLD algorithm was evaluated on both scene samples and
synthetic samples to verify its broad applicability. The output features of the algorithm were confirmed
by obtaining a 95% confidence interval through bootstrap sampling. Additionally, five additive noises of
different intensities were introduced to confirm the algorithm’s high robustness.



Comput Mater Contin. 2025;83(2) 2621

2 Related Work

2.1 Load Time Series Analysis
Load time series analysis is a vital research area in various fields such as computer networks, cloud

computing, information systems, and database management. In Management Systems Engineering, it is
essential for optimizing performance, enhancing efficiency, and achieving intelligent management.

In computer networks and cloud computing, load time series analysis monitors network traffic and
resource usage. Analyzing network load data helps optimize performance and address congestion issues. For
example, Bhalaji used time series forecasting for workload allocation to improve network performance [8].
Yadav et al. applied LSTM deep learning for predicting server loads [9]. Khan et al. analyzed workload data
as time series to identify virtual machine groups with similar patterns [10].

In information systems and database management, load time series analysis helps identify peak usage
and access trends, optimizing storage and retrieval. Higginson et al. employed supervised machine learning
to find patterns in workload time series for database capacity planning [11]. McDonald created large database
workloads in a private cloud for time series forecasting in hybrid clouds [12].

In Management Systems Engineering, power systems and energy management are significant applica-
tion areas [13]. Analyzing power load data with machine learning for forecasting is a mainstream direction.
Motlagh et al. clustered residential electricity users using load time series for market segmentation [14].
Shilpa et al. proposed a stochastic model for short-term power load forecasting [15]. Loganathan et al.
introduced deep learning-based forecasting for photovoltaic generation [16].

2.2 Load Level Detection
Load level detection involves identifying and classifying different load levels within time series data,

primarily aiming to automate the recognition of high and low load regions through historical data analysis.
This supports resource management and optimization decisions. While peak and trough detection is a key
technique for identifying significant change points in load data, load level detection encompasses a broader
analysis to classify multiple load intervals and describe load states comprehensively.

In peak and trough detection, peaks indicate high load states, and troughs indicate low load states,
helping researchers respond to drastic load changes. For example, Palshikar proposed an algorithm for
defining and detecting local peaks in time series to analyze significant events [17]. Schneider utilized
statistical definitions based on geometric trends to detect peaks and troughs in time series [18]. Li et al.
integrated peak and trough identification into Complex Event Processing (CEP) technology for detecting
cloud computing system states [19]. Cao et al. used peak and trough identification to optimize cloud resource
allocation in smart grid demand-side management [20].

Load level identification offers a broader perspective, focusing on in-depth analysis of load time series
to determine characteristics and patterns across various scenarios. Gupta et al. reviewed early classification
methods for time series, highlighting their importance in medical diagnosis and industrial monitoring for
timely decision-making [21]. Tsekouras et al. explored pattern recognition methods for classifying load time
series to analyze electricity consumption behavior more comprehensively [22]. Manojlović et al. proposed
a grouping algorithm combining dimensionality reduction and clustering to identify similar load patterns,
optimizing load data models in distribution utilities [23].

Rule-based methods in load level identification and classification exhibit strong interpretability and ease
of understanding, allowing users to clearly comprehend the decision-making process of the model. These
methods typically rely on expert knowledge and experience, using explicit rules to guide load classification,



2622 Comput Mater Contin. 2025;83(2)

making them suitable for scenarios where rules are well-defined and subject to minimal change. For example,
Qi et al. applied decision trees for identifying load patterns to classify customers into different clusters [24].

Machine learning methods also represent a major research trend in this field. Due to their ability to
automatically learn features and patterns from data, they demonstrate greater adaptability and accuracy when
handling complex and nonlinear load data. Tambunan et al. employed the K-Means clustering algorithm for
analyzing electrical peak loads and provided load level ratings categorized as high, medium, and low [25].
Similarly, Rajabi et al. utilized clustering methods to extract latent patterns from energy consumption [26].

Existing load level detection methods often focus excessively on the detection of extreme points
or merely serve as a means of pattern classification, lacking a comparative methodology. This narrow
perspective hinders a comprehensive understanding of the complexity and dynamic changes of load
data, resulting in difficulties in effectively supporting resource management and optimization decisions in
practical applications.

2.3 Outlier Detection
In load time series analysis, outlier detection is crucial for identifying abnormal data points that deviate

significantly from normal patterns. These outliers often indicate extreme load conditions due to system
failures, sudden events, or other anomalies. While load level detection focuses on classifying load states,
outlier detection aims to discover deviations from normal patterns, enabling timely interventions to mitigate
negative impacts on system performance. Often, load level detection integrates outlier detection to minimize
the influence of outliers on classification results, as outliers can represent extreme load levels and are
important for resource management and decision support.

Researchers have developed various methods for effective outlier identification in load time series. The
effectiveness of these methods varies significantly with different data distributions, making method selection
crucial [27]. Classic outlier detection techniques include Z-score [28], IQR (Interquartile Range) [29],
DBScan [30], Isolation Forest [31], and Random Forest [32]. Additionally, new methods have emerged. For
instance, Almardeny et al. proposed a non-parametric anomaly detection method that constructs outlier
scores by decomposing the attribute space and rotating data points, showing superior performance across
datasets [33]. Boukerche et al. reviewed advancements in anomaly detection, analyzing the characteristics
and future directions of emerging methods [34].

For time series data, Blázquez-García et al. reviewed the latest unsupervised anomaly detection
techniques [35]. Zamanzadeh Darban et al. provided a systematic review of deep learning applications in
time series anomaly detection, discussing various strategies and their strengths and weaknesses [36].

The application of outlier detection in load time series analysis has proven effective. Luo et al. proposed a
real-time anomaly detection method using a dynamic regression model and adaptive thresholds, enhancing
short-term load forecasting accuracy [37]. Yue et al. introduced a descriptive analysis-based method that
improved network security load forecasting by increasing the true positive rate and reducing the false positive
rate [38]. Cook et al. reviewed anomaly detection techniques in IoT time series data, discussing challenges
and case studies [39].

For the subject of this paper, load level detection, directly using the results of outlier detection as the
outcomes of load level detection may lead to a one-sided analysis, overlooking the fact that outliers are only
a part of the load characteristics. Such a one-dimensional analytical approach may result in misjudgments
regarding the load state, thereby affecting the effectiveness of resource management and decision support.



Comput Mater Contin. 2025;83(2) 2623

3 Algorithm Description

3.1 Algorithm Characteristics and Overview
Compared to directly using outlier detection, fixed thresholds, or quantile methods, the main charac-

teristics of the TRLLD algorithm are as follows:

a The TRLLD algorithm effectively identifies anomalies and peaks in load time series by incorporating
outlier detection, thereby improving the accuracy and reliability of load level detection. The load time
series data samples are flexible and variable, making it unreasonable to assume they follow any specific
distribution type. The use of the IQR method is due to its non-parametric nature, which allows it to adapt
to data of different distribution types, eliminating dependence on distribution assumptions. Therefore,
using the IQR method to ensure the non-parametric characteristics of the TRLLD algorithm is justified.
In contrast, the commonly used Z-score method and its modified version, the Modified Z-score, are
parametric methods, and thus will not be adopted in the TRLLD algorithm. Compared to machine
learning methods, the IQR method is faster in computation and does not require complex model training
and tuning, making it suitable for real-time monitoring. This simple and intuitive approach is easy to
understand and implement, making it applicable to various practical scenarios.

b The algorithm enhances adaptability to different samples by introducing the Density Uniformity
Index Based on Differences (DUID). DUID provides a quantitative metric by calculating the density
differences between the input samples and the ideal uniform distribution samples, helping the algorithm
identify the distribution characteristics of the samples. When the distribution density of the load time
series is uneven, DUID prompts the algorithm to raise the threshold, thereby reducing noise interference
from low-density areas and lowering the risk of misidentification.

c HLLC and LLLC effectively represent the distribution characteristics of load time series. HLLC quanti-
fies the concentration of data points within high load areas, with higher HLLC values indicating that the
load is highly concentrated over a short period (e.g., 80% of the load concentrated in 20% of the time),
which helps identify situations of resource abundance. Conversely, LLLC quantifies the concentration
of data points in low load areas, with lower LLLC values indicating that low load areas occupy a small
proportion but have a large time span (e.g., 20% of the load concentrated over 80% of the time), aiding
in the identification of instances of resource idleness.

d By standardizing results and providing statistical interpretations, the output becomes easier to under-
stand. Furthermore, the introduction of reference load capacity allows the system to directly express
resource utilization rates as percentages under different load levels, helping managers quickly identify
areas of resource utilization and formulate appropriate resource allocation strategies.

The intuitive comparison is illustrated in Fig. 1. The TRLLD algorithm ensures the identification of high
load level regions and low load level regions within any load time series. Furthermore, it demonstrates greater
robustness in handling noise and outliers.

The TRLLD algorithm described in this paper takes load time series data, two control parameters, and
a reference carrying capacity (CRe f ) as inputs. One of the control parameters is the IQR outlier detection
threshold (TIQR), and the other control parameter is the algorithm sensitivity (α). The specific calculation
process is as follows:

a Use the IQR method to identify outliers in the load time series, resulting in an Outlier-Removed
Time Series.

b Utilize the DUID and its algorithm, as proposed in this paper, to determine the sample distribution
density uniformity characteristics of the Outlier-Removed Time Series.



2624 Comput Mater Contin. 2025;83(2)

c Calculate the high load level threshold and low load level threshold using the obtained DUID. Data
points above the high load level threshold are classified as the High Load Level Region, while data points
below the low load level threshold are classified as the Low Load Level Region.

d Calculate the HLLC and LLLC for the High Load Level Region and Low Load Level Region, respectively.
e Obtain the statistical interpretations of HLLC and LLLC, and output three normalized results expressed

as percentages, in conjunction with the reference carrying capacity (CRe f ).

Figure 1: Load level detection: IQR vs. TRLLD

The overall process and operational mechanism of the TRLLD algorithm are illustrated in Fig. 2.

Figure 2: TRLLD algorithm overview

The flowchart Fig. 2a systematically presents the execution steps of the algorithm, clearly labeling the
corresponding steps (a–e) as described in the preceding paragraphs, while emphasizing the logical sequence
and decision points during the algorithm’s execution. The block diagram Fig. 2b provides an in-depth



Comput Mater Contin. 2025;83(2) 2625

analysis of the algorithm’s components and implementation mechanisms, linking the equation numbers to
the mathematical models and statistical interpretation processes in Sections 3.2 and 3.3. This offers a detailed
perspective on the internal workings of the algorithm and establishes a clear framework and reference for
subsequent optimization and application.

3.2 Mathematical Model of the Algorithm
In this section, we will provide a detailed description of the mathematical model of the TRLLD

algorithm and its core computational processes. Overall, the algorithm is divided into four main parts: the
first part involves obtaining the outlier-removed load time series; the second part calculates the DUID of
the samples; the third part performs threshold recognition and obtains the sets of different load levels; and
the final part calculates the HLLC and LLLC, normalizing the output based on the reference carrying capacity
(CRe f ).

X, CRe f , TIQR , and α are the input parameters for the algorithm.
The first part involves obtaining the outlier-removed load time series. We use the IQR outlier detection

method to identify outliers in the input load time series. Since IQR is a common and effective outlier
detection method, this paper will not provide a detailed explanation of its calculation process. Outliers are
directly identified using the IQR method, resulting in the outlier set O, defined as follows:

O = {xt ∈ X∣xt < LB ∨ xt > UB} (1)

where X represents the input load time series and xt denotes a data point within that series. LB and UB
represent the lower and upper limits for identifying outliers, respectively.

Then, the identified outliers are removed from the original load time series to obtain the outlier-removed
load time series X′:

X′ = {xt ∈ X∣xt ∉ O} = {x1 , x2, ⋅ ⋅ ⋅ , xm} (2)

where m is the length of the outlier-removed time series.
The second part is the key component of the algorithm, where we calculate the DUID for the load time

series to quantify the distribution density uniformity of the samples.
Based on the maximum value max(X′) and the minimum value min(X′) of the outlier-removed load

time series, we construct a reference sample R that has the same range as the input samples and an absolutely
uniform distribution density:

R = {r1 , r2, ⋅ ⋅ ⋅ , xm} (3)

Here, R is an arithmetic sequence, ri represents the equidistant values, and d is the common difference.
For X′, we need to calculate the maximum equidistant difference set Dmax and the minimum equidistant

difference set Dmin , which reflect the degree of variation of the samples over a specified interval. The set
Dmax reflects the variation of the data at the maximum equidistant interval (i.e., an interval of m

2 ), focusing
on the overall trend changes. The calculation equation is as follows:

Dmax = {x(i+ m
2 )
− x(i)∣i = 1, 2, ⋅ ⋅ ⋅ , ⌈m

2
⌉} (4)



2626 Comput Mater Contin. 2025;83(2)

For Dmin , it reflects the variation of the data at the minimum interval (i.e., an interval of 1), focusing on
local changes. The calculation equation is as follows:

Dmin = {x(i+1) − x(i)∣i = 1, 2, ⋅ ⋅ ⋅ , m − 1} (5)

For the reference sample R, we similarly calculate its maximum equidistant difference set Dr ,max and
minimum equidistant difference set Dr ,min . Since the reference sample R is an arithmetic sequence, the
elements in Dr ,max and Dr ,min are denoted as dR ,max and d, where dR ,max is:

dR ,max = d × ⌊m
2
⌋ (6)

To compare the differences between X′ and R, we need to calculate the differences between the
corresponding elements of their maximum equidistant difference sets and sum these differences to obtain
the cumulative difference SDmax between X′ and R. The cumulative difference provides an intuitive reflection
of the level of difference between them. Similarly, for the minimum equidistant difference set, we calculate
SDmin .

SDmax = ∑
d∈Dmax

∣d − dR ,max ∣ (7)

SDmin = ∑
d∈Dmin

∣d − dR ,min ∣ (8)

To make the differences between any two input samples and their corresponding reference samples
comparable, we need to normalize the total difference. Since the minimum cumulative difference between
any X′ and its corresponding R is 0, we only need to calculate the maximum cumulative difference between
any X′ and its corresponding R to complete the normalization process. When the cumulative difference is
at its minimum, X′ represents an arithmetic sequence with an absolutely uniform distribution. Conversely,
when the cumulative difference is at its maximum, X′ corresponds to a sample with an extremely uneven
distribution, where all values are at the maximum except for one value, which is the minimum.

Due to the characteristic of an arithmetic sequence having an absolutely uniform distribution density,
we can directly calculate the cumulative difference ST Dmax for the maximum equidistant difference set of
the extreme sample and the reference sample, as well as the cumulative difference ST Dmin for the minimum
equidistant difference set, using the following formulas:

ST Dmax = (max (R) −min (R)) − dR ,max + dR ,max × (⌈
m
2
⌉ − 1) (9)

ST Dmin = (max (R) −min (R)) − d + d × (m − 2) (10)

Using ST Dmax and ST Dmin as references, we normalize SDmax and SDmin , defining the normalized values
as S

′

Dmax
and S

′

Dmin
:

S
′

Dmax
= SDmax

ST Dmax

(11)

S
′

Dmin
= SDmin

ST Dmin

(12)



Comput Mater Contin. 2025;83(2) 2627

Since the normalized values reflect the degree of uniformity in the data distribution, to emphasize the
weakest link, we focus on the most uneven part of the data distribution. We designate the larger of the two
as DUID.

DUID =
⎧⎪⎪⎨⎪⎪⎩

S
′

Dmax
, i f S

′

Dmax
≥ S

′

Dmin

S
′

Dmin
, otherwise

(13)

The third part involves calculating the high load level threshold, the low load level threshold, and
obtaining the high load set and low load set.

The high load level threshold Th and the low load level threshold Tl are calculated based on the obtained
DUID:

Th =max (X′) − (ΔX′ − (DUID × ΔX′)) × α (14)
Tl =min (X′) + (ΔX′ − (DUID × ΔX′)) × α (15)

Here, ΔX′ represents the range of X′, which is the difference between the maximum and minimum
values of X′.

The portion of the input sample X that is greater than Th is identified as the high load set H, while the
portion that is less than T is identified as the low load set L:

H = {xt ∈ X∣xt > Th} (16)
L = {xt ∈ X∣xt < Tl} (17)

The fourth part begins by calculating the HLLC and the LLLC.
For HLLC, it represents the degree of concentration of load values during high load periods. Therefore,

the calculation method for HLLC is the ratio of the sum of load values in the high load set to the total load
values, divided by the ratio of the number of members in the high load set to the total number of members.

HLLC =

∑xt∈H
xt

∑xt∈L
xt

∣H∣
∣X∣

(18)

The same applies to LLLC.

LLLC =

∑xt∈L
xt

∑xt∈L
xt

∣L∣
∣X∣

(19)

Here, ∣H∣ denotes the size of the high load set H (i.e., the number of elements in the set), ∣L∣ denotes the
size of the low load set L, and ∣X∣ denotes the size of the input sample X.

After obtaining HLLC and LLLC, the next step is to calculate the Normalized Load Level Values.
Specifically, this includes the High Load Level Normalized Value NH , the Low Load Level Normalized Value



2628 Comput Mater Contin. 2025;83(2)

NL , and the Sample Average Load Normalized Value NA.

NH = NA ×HLLC (20)
NL = NA × LLLC (21)

where NA represents the ratio of the mean of the input sample X to CRe f , multiplied by 100%.

NA =

∑xt∈H
xt

∣X∣
CRe f

× 100% (22)

The value of NH is equal to the ratio of the mean of the high load set H to CRe f , multiplied by 100%.
Similarly, NL is calculated in the same manner.

Considering the characteristics of the algorithm model, sets H and L may have overlapping portions.
If there is an overlap, the overlapping part will be removed. The subsequent calculations will be performed
using the modified sets H’ and L’, which exclude the overlapping portions:

H′ = H/ (H ∩ L) (23)
L′ = L/ (H ∩ L) (24)

At this point, the mathematical model description of the algorithm is fully completed.

3.3 Statistical Interpretation of Algorithm Outputs
Regarding DUID, it represents the difference between the input sample and the reference sample relative

to the difference between the extreme sample and the reference sample. The extreme sample is characterized
by a distribution that is extremely uneven (where all values are at maximum except for one minimum value).
Therefore, a DUID closer to 0 indicates a more uniform distribution density, while a value closer to 1 indicates
a more uneven distribution density.

The algorithm described in this paper ultimately outputs two load concentration indicators and three
normalized load level values. The normalized load level values are expressed as percentages and can be
directly used to confirm the load status of the input load time series samples. The two load concentration
indicators, HLLC and LLLC, do not depend on specific load values; instead, they reflect the distribution
of data points and relative concentration within different load level regions. This provides a standardized
perspective for comparing load levels across different time periods and scenarios, offering significant
reference value when assessing the limit load capacity in uncertain scenarios. Therefore, this section further
describes these two load concentration indicators.

The classification criteria for HLLC are as follows:

f (HLLC)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Insigni f icant, i f 1 < HLLC ≤ 1 + ε
High Level Load , i f 1 + ε < HLLC ≤ γ
Extreme High Level Load , i f HLLC > γ

(25)

Here, ε is a small value, typically set at 0.3, while γ is a value greater than 1, usually set at 3. Specifically,
when HLLC falls between 1 and 1 + ε, it indicates that high load levels have not been significantly identified.
When HLLC exceeds 1 + ε but does not exceed γ, it signifies that the input sample contains high load level



Comput Mater Contin. 2025;83(2) 2629

states. Conversely, when HLLC exceeds γ, it indicates that the input sample includes Extreme High Level
Load states.

The classification criteria for LLLC are as follows:

f (LLLC)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Insigni f icant, i f 1 − ε < LLLC < 1
Low Level Load , i f λ < LLLC ≤ 1 − ε
Extreme Low Level Load , i f 0 < LLLC ≤ λ

(26)

Similarly, ε is a small value, typically set at 0.3, while λ is a value less than 1 − ε, usually set at 0.2. When
LLLC falls between 1 − ε and 1, it indicates that low load levels have not been significantly identified. When
LLLC is between λ and 1 − ε, it signifies that the input sample contains low load level states. Conversely,
when LLLC is less than or equal to λ, it indicates that the input sample includes Extreme Low Level
Load states.

When both HLLC and LLLC are insignificant, it indicates that the input sample represents a balanced
load (BL).

Based on the calculated results of HLLC and LLLC, load types can be classified and combined in multiple
dimensions. Specifically, a particular node’s load type may simultaneously include Extreme High Level Load
and Extreme Low Level Load. This phenomenon suggests that the load state of the node exhibits high
volatility and instability during specific time periods.

In summary, the classification and combination of load types based on HLLC and LLLC provide
important statistical foundations for load time series analysis.

4 Experimental and Empirical Research

4.1 Data Source and Experimental Environment
In the Evaluation of the DUID, we generated 10 datasets using R language according to specific

distribution types. In the Evaluation of Algorithm Effectiveness, we employed a total of 16 samples from two
types, which include 8 non-parametric scenario samples and 8 parametric synthetic samples. The parametric
synthetic samples were also generated using R language based on common specific distribution types, such
as seasonal or highly volatile data. The non-parametric scenario samples were artificially simulated based
on the statistical characteristics of publicly available real-world data, such as power system load curves and
network traffic curves.

The computer environment for sample generation, experiments, and empirical research is shown
in Table 1.

Table 1: Computing environment and R version

Component Specification
Processor (CPU) AMD Ryzen 7 5800H with Radeon Graphics

Graphics Card (GPU) NVIDIA GeForce RTX 3060 Laptop GPU (6 GB)
Memory (RAM) 64 GB DDR4 3200 MHz (Dual Channel)

Operating system Windows 10 Pro 22H2 (64-bit Operating System)
R language version R version 4.3.2 and RStudio Build 494



2630 Comput Mater Contin. 2025;83(2)

4.2 Parameter Selection
Since the TRLLD algorithm involves two key parameters, TIQR and α, we will discuss their selection

in this section. For the threshold TIQR , the IQR method is widely used in statistics, and a threshold of 1.5 is
typically chosen to effectively identify outliers while maintaining sensitivity to the data distribution. In cases
where the dataset contains significant extreme values or noise, selecting a higher threshold (e.g., 3) can help
reduce false positives.

Regarding the sensitivity parameter α, its value range is [0, 1]. A higher α value results in lower
sensitivity, while a lower α value leads to higher sensitivity. We conducted a grid search within this range,
starting at 0.1 with a step size of 0.1, up to 1.0. By substituting different α values into the algorithm and
calculating HLLC and LLLC, we performed a sensitivity analysis to demonstrate how different α values affect
the algorithm’s performance. The analysis results are shown in Fig. 3.

Figure 3: The impact of sensitivity (α) on HLLC and LLLC

The analysis results indicate that when the value of α is too low, the algorithm is excessively influenced
by outliers, resulting in an inflated HLLC value and an LLLC value that is close to 0. Conversely, when the
value of α is too high, the high load and low load level thresholds overlap, causing sets H and L to each
contain nearly half of the data points, which makes both HLLC and LLLC approach 1, thereby reducing the
algorithm’s ability to differentiate between different samples.

Therefore, we set TIQR to 1.5 and choose α to be 0.5 as the basis for subsequent experiments.

4.3 Evaluation of the Density Uniformity Index Based on Differences
In this section, we conduct a systematic evaluation of the DUID. To this end, we selected 10 samples

with different distribution characteristics for analysis. These samples include random uniform distribution,
normal distribution (comprising combinations of 2, 3, and 4 normal distributions), skewed distribution,
exponential distribution, log-normal distribution, triangular distribution, linear distribution, and chi-
squared distribution. The data range for all samples is set between 0 and 100, with each sample consisting of
100 data points.

In the experimental process, we employed the algorithm described in this paper to identify the high
load level thresholds and low load level thresholds, in order to validate the effectiveness of the DUID. The
results indicate that as the uniformity of the data distribution increases, the widths of the high load and low
load regions identified by the threshold recognition significantly increase. As shown in Fig. 4, it presents
information such as the distribution characteristics of the samples, including kurtosis and skewness, the



Comput Mater Contin. 2025;83(2) 2631

results of the chi-squared test, and the widths of the thresholds. Notably, in the cases of uniform distribution
and linear distribution, a substantial increase in the widths of the high load and low load regions can be
clearly observed, reflecting the uniformity of their data distributions.

Figure 4: Analysis of ten samples based on density uniformity

The purpose of the chi-squared test is to assess the difference between the sample distribution and the
theoretical uniform distribution. Specifically, we compared the observed frequencies of each sample with the
expected frequencies to determine whether the samples significantly deviate from a uniform distribution.
By calculating the X2 statistic, we were able to quantify the degree of this deviation and subsequently analyze
the relationship between DUID and X2.

This section clearly demonstrates the correlation between the DUID and the results of the chi-squared
test. We generated 1000 time series datasets based on the 10 different distribution characteristics illustrated
in Fig. 4, and plotted the relationship between DUID and the chi-square statistic (X2) for these time series
data, as shown in Fig. 5. Fig. 5a–c displays the relationship between DUID and the results of the chi-square
tests under different numbers of intervals. Through analysis, we found that there is a significant positive
correlation between the DUID and the chi-squared statistic (X2).

Figure 5: Correlation between DUID and chi-square statistic (X2)



2632 Comput Mater Contin. 2025;83(2)

We calculated the correlation coefficients and corresponding p-values between the DUID and the chi-
squared statistic (X2) using Kendall’s Tau and Spearman correlation coefficients. The results are presented
in Table 2.

Table 2: Kendall’s Tau and Spearman correlation for DUID and X2

Method 5 interval analysis 10 interval analysis 20 interval analysis

Coefficient p-value Coefficient p-value Coefficient p-value
Kendall’s Tau 0.7091591 p < 1 × 10−245 0.8414686 0 0.8827963 0

Spearman 0.8574691 p < 1 × 10−290 0.9664087 0 0.980847 0

From the results above, both Kendall’s Tau and Spearman correlation coefficients indicate a strong
positive correlation between the DUID and the chi-squared statistic (X2), with p-values less than 0.001. This
suggests that the correlation is highly statistically significant.

In summary, the DUID demonstrates good performance in load time series analysis, effectively
identifying and quantifying the characteristics of different load levels, particularly the uniformity of sample
distribution density. This provides an important theoretical basis and practical guidance for subsequent load
level detection and resource management.

4.4 Evaluation of Algorithm Effectiveness
We conducted a comprehensive performance evaluation of the proposed load level detection algorithm.

The evaluation was based on 8 non-parametric scenario samples and 8 parametric synthetic samples, aiming
to verify the algorithm’s effectiveness under different data characteristics.

In the non-parametric scenario samples, each sample consists of 72 members, with each member
representing a load value. The characteristics of the 8 data sets are illustrated in Fig. 6a, which displays the
distribution features and load patterns of the different samples. In the parametric synthetic samples, each
sample consists of 300 members, with each member also representing a load value. The characteristics of the
8 data sets are shown in Fig. 6b, further enriching the diversity and complexity of the samples. A detailed
description of all 16 samples is provided in Table 3.

We visually presented the algorithm’s results for the 16 samples. Each sample’s visualization consists of
two subplots. The first subplot is a line chart, where the red-marked points indicate high-level loads identified
by the algorithm, the blue-marked points represent low-level loads, and the remaining points denote regular
loads. The second subplot features an improved Pareto chart. In this chart, we replaced the cumulative
percentage line traditionally found in Pareto charts with the load percentages of different load types. The
labels on the bars indicate the proportion of each load type relative to the total load, while the X-axis text
represents the proportion of the corresponding level load time to the total time. To the right of each sample’s
visualization analysis conclusion, the normalized load values at different load levels are displayed.

The algorithm’s results for the scenario samples are shown in Fig. 7. During the execution of the
algorithm, the parameters were set as follows: TIQR = 1.5, α = 0.5, and CRe f = 150.



Comput Mater Contin. 2025;83(2) 2633

Figure 6: Visualization of 16 load time series samples

Table 3: Descriptive overview of 16 load time series samples

Sample Description
Scenario 1 Sample with multiple high load periods
Scenario 2 Sample with one high load period and one low load period
Scenario 3 Sample with one load surge period
Scenario 4 Sample with multiple load surge periods
Scenario 5 Sample with one low load period
Scenario 6 Sample with multiple low load periods
Scenario 7 Sample with multiple sudden load drop periods
Scenario 8 Sample with significant and irregular load fluctuations

Synthetic PS Samples exhibiting periodic patterns
Synthetic TS Samples showing a trend over time

Synthetic STS Samples demonstrating a spiral upward trend
Synthetic UONS Normal distribution samples with upper outliers
Synthetic LONS Normal distribution samples with lower outliers
Synthetic PTS Samples exhibiting both periodicity and trend

Synthetic MSNS Normal distribution samples with mean shifts
Synthetic QTS Samples with a quadratic (non-linear) trend



2634 Comput Mater Contin. 2025;83(2)

Figure 7: Visualization of algorithm results on non-parametric scenario samples

Taking Scenario 1 as an example, the DUID is 0.471, indicating a moderate degree of uniformity in the
sample’s distribution density, with some level of non-uniformity. Therefore, the algorithm does not impose
overly strict criteria when identifying high load regions and low load regions. We can observe that during
two high load periods, data points are identified as high load regions. The calculation results show that the
load amount of the data points identified as high load regions accounts for 41.5%, concentrated within 19.4%
of the time. In contrast, the load amount of the data points identified as low load regions only accounts for
20.2%, but is dispersed over 54.2% of the time. The load amount of other data points accounts for a total of
38.3%, distributed over 26.4% of the time. Overall, the results output by the algorithm are reasonable.

Due to space limitations, the algorithm output results for the other 15 samples can be referenced in Fig. 7
and Fig. 8, as well as in Table 4.

Figure 8: Visualization of algorithm results on parameterized synthetic samples



Comput Mater Contin. 2025;83(2) 2635

Table 4: Statistical interpretation of algorithm outputs for 16 samples

Sample Includes high load (HL) Includes low load (LL) Is balanced
load (BL)

High level
load

Extreme
high level

load

Insignificant Low level
load

Extreme
low level

load

Insignificant

Scenario 1
√ √

No
Scenario 2

√ √
No

Scenario 3
√ √

No
Scenario 4

√ √
No

Scenario 5
√ √

No
Scenario 6

√ √
No

Scenario 7
√ √

No
Scenario 8

√ √
No

Synthetic PS
√ √

Yes
Synthetic TS

√ √
Yes

Synthetic STS
√ √

No
Synthetic UONS

√ √
No

Synthetic LONS
√ √

No
Synthetic PTS

√ √
Yes

Synthetic MSNS
√ √

No
Synthetic QTS

√ √
No

Table 4 summarizes the statistical interpretations of the algorithm’s outputs for the 16 samples. It is
noteworthy that the algorithm provides intuitive and easily understandable explanations based on the
different characteristics of the samples. For instance, some samples contain Extreme Peak Load, indicating a
need to monitor for potential overload situations, while others include Valley Load and Extreme Low Level
Load, suggesting that attention should be paid to resource idleness in those samples.

5 Algorithm Validation

5.1 Verification of Algorithm Features
To further validate the effectiveness of the algorithm, we applied the Bootstrap sampling method 1000

times to each of the 16 load time series samples with different characteristics mentioned in Section 4.2. We
used the 60%, 75%, 90%, and 95% percentiles of the input samples as references for the high load level
thresholds, while the 5%, 10%, 25%, and 40% percentiles of the input samples were used as references for the
low load level thresholds for the analysis.

In each bootstrap sample, we identify the regions of different load levels based on the established load
level thresholds. Subsequently, we calculate the HLLC and LLLC based on the identification results, using the
2.5% and 97.5% percentiles as the boundaries for the confidence intervals. Finally, we compare the calculated
confidence intervals with the values obtained from the TRLLD algorithm proposed in this paper to determine
whether they fall within the corresponding confidence intervals.

Through this method, we are able to systematically assess the conclusion preferences of the TRLLD
algorithm, thereby validating the effectiveness of automated threshold detection on samples with different
characteristics. All statistical results are retained to two decimal places to ensure the precision and readability
of the results.



2636 Comput Mater Contin. 2025;83(2)

For ease of comparison, the DUID in Tables 4 and 5 is calculated using the input samples after outlier
removal, while DUID′ is calculated using the original input samples.

Table 5: Bootstrap-derived HLLC confidence intervals for 16 samples at various quantile thresholds

Sample HLLC DUID DUID′ CI60% (PLC) CI75% (PLC) CI90% (PLC) CI95% (PLC)
Scenario 1 2.14 0.47 0.47 [1.60,2.21]* [1.77,2.47]* [1.93,2.72]* [2.02,2.84]*
Scenario 2 1.92 0.40 0.43 [1.36,1.72] [1.52,1.97]* [1.77,2.37]* [2.05,2.78]
Scenario 3 1.65 0.50 0.72 [1.25,1.57] [1.30,1.81]* [1.42,2.65]* [1.45,3.76]*
Scenario 4 4.07 0.50 0.89 [1.65,2.60] [2.29,4.43]* [3.96,10.33]* [6.09,17.30]
Scenario 5 1.40 0.56 0.53 [1.24,1.46]* [1.30,1.54]* [1.36,1.61]* [1.37,1.63]*
Scenario 6 1.72 0.36 0.36 [1.38,1.75]* [1.54,1.94]* [1.67,2.15]* [1.75,2.23]
Scenario 7 1.30 0.45 0.54 [1.18,1.39]* [1.21,1.45]* [1.26,1.50]* [1.31,1.54]
Scenario 8 2.26 0.50 0.50 [1.44,1.91] [1.64,2.24] [1.99,2.73]* [2.20,3.07]*

Synthetic PS 1.17 0.39 0.39 [1.14,1.17]* [1.17,1.21]* [1.19,1.23] [1.21,1.25]
Synthetic TS 1.20 0.41 0.41 [1.14,1.18] [1.18,1.23]* [1.23,1.28] [1.25,1.30]

Synthetic STS 1.55 0.44 0.44 [1.28,1.37] [1.38,1.48] [1.53,1.67]* [1.60,1.74]
Synthetic UONS 4.00 0.44 0.95 [1.72,2.21] [2.36,3.30] [4.70,8.10] [8.80,15.46]
Synthetic LONS 1.08 0.44 0.92 [1.04,1.09]* [1.05,1.10]* [1.06,1.11]* [1.07,1.12]*
Synthetic PTS 1.22 0.44 0.44 [1.13,1.17] [1.18,1.22]* [1.24,1.29] [1.27,1.32]

Synthetic MSNS 1.33 0.49 0.63 [1.22,1.29] [1.27,1.38] [1.41,1.64] [1.59,1.92]
Synthetic QTS 2.15 0.40 0.40 [1.61,1.85] [1.84,2.16]* [2.13,2.49]* [2.23,2.60]

Note: * The marked content denotes the intervals where HLLC occurs.

According to Tables 5 and 6, it is evident that as the DUID increases, the HLLC obtained by the
TRLLD algorithm tends to fall within the confidence intervals defined by more extreme percentiles for high
load level thresholds, such as the 90% and 95% percentiles. Conversely, the LLLC tends to fall within the
confidence intervals defined by more extreme percentiles for low load level thresholds, such as the 10% and
5% percentiles. When the DUID is lower, the opposite trend is observed.

Table 6: Bootstrap-derived LLLC confidence intervals for 16 samples at various quantile thresholds

Sample LLLC DUID DUID′ CI40% (VLC) CI25% (VLC) CI10% (VLC) CI05% (VLC)
Scenario 1 0.37 0.47 0.47 [0.26,0.38]* [0.23,0.34] [0.18,0.27] [0.18,0.27]
Scenario 2 0.38 0.40 0.43 [0.41,0.59] [0.26,0.43]* [0.09,0.27] [0.01,0.14]
Scenario 3 0.44 0.50 0.72 [0.56,0.74] [0.47,0.64] [0.35,0.49]* [0.30,0.40]
Scenario 4 0.18 0.50 0.89 [0.15,0.45]* [0.12,0.38]* [0.09,0.27]* [0.08,0.23]*
Scenario 5 0.24 0.56 0.53 [0.55,0.74] [0.40,0.65] [0.10,0.37]* [0.02,0.09]
Scenario 6 0.42 0.36 0.36 [0.38,0.56]* [0.26,0.42]* [0.13,0.24] [0.09,0.15]
Scenario 7 0.17 0.45 0.54 [0.52,0.76] [0.31,0.64] [0.05,0.12] [0.02,0.05]
Scenario 8 0.17 0.50 0.50 [0.28,0.51] [0.11,0.25]* [0.02,0.05] [0.01,0.02]

Synthetic PS 0.83 0.39 0.39 [0.83,0.86]* [0.80,0.83]* [0.77,0.80] [0.76,0.78]
Synthetic TS 0.75 0.41 0.41 [0.83,0.86] [0.78,0.81] [0.71,0.75]* [0.68,0.72]

Synthetic STS 0.51 0.44 0.44 [0.65,0.71] [0.54,0.61] [0.38,0.45] [0.30,0.37]
Synthetic UONS 0.19 0.44 0.95 [0.23,0.41] [0.18,0.34]* [0.12,0.24]* [0.07,0.18]

(Continued)



Comput Mater Contin. 2025;83(2) 2637

Table 6 (continued)

Sample LLLC DUID DUID′ CI40% (VLC) CI25% (VLC) CI10% (VLC) CI05% (VLC)
Synthetic LONS 0.62 0.44 0.92 [0.87,0.94] [0.76,0.89] [0.40,0.70]* [0.08,0.09]
Synthetic PTS 0.76 0.44 0.44 [0.83,0.86] [0.78,0.82] [0.71,0.76]* [0.67,0.72]

Synthetic MSNS 0.68 0.49 0.63 [0.72,0.77] [0.69,0.74] [0.64,0.69]* [0.61,0.67]
Synthetic QTS 0.46 0.40 0.40 [0.33,0.40]† [0.27,0.32] [0.23,0.28] [0.22,0.26]

Note: † It is verified that Synthetic QTS falls within the 50% confidence interval.

This indicates that the proposed algorithm can flexibly adjust the recognition thresholds based on load
variations, demonstrating that the algorithm can automatically adjust the high and low load thresholds
according to the uniformity of the load distribution (as measured by the DUID index) and accurately
identify significant load changes. This validates the effectiveness and adaptability of the TRLLD algorithm in
processing load time series.

5.2 Robustness Verification
To validate the robustness of the algorithm, we introduced five different levels of additive noise: 3%, 5%,

10%, and 25% for each data set, and then recalculated the HLLC and LLLC. Subsequently, we assessed the
differences between these values and the HLLC and LLLC obtained before the introduction of noise.

The intensity of the introduced noise was determined by calculating the Median Absolute Deviation
(MAD) of the original data and adjusting it based on the specified noise percentage. The generated noise
followed a normal distribution with a mean of 0 and a standard deviation equal to MAD multiplied by the
noise percentage. To ensure the validity of the data, any generated negative values were set to zero. The
noise introduced in this manner can moderately simulate uncertainties in real-world scenarios, helping to
validate the algorithm’s performance under different noise intensities. The HLLC and LLLC calculated after
introducing varying levels of noise are shown in Fig. 9a and b, respectively.

Figure 9: Heatmap of HLLC and LLLC relative errors with varying noise levels



2638 Comput Mater Contin. 2025;83(2)

According to Fig. 9, we can observe that when the introduced noise intensity is at 10% or below, the
relative errors remain at a low level. It is only when the noise intensity reaches 25% or 40% that some samples
exhibit relative errors exceeding 5%. The average relative errors for the eight scenario samples and the eight
synthetic samples are presented in Table 7.

Table 7: Average relative errors of scenario and synthetic samples with varying noise levels

Sample 3% Noisy
amplitude

5% Noisy
amplitude

10% Noisy
amplitude

25% Noisy
amplitude

40% Noisy
amplitude

HLLC LLLC HLLC LLLC HLLC LLLC HLLC LLLC HLLC LLLC
Scenario samples 1.46% 1.02% 1.70% 3.58% 2.58% 4.72% 6.98% 19.01% 7.35% 22.25%
Synthetic samples 0.66% 1.53% 0.25% 2.62% 2.94% 2.29% 3.14% 4.79% 6.53% 12.62%

Average 1.06% 1.28% 0.98% 3.10% 2.76% 3.51% 5.06% 11.90% 6.94% 17.43%

According to the results in Table 7, under the introduction of 3%, 5%, and 10% noise, the relative errors
for both HLLC and LLLC are all below 5%, with the highest being only 4.72%. The statistical interpretations
of the algorithmic analysis conclusions for each sample remain unchanged.

In summary, this indicates that the TRLLD algorithm demonstrates excellent performance when faced
with low to moderate levels of additive noise, maintaining high robustness and consistency. This suggests
that the algorithm can effectively handle data uncertainty in practical applications, further enhancing its
reliability in real-world scenarios.

6 Discussion
The TRLLD algorithm described in this paper is a load level detection algorithm based on threshold

recognition using the DUID, representing a relatively foundational research effort in this field. The statistical
interpretations provided in this study also lay the groundwork for further applications of this algorithm in
engineering contexts.

Currently, most research focuses more on peak and trough detection (extreme point detection) and load
forecasting within load time series. Conducting systematic and foundational research on load time series
can effectively promote the overall development of this field.

This study demonstrates certain advantages over existing research. Compared to the simple peak
detection algorithm proposed by Palshikar [17], the TRLLD algorithm presented in this paper effectively
identifies features of load time series by automatically recognizing peaks and troughs and utilizing the DUID,
thereby enhancing accuracy and robustness in complex load time series. Gokcesu et al. proposed a non-
parametric method for envelope extraction and peak detection in time series by minimizing cumulative L1
drift, achieving a near-linear time complexity [40]. The TRLLD algorithm described in this paper has a time
complexity of O (n log n), primarily due to the sorting operations involved in feature extraction. The TRLLD
algorithm is also a non-parametric method, offering multiple perspectives, which enhances its applicability
across a wider range of scenarios. The multi-scale method by Messer et al. [41], which combines statistical
testing with peak position estimation, performs excellently in the study of neuronal activity; however, the
TRLLD algorithm provides a more comprehensive description of load time series features by introducing
HLLC and LLLC to quantify load characteristics. The online two-stage peak detection algorithm (TSPD)
by Gupta et al. [21] improves adaptability through parameter adjustment, while the TRLLD algorithm also
offers two adjustable parameters to optimize sensitivity to outliers and threshold settings, thereby enhancing
adaptability and performance across various application domains.



Comput Mater Contin. 2025;83(2) 2639

The findings of this study can also be utilized to improve existing research. In the field of load peak and
trough detection, this research can enhance the accuracy and sensitivity of peak and trough detection by
introducing the DUID, or selectively identifying peak and trough data points with demand characteristics.

In the field of load forecasting, this study can be utilized to enhance the training process of existing
forecasting models. The TRLLD algorithm effectively identifies and classifies different load levels, generating
high-quality training data that can serve as input for various predictive models, such as LSTM [42] and
Transformer [43], thereby enhancing their adaptability to complex dynamic load variations. For LSTM,
the load level annotations and time series features from TRLLD help capture temporal dependencies,
improving the accuracy of short-term load forecasts. Additionally, HLLC and LLLC can be calculated at a
finer granularity to further optimize model performance. For Transformer, the load feature information from
TRLLD enhances the effectiveness of the self-attention mechanism, improving the understanding of long-
term dependencies and complex load patterns, thereby increasing prediction accuracy. By integrating the
outputs of TRLLD, models such as LSTM and Transformer can more accurately forecast future loads when
faced with complex load variations, thereby expanding the application potential of deep learning models.

Although the TRLLD algorithm proposed in this paper demonstrates good performance and robustness
in load time series analysis, there remain many unexplored areas in the overall interpretability of load time
series characteristics. The dynamic evolution of load time series is crucial for resource management and
decision support. Future research could focus on the relationship between long-term trends and short-term
fluctuations in load behavior, integrating temporal analysis and forecasting models to delve into the driving
factors and influencing mechanisms behind load variations. Additionally, further summarizing quantitative
metrics for load time series is a mainstream direction.

7 Conclusion
This study proposes the TRLLD algorithm that effectively identifies and classifies high and low

load regions within load time series data. The algorithm described in this paper demonstrates enhanced
adaptability and accuracy in handling complex load time series by introducing a DUID, thereby providing
more dimensional information for further research on load time series.

The experimental results indicate that the proposed DUID effectively reflects the distribution density
uniformity of load time series. The TRLLD algorithm can effectively identify regions with different load
levels in 16 load time series samples of various distribution types and calculate the load concentration index.
Validation results demonstrate that the algorithm can automatically adjust the thresholds for high and low
loads based on the uniformity of load distribution (as measured by the DUID index), exhibiting good
robustness. Even with the introduction of noise levels of 3%, 5%, and 10%, the relative errors for HLLC and
LLLC did not exceed 5%, with a maximum error of only 4.72%.

However, this paper has certain limitations. Specifically, the performance of the TRLLD algorithm on
larger datasets has not been thoroughly investigated, and there is a lack of targeted exploration in specific
industry segments. Future research should focus on assessing the adaptability and performance of TRLLD
in large-scale load time series datasets or datasets from specific industry segments. Nevertheless, due to the
temporal correlation commonly found in load time series data, larger datasets can achieve results comparable
to those presented in this study by reducing the time granularity, thereby ensuring the algorithm remains
feasible in practical applications.

Further discussions require the introduction of more diverse and complex samples, as well as the
exploration of new quantitative metrics. A current challenge is the insufficient availability of large-scale
load time series samples. Future goals include incorporating additional data samples to create a more



2640 Comput Mater Contin. 2025;83(2)

rigorous dataset that captures both long-term trends and short-term fluctuations in load behavior, such as the
relationship between long-term trends and short-term volatility, as well as the load volatility index. Applying
the TRLLD algorithm to time series forecasting models such as LSTM and Transformer is also one of the
primary research directions for the future. Additionally, further validation of the applicability of TRLLD
and related metrics like DUID in practical scenarios across different fields is also a key objective for future
research. Through these efforts, we aim to advance the theoretical and practical development of load time
series analysis and promote research progress in related fields.

Acknowledgement: I would like to express my sincere gratitude to Professor Kharin Aleksey Y. for the insightful
statistical testing concepts shared during his lecture. His ideas greatly inspired me and helped me to better apply
statistical methods in this research.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Qingqing Song;
methodology, Qingqing Song; software, Qingqing Song and Shaoliang Xia; validation, Qingqing Song, Shaoliang Xia,
and Zhen Wu; formal analysis, Qingqing Song and Shaoliang Xia; investigation, Qingqing Song; resources, Qingqing
Song; data curation, Qingqing Song; writing, original draft preparation, Qingqing Song; writing, review and editing,
Qingqing Song, Shaoliang Xia, and Zhen Wu; visualization, Zhen Wu; project administration, Qingqing Song. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Samet H, Khorshidsavar M. Analytic time series load flow. Renew Sustain Energy Rev. 2018;82(2):3886–99. doi:10.

1016/j.rser.2017.10.084.
2. Choi K, Yi J, Park C, Yoon S. Deep learning for anomaly detection in time-series data: review, analysis, and

guidelines. IEEE Access. 2021;9:120043–65. doi:10.1109/ACCESS.2021.3107975.
3. Pereira LES, da Costa VM. Interval analysis applied to the maximum loading point of electric power systems

considering load data uncertainties. Int J Electr Power Energy Syst. 2014;54(6):334–40. doi:10.1016/j.ijepes.2013.07.
026.

4. Hu S, Gao Z, Wu J, Ge Y, Li J, Zhang L, et al. Time-interval-varying optimal power dispatch strategy based on net
load time-series characteristics. Energies. 2022;15(4):1582. doi:10.3390/en15041582.

5. Song Q, Wu Z, Xia S. Node load rate calculation method based on database query statistics in load balancing
strategy. In: 2024 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC); 2024 Apr
12–14; Dalian, China: IEEE; 2024. p. 408–12. doi:10.1109/IPEC61310.2024.00077.

6. Liu G, Liu J, Bai Y, Wang C, Wang H, Zhao H, et al. EWELD: a large-scale industrial and commercial load dataset
in extreme weather events. Sci Data. 2023;10(1):615. doi:10.1038/s41597-023-02503-6.

7. Zhou K, Hu D, Hu R, Zhou J. High-resolution electric power load data of an industrial park with multiple types
of buildings in China. Sci Data. 2023;10(1):870. doi:10.1038/s41597-023-02786-9.

8. Bhalaji N. Cloud load estimation with deep logarithmic network for workload and time series optimization. J Soft
Comput Paradigm. 2021;3(3):234–48. doi:10.36548/jscp.

9. Yadav MP, Pal N, Yadav DK. Workload prediction over cloud server using time series data. In: 2021 11th
International Conference on Cloud Computing, Data Science & Engineering (Confluence); 2021 Jan 28–29; Noida,
India: IEEE; 2021. p. 267–72. doi:10.1109/confluence51648.2021.9377032.

https://doi.org/10.1016/j.rser.2017.10.084
https://doi.org/10.1016/j.rser.2017.10.084
https://doi.org/10.1109/ACCESS.2021.3107975
https://doi.org/10.1016/j.ijepes.2013.07.026
https://doi.org/10.1016/j.ijepes.2013.07.026
https://doi.org/10.3390/en15041582
https://doi.org/10.1109/IPEC61310.2024.00077
https://doi.org/10.1038/s41597-023-02503-6
https://doi.org/10.1038/s41597-023-02786-9
https://doi.org/10.36548/jscp
https://doi.org/10.1109/confluence51648.2021.9377032


Comput Mater Contin. 2025;83(2) 2641

10. Khan A, Yan X, Tao S, Anerousis N. Workload characterization and prediction in the cloud: a multiple time series
approach. In: 2012 IEEE Network Operations and Management Symposium; 2012 Apr 16–20; Maui, HI, USA: IEEE;
2012. p. 1287–94. doi:10.1109/NOMS.2012.6212065.

11. Higginson AS, Dediu M, Arsene O, Paton NW, Embury SM. Database workload capacity planning using time
series analysis and machine learning. In: Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data; Portland OR USA: ACM; 2020. p. 769–83. doi:10.1145/3318464.

12. McDonald R. Time series forecasting of database workloads in hybrid cloud [dissertation]. Dublin, Ireland:
National College of Ireland; 2021.

13. Hagan MT, Behr SM. The time series approach to short term load forecasting. IEEE Trans Power Syst.
1987;2(3):785–91. doi:10.1109/TPWRS.1987.4335210.

14. Motlagh O, Berry A, O’Neil L. Clustering of residential electricity customers using load time series. Appl Energy.
2019;237(1):11–24. doi:10.1016/j.apenergy.2018.12.063.

15. Shilpa GN, Sheshadri GS. Electrical load forecasting using time series analysis. In: 2020 IEEE Bangalore Human-
itarian Technology Conference (B-HTC); 2020 Oct 8–10; Vijiyapur, India: IEEE; 2020. p. 1–6. doi:10.1109/b-
htc50970.2020.9297986.

16. Loganathan U, Nagarajan G, Gopinath S, Chandrasekar V. Deep learning based photovoltaic generation on time
series load forecasting. Bulletin EEI. 2024;13(5):3746–56. doi:10.11591/eei.v13i5.7836.

17. Palshikar G. Simple algorithms for peak detection in time-series. In: Proceedings of the 1st International
Conference on Advanced Data Analysis, Business Analytics and Intelligence; 2009; Pune, India. Vol. 122, p. 1–13.

18. Schneider R. Survey of peaks/valleys identification in time series [master’s thesis]. Zurich, Switzerland: University
of Zurich; 2011.

19. Li L, Cao B, Liu Y. A study on CEP-based system status monitoring in cloud computing systems. In: 2013 6th
International Conference on Information Management, Innovation Management and Industrial Engineering; 2013
Nov 23–24; Xi’an, China: IEEE; 2013. p. 300–3. doi:10.1109/ICIII.2013.6702934.

20. Cao Z, Lin J, Wan C, Song Y, Zhang Y, Wang X. Optimal cloud computing resource allocation for demand side
management in smart grid. IEEE Trans Smart Grid. 2017;8(4):1943–55. doi:10.1109/TSG.2015.2512712.

21. Gupta A, Onumanyi AJ, Ahlawat S, Prasad Y, Singh V. TSPD: a robust online time series two-stage peak detection
algorithm. In: 2023 IEEE International Conference on Service-Oriented System Engineering (SOSE); 2023 Jul 17–
20; Athens, Greece: IEEE; 2023. p. 91–7. doi:10.1109/SOSE58276.2023.00017.

22. Tsekouras GJ, Salis AD, Tsaroucha MA, Karanasiou IS. Load time-series classification based on pattern recognition
methods. Patt Recognit Techni, Techno Appl. 2008;10:361–432. doi:10.5772/6250.

23. Manojlović I, Švenda G, Erdeljan A, Gavrić M. Time series grouping algorithm for load pattern recognition.
Comput Ind. 2019;111(1):140–7. doi:10.1016/j.compind.2019.07.009.

24. Qi Y, Luo B, Wang X, Wu L. Load pattern recognition method based on fuzzy clustering and decision tree. In: 2017
IEEE Conference on Energy Internet and Energy System Integration (EI2); 2017 Nov 26–28; Beijing, China: IEEE;
2017. p. 1–5. doi:10.1109/EI2.2017.8245714.

25. Tambunan HB, Barus DH, Hartono J, Alam AS, Nugraha DA, Usman HHH. Electrical peak load clustering analysis
using K-means algorithm and silhouette coefficient. In: 2020 International Conference on Technology and Policy
in Energy and Electric Power (ICT-PEP); 2020 Sep 23–24; Bandung, Indonesia: IEEE; 2020. p. 258–62. doi:10.1109/
ict-pep50916.2020.9249773.

26. Rajabi A, Eskandari M, Ghadi MJ, Li L, Zhang J, Siano P. A comparative study of clustering techniques for electrical
load pattern segmentation. Renew Sustain Energy Rev. 2020;120:109628. doi:10.1016/j.rser.2019.109628.

27. Song Q, Xia S. Research on the effectiveness of different outlier detection methods in common data distribution
types. J Comput Technol Appl Mathem. 2024;1(1):13–25. doi:10.5281/zenodo.10888672.

28. Shiffler RE. Maximum Z scores and outliers. Am Stat. 1988;42(1):79–80. doi:10.1080/00031305.1988.10475530.
29. Larson MG. Descriptive statistics and graphical displays. Circulation. 2006;114(1):76–81. doi:10.1161/

CIRCULATIONAHA.105.584474.

https://doi.org/10.1109/NOMS.2012.6212065
https://doi.org/10.1145/3318464
https://doi.org/10.1109/TPWRS.1987.4335210
https://doi.org/10.1016/j.apenergy.2018.12.063
https://doi.org/10.1109/b-htc50970.2020.9297986
https://doi.org/10.1109/b-htc50970.2020.9297986
https://doi.org/10.11591/eei.v13i5.7836
https://doi.org/10.1109/ICIII.2013.6702934
https://doi.org/10.1109/TSG.2015.2512712
https://doi.org/10.1109/SOSE58276.2023.00017
https://doi.org/10.5772/6250
https://doi.org/10.1016/j.compind.2019.07.009
https://doi.org/10.1109/EI2.2017.8245714
https://doi.org/10.1109/ict-pep50916.2020.9249773
https://doi.org/10.1109/ict-pep50916.2020.9249773
https://doi.org/10.1016/j.rser.2019.109628
https://doi.org/10.5281/zenodo.10888672
https://doi.org/10.1080/00031305.1988.10475530
https://doi.org/10.1161/CIRCULATIONAHA.105.584474
https://doi.org/10.1161/CIRCULATIONAHA.105.584474


2642 Comput Mater Contin. 2025;83(2)

30. Khan K, Rehman SU, Aziz K, Fong S, Sarasvady S. DBSCAN: past, present and future. In: The Fifth International
Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014); 2014 Feb 17–19;
Bangalore, India: IEEE; 2014. p. 232–8. doi:10.1109/ICADIWT.2014.6814687.

31. Al Farizi WS, Hidayah I, Rizal MN. Isolation forest based anomaly detection: a systematic literature review. In:
2021 8th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE);
2021 Sep 23–24; Semarang, Indonesia: IEEE; 2021. p. 118–22. doi:10.1109/icitacee53184.2021.9617498.

32. Mensi A, Cicalese F, Bicego M. Using random forest distances for outlier detection. In: International Conference
on Image Analysis and Processing. Lecce, Italy: Springer; 2022. p. 75–86.

33. Almardeny Y, Boujnah N, Cleary F. A novel outlier detection method for multivariate data. IEEE Trans Knowl
Data Eng. 2022;34(9):4052–62. doi:10.1109/TKDE.2020.3036524.

34. Boukerche A, Zheng L, Alfandi O. Outlier detection: methods, models, and classification. ACM Comput Surv.
2020;53(3):1–37. doi:10.1145/3421763.

35. Blázquez-García A, Conde A, Mori U, Lozano JA. A review on outlier/anomaly detection in time series data. ACM
Comput Surv. 2021;54(3):1–33. doi:10.1145/3444690.

36. Zamanzadeh Darban Z, Webb GI, Pan S, Aggarwal C, Salehi M. Deep learning for time series anomaly detection:
a survey. ACM Comput Surv. 2025;57(1):1–42. doi:10.1145/3691338.

37. Luo J, Hong T, Yue M. Real-time anomaly detection for very short-term load forecasting. J Mod Power Syst Clean
Energy. 2018;6(2):235–43. doi:10.1007/s40565-017-0351-7.

38. Yue M, Hong T, Wang J. Descriptive analytics-based anomaly detection for cybersecure load forecasting. IEEE
Trans Smart Grid. 2019;10(6):5964–74. doi:10.1109/TSG.2019.2894334.

39. Cook AA, Mısırlı G, Fan Z. Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J.
2020;7(7):6481–94. doi:10.1109/JIOT.2019.2958185.

40. Gokcesu K, Gokcesu H. Nonparametric extrema analysis in time series for envelope extraction, peak detection
and clustering. arXiv:2109.02082. 2021.

41. Messer M, Backhaus H, Fu T, Stroh A, Schneider G. A multi-scale approach for testing and detecting peaks in time
series. Statistics. 2020;54(5):1058–80. doi:10.1080/02331888.2020.1823980.

42. Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: LSTM cells and network architectures. Neural
Comput. 2019;31(7):1235–70. doi:10.1162/neco_a_01199.

43. Wen Q, Zhou T, Zhang C, Chen W, Ma Z, Yan J, et al. Transformers in time series. In: Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence; 2023 Aug 19–25; Macau, China: International
Joint Conferences on Artificial Intelligence Organization. p. 6778–86. doi:10.24963/ijcai.2023/759.

https://doi.org/10.1109/ICADIWT.2014.6814687
https://doi.org/10.1109/icitacee53184.2021.9617498
https://doi.org/10.1109/TKDE.2020.3036524
https://doi.org/10.1145/3421763
https://doi.org/10.1145/3444690
https://doi.org/10.1145/3691338
https://doi.org/10.1007/s40565-017-0351-7
https://doi.org/10.1109/TSG.2019.2894334
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1080/02331888.2020.1823980
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.24963/ijcai.2023/759

	TRLLD: Load Level Detection Algorithm Based on Threshold Recognition for Load Time Series
	1 Introduction
	2 Related Work
	3 Algorithm Description
	4 Experimental and Empirical Research
	5 Algorithm Validation
	6 Discussion
	7 Conclusion
	References


