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ABSTRACT: Semantic segmentation of novel object categories with limited labeled data remains a challenging
problem in computer vision. Few-shot segmentation methods aim to address this problem by recognizing objects
from specific target classes with a few provided examples. Previous approaches for few-shot semantic segmentation
typically represent target classes using class prototypes. These prototypes are matched with the features of the query
set to get segmentation results. However, class prototypes are usually obtained by applying global average pooling
on masked support images. Global pooling discards much structural information, which may reduce the accuracy
of model predictions. To address this issue, we propose a Category-Guided Frequency Modulation (CGFM) method.
CGFM is designed to learn category-specific information in the frequency space and leverage it to provide a two-
stage guidance for the segmentation process. First, to self-adaptively activate class-relevant frequency bands while
suppressing irrelevant ones, we leverage the Dual-Perception Gaussian Band Pre-activation (DPGBP) module to
generate Gaussian filters using class embedding vectors. Second, to further enhance category-relevant frequency
components in activated bands, we design a Support-Guided Category Response Enhancement (SGCRE) module to
effectively introduce support frequency components into the modulation of query frequency features. Experiments
on the PASCAL-5i and COCO-20i datasets demonstrate the promising performance of our model. The code will be
released at https://github.com/tymatfd/CGFM, accessed on 17 February 2025.
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1 Introduction
Computer vision has made significant progress in the era of deep learning [1–3]. Semantic segmen-

tation [4–6] is a fundamental task in computer vision. It assigns a label to every pixel in an image, which
allows models to interpret the scene at a fine-grained level. However, training semantic segmentation models
is typically resource-intensive and time-consuming, as they rely heavily on carefully annotated large-scale
datasets. Additionally, these models struggle to maintain accurate predictions for objects belonging to
categories unseen in the training set, limiting their applicability in real-world scenarios. Few-shot semantic
segmentation aims to address these problems by providing a few examples (the support set) for each target
class and attempting to identify objects from the same class in other images (the query set) based on these
examples. To make sure that the trained model can be well generalized to unseen classes, classes (base classes)
contained in the train set are designed to have no overlap with those (novel classes) in the test set. Few-shot
segmentation has emerged as a promising paradigm across various fields [7–10] demonstrating its versatility
and potential for solving real-world segmentation challenges with limited labeled data.
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To successfully recognize the target objects in the query set, it is essential to extract effective target class
representations from the limited support set examples. Most few-shot segmentation (FSS) methods [11–15]
employ masked average pooling (MAP) to obtain the class representation. MAP utilizes target object masks
provided by the support set to mask out all background regions and then applies global average pooling to
the remaining object regions. The obtained feature vector is subsequently used as the prototype for the target
class. Some approaches have attempted to increase the number of prototypes [16–19] using superpixels or
clustering, but these methods often face optimization difficulties and high costs on computation, especially
with multiple support samples. Besides, authors in [20–22] attempt to replace prototype comparison with
point-wise comparsion approaches to identify target objects in the query set, but such methods need to
consider each pixel in support samples and are vulnerable to noise interference. Consequently, following
approaches [21,23] tend to integrate prototypes into the query and support features before point-wise
comparison, which can effectively eliminates class-irrelevant noise. As a result, MAP remains widely used in
both prototypical and point-wise FSS methods.

However, the global average pooling operation used in MAP may have some shortages. Study [24]
finds that for image features, vectors obtained through global average pooling are equivalent to the first
component of image frequency features, which means it discards other frequency components. As shown
in Fig. 1, preserving only the first few components of the frequency features may lead to the loss of structure
information and failure in perfectly reconstructing the target object. In FSS, this means a certain loss of
class-level information and will ultimately affect the model’s prediction accuracy. To address this issue, we
propose to preserve more frequency components and extract representative class-level features from them.
Considering the inter-class variances between base and novel classes, as well as among the novel classes
themselves, handling frequency-domain features without guidance may lead the model to directly apply
knowledge learned from the training set to novel classes, resulting in poor generalization. Furthermore,
the intra-class variances between the support and query set are also not negligible. Segmentation tasks
are sensitive to the position information of objects in the input images. The position information in
the support set contained in frequency features is quite different from that in the query set. Directly
introducing support frequency features may disrupt the position information in the query set and cause
severe performance reduction.

i = 10Original i = 5 i = 1i = 3

Figure 1: Comparison of features reconstructed using the first i frequency bands, from low to high frequencies. As
shown in the last column, when i = 1, the remaining frequency components are equivalent to the features obtained
through global average pooling, and some crucial structure information is discarded during the pooling operation

To address the aforementioned problems, we propose a two-stage Category-Guided Frequency Mod-
ulation (CGFM) approach. In the first stage, we propose a Dual-Perception Gaussian Band Pre-activation
(DPGBP) module to preactivate class-relevant frequency bands and minimize the impact of class-irrelevant
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signals in the frequency features. This operation is guided by a class embedding vector, initialized with
class prototypes, and updated in Transformer blocks to percept and capture both class-level and instance-
level information. The dual-perception mechanism makes our model self-adaptive to different target classes
and samples. In the second stage, the Support-Guided Category Response Enhancement (SGCRE) module
further enhances category-relevant frequency components by introducing support frequency features. In this
module, the support and query frequency features are first decomposed into phase and amplitude features to
separately process position and intensity information. By introducing position-irrelevant class information,
our CGFM model can effectively strengthen the model’s response to frequency components most relevant
to the target class and alleviate the impact of background noise.

In summary, our contributions can be summarized as follows:

• We propose the Dual-Perception Gaussian Band Pre-activation (DPGBP) module to perceive and
capture category and instance information, and then leverage them to guide the activation of class-
relevant regions.

• We design the Support-Guided Category Response Enhancement (SGCRE) module to further enhance
class-relevant frequency components in query features by introducing the category information decom-
posed from the support frequency features.

• We evaluated our model on PASCAL-5i and COCO-20i , and the results validated the effectiveness of
the proposed modules.

2 Related Works

2.1 Few-Shot Semantic Segmentation
Few-shot semantic segmentation was first proposed by OSLSM [11]. As pixel-wise annotations have been

provided in the support set, authors in [25] proposed to extract categorical prototypes using masked average
pooling (MAP), which masks out background pixels from support features and then makes a global average
pooling on them. To get a robust prototype, study [16] leverages a graph attention network to extract more
semantic information from unlabeled data, and [17–19,26] extract multiple prototypes for a single category,
which are generated using the Expectation-Maximization algorithm, super-pixel segmentation, or self-
guided mechanism. PFENet [13] proposed a simple but effective way to improve the model’s generalization
ability, which constructs prior maps by calculating the cosine similarity between each support and query
pixel pair and picking the maximum scores for query pixels. The prior map mechanism does not introduce
extra training and largely improves the model’s generalization ability, which makes it widely used in the
following FSS methods. CyCTR [23] fuses the prior map with corresponding support and query features,
then it aggregates support features into query ones using cross-attention between support and query features.
To filter out irrelevant pixel pairs between support and query images, it implements a cycle-consistent
attention mechanism to suppress possible harmful support features. HDMNet [14] proposed a hierarchical
transformer framework by distilling category information between multi-scale features.

The representation ability of class prototype may be restrained by the scarcity of samples for target
classes. To address this issue, study [27] uses superpixel-based pseudo-labels to train a few-shot medical
image segmentation model without manual annotations. Study [28] proposes a self-supervised tuning
framework for few-shot segmentation, which dynamically adjusts the distribution of latent features across
different episodes using a self-supervised inner-loop base learner. Study [29] designs another self-supervised
meta-learning framework to create training pairs without manual annotations by leveraging unsupervised
saliency estimation and image augmentations. Study [30] estimates target distributions through graph
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partitioning and Laplacian matrix eigenvectors. Then they adaptively predicts the query mask using the
eigenvectors from the support images without the need for manual annotation.

2.2 Frequency Learning
Frequency learning has served as a classic tool in digital image processing [31,32] for a long time.

Frequency-based methods have proven effective in improving the representation learning in various tasks.
Authors in [33] proposed a fast and privacy-preserving framework to evaluate CNN models using Fourier
Transform and fully homomorphic encryption to efficiently evaluate CNN models, and enable secure predic-
tions without compromising model or input privacy. Authors in [34] propose to mix tokens in the frequency
space by learning instance-adaptive masks for semantic filtering. They achieve remarkable improvements in
lightweight neural networks for visual recognition. Study [35] jointly exploit global frequency information
and local spatial dependencies to improve the quality of face super-resolution. Their method highlights the
importance of phase information in the frequency domain for preserving facial structures, combining both
frequency and spatial learning for superior performance. Authors in [36] introduce deep frequency filtering
into domain generalization to suppress domain-specific features and enhance cross-domain transferability.
Study [37] presents a novel transformer-based deep learning method for medical image denoising signals,
addressing the limitations of existing techniques that often fail to handle complex noise patterns and
generate artifacts.

For segmentation tasks, authors in [38] introduced a novel self-attention mechanism in the frequency
domain that decouples high and low-frequency components. They significantly reduce computational
complexity while achieving state-of-the-art segmentation performance with improved edge preservation and
object consistency. Study [39] removes the decoder and uses an adaptive frequency filter to reduce complexity
while preserving high-resolution semantics. However, these methods are fully supervised segmentation
models trained on large datasets. These methods do not consider few-shot scenarios with significant class
variances. They fail to include the inherent characteristics of each target class and sample in their features,
which may lead to a lack of self-adaption to target classes.

3 Problem Formulation
Few-shot semantic segmentation aims to segment objects belonging to a specific class using only a few

annotated examples. As defined in [11], a few-shot segmentation episode splits the data into two parts: the
support set and the query set. Both sets contain images with objects from the same specific class. The support
set provides a few example images Is along with their respective binary masks Ms , which annotate the objects
belonging to the target class in the current episode. The query set consists of images Iq and the ground-
truth mask Mq . The segmentation model needs to make predictions on Iq , which segments objects belonging
to the specified class based on Is and Ms . Few-shot segmentation aims to maintain robust generalization
ability when dealing with novel classes. To ensure this, the training and testing classes must have no overlap
Ctrain ∩ Ctest = ∅.

4 Method

4.1 Dual-Perception Gaussian Band Pre-activation Module
Samples from the support set and query set, denoted as Is and Iq , are processed by a pre-trained encoder

to obtain the support and query features Fs and Fq ∈ RH×W×C , where H, W, and C represent the spatial
and channel dimensions of the features, respectively. Few-shot segmentation (FSS) models need to handle
a variety of target classes, and they may encounter significant overfitting due to large inter-class variances



Comput Mater Contin. 2025;83(2) 1711

and class-irrelevant noise. To address this issue, we propose a self-adaptive frequency band pre-activation
module that activates class-relevant frequency bands and suppresses class-irrelevant noise for different target
categories, as illustrated in Fig. 2.
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Figure 2: Dual-perception gaussian band pre-activation module

The Dual-Perception Gaussian Band Pre-activation (DPGBP) module modulates frequency features
using a series of Gaussian filters, which are generated by perciving category and instance information. We
utilize a class embedding vector to capture the intrinsic class attributes and guide the filter generation. The
class embedding vector is initialized using the class prototype. Specifically, we perform masked global average
pooling (GAP) on the support set features to obtain the class prototype:

˜Remb = GAP(Fs ⋅Ms). (1)

˜Remb ∈ R1×1×C is the initial class embedding, and GAP is Global Average Pooling. Subsequently, the class
embedding vector is updated in Transformer blocks [14] through the attention pooling mechanism [40],
along with tokens extracted from the support and query samples. By integrating the intrinsic instance
information extracted from these samples with the previously obtained target category information, our
model will be able to adaptively activate class-relevant frequency bands through the Gaussian filters
generated using the class embedding vector. Taking the query features as an example, we first concatenate it
with the patch embeddings of Fq to get a token sequence: Tq = [PE(Fq), ˜Remb], where ‘PE’ denotes the patch
embedding operation in Transformer blocks [14]. Then Tq is processed in the Transformer blocks to update
the class embedding feature contained in it through the self-attention mechanism:

Tq =MHA(WQ Tq , WK Tq , WV Tq), (2)

where WQ , WK , and WV are the linear embedding layer parameters in the Transformer blocks. ‘MHA’ denotes
multi-head attention module. The output features from Transformer blocks are then split to obtain updated
query features Fq and the class embedding vector Remb ,q . Compared to the original ˜Remb , Remb ,q is updated
along with tokens from the query set in transformer blocks and captures the instance information from the
query samples in this process. We get the updated class embedding vector Remb ,s for the support set using a
similar way as the query set, which has been shown in Fig. 2.
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The updated class embeddings Remb ,q and Remb ,s are used to guide the generation of Gaussian filters
separately for the query and support branches. The Gaussian kernel construction [41] for images is originally
formulated as:

G(σ , ρ)(i , j) = 1
2πσx σy

√
1 − ρ2

exp(− 1
2(1 − ρ2) [

i2

σx 2 +
j2

σy 2 −
2ρi j
σx σy
]) . (3)

G denotes the Gaussian filters constructed using σr and ρ. i and j denote the position indices on the
image. σ , σx , σy ∈ R1×1×C represent the deviation value and its component along the horizontal and vertical
dimension. ρ ∈ R1×1×C represents the correlation coefficients. In our method, σ and ρ are both computed
based on the class embedding. The class embedding is initialized using the class prototype, which is obtained
by applying MAP on the support features. Considering that there are a lot of zero values in the mask used in
MAP, the class embedding, as well as the obtained deviation and correlation coefficients, may also contain
a certain amount of zero values. These values may lead to numerical issues when directly using Eq. (3) to
generate Gaussian kernels. To address this problem, we rewrite Eq. (3) into the following form:

G(σr , ρ)(i , j) =
σrx σr y

2π
√

1 − ρ2
exp (− [(σ 2

rx ⋅ i2 − 2i j ⋅ ρσrx σr y + σ 2
r y ⋅ j2]). (4)

σr denotes the deviation reciprocals. σrx , σr y ∈ R1×1×C represent its component along the horizontal and
vertical dimensions. We directly calculate the deviation reciprocals instead of itself:

σr = θ ⋅ Sigmoid( fv ar(Remb ,q)),
ρ = γ ⋅ Sigmoid( fcorr(Remb ,q)), (5)

Fq ,au g =F−1(Conv1×1(G(σr , ρ) ⋅F (Fq))),

F and F−1 denote the Discrete Fourier Transform (DFT) and its inverse, respectively. fv ar and fcorr
are convolutional layers used to generate the standard deviations and correlation coefficients, respectively. θ
and γ are scaling coefficients. A similar calculation process is performed for the support features to obtain
the pre-activated support features Fs ,au g .

4.2 Support-Guided Category Response Enhancement Module
4.2.1 Decomposition of Frequency Features

As shown in Fig. 3, Fs ,au g and Fq ,au g are first processed by cross-attention Transformer blocks [14] to
exchange class information between the query and support set, which helps mitigate the impact of intra-
class variances. The features are then transformed into the frequency domain. However, directly applying
the support frequency features to the query features may lead to the degradation of position information,
significantly reducing model performance. To address this issue, we decompose the frequency features and
use only the amplitude component. Specifically, we decompose the frequency features into amplitude and
phase components:

Aq , Pq =F (Fq ,au g),
As , Ps =F (Fs ,au g ⋅Ms),

(6)

where Aq , Pq , As , Ps ∈ RH×(W
2 +1)×C denote the amplitude and phase pairs of the query and support samples,

respectively. The support amplitude is used to enhance the class-relevant components in the query amplitude,
while the query phase is retained to reconstruct the frequency features.
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Figure 3: Support-guided category response enhancement module

4.2.2 Category Response Enhancement
We introduce the frequency amplitude of the support set as the target class representation to enhance

the class-relevant frequency components in the query set. To achieve this, we first reshape As and Aq to
R

N×C , N equals H × (W
2 + 1), and calculate the amplitude similarity between them:

S = So f tmax(
A⊺s Aq√

H × (W
2 + 1)

). (7)

S ∈ RC×C is then utilized to integrate class-relevant frequency information from the support features
into the query frequency features:

Aq = Aq + Conv1×1(As S). (8)

Subsequently, we perform self-activation on the enhanced frequency features to further strengthen the
class-relevant frequency components:

Aq = Sigmoid(Conv1×1(Aq)) ⋅ Aq + Conv1×1(Aq),
Pq = Sigmoid(Conv1×1(Pq)) ⋅ Pq + Conv1×1(Pq).

(9)

The query set features are finally reconstructed with enhanced amplitudes and phases: Fq ,rec =
F−1(Aq expPq j). Fq ,rec are used in the final classification of foreground and background areas.

4.3 Objective Function and k-shot Extension
The query features output by the SGCRE module are processed by the segmentation decoder to obtain

the prediction result M̂q for the target class region. Binary cross-entropy (BCE) loss is then computed with
the true label Mq for each pixel. Additionally, we predict the target class region M̂s in parallel on the support
set samples and calculate BCE loss with the support set labels to guide the model. The descriptions in this
article so far are all based on a 1-shot scenario, where only one sample is contained in the support set. In
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the k-shot scenario, there are k samples in the support set. Since all frequencies in the frequency domain
features are derived by integrating all pixels in the spatial domain, each value can be considered an overall
representation of the target class. Therefore, the ˜Remb and As corresponding to the support set in our model
are obtained by averaging the values of k support samples. Finally, the model combines the cross-entropy
losses from both the query and support set into the model’s objective function:

Lse g = BCE(M̂q , Mq) + λ ⋅
k
∑

i
BCE(M̂s(i), Ms(i)). (10)

where λ is the weight coefficient.

5 Experiment
All experiments in this section are based on the PASCAL-5i , COCO-20i , and FSS-1000 [42] datasets.

Following most current methods, we use mean Intersection over Union (mIoU) and Foreground-
Background IoU (FB-IoU) to evaluate our model. PASCAL-5i is constructed based on the PASCAL VOC
2012 dataset [43] and further enriched with annotations from the SBD dataset [44]. It includes 20 categories,
which are divided into four folds for cross-validation. In each fold, 15 categories are used for training, while
the remaining 5 are reserved for testing. For evaluation, 1000 support-query pairs are randomly selected from
the test categories. Similarly, COCO-20i is derived from the MS COCO dataset [45], which consists of over
80,000 images spanning 80 categories. These categories are also divided into four folds for cross-validation,
with 60 categories used for training and the remaining 20 for testing in each fold. The category splits for
PASCAL-5i and COCO-20i follow the same protocols as described in [11] and [46], respectively. In the
testing stage, we follow the sampling settings used in most FSS methods [13,21,47], randomly sampling 1000
support-query pairs to calculate mIoU and FB-IoU. FSS-1000 is another large-scale dataset designed for few-
shot semantic segmentation, comprising 1000 object classes with 10 images per class, totaling 10,000 images.
Each image is annotated with pixel-wise binary segmentation masks, focusing on the primary object. The
dataset was constructed by collecting images from multiple search engines, ensuring diversity by including
both natural and artificial objects, many of which are not present in PASCAL-5i and COCO-20i .

5.1 Implementation Details
For a fair comparison, we follow the preprocessing steps proposed in [13], which includes mirroring and

random rotation within a range of -10 to 10 degrees during the training phase. The input images are obtained
by cropping 473 × 473 patches from the augmented images to serve as training samples. In the evaluation
phase, each input image is resized to match the training patch size while preserving its original aspect ratio
by padding with zeros. Our model uses VGG16, ResNet50, and ResNet101 pre-trained on ImageNet as the
backbone network for feature extraction. The model is trained for 200 epochs on PASCAL-5i and 50 epochs
on COCO-20i , with a batch size of 4. During model training, all weights in the backbone network remain
fixed. Our model is trained using the AdamW optimizer. The learning rate is set to 1e-4. All experiments
were conducted on NVIDIA RTX 4090 GPUs.

5.2 Metrics
To evaluate the performance of our model, we primarily use the mean intersection over union (mIoU)

as the main evaluation metric, complemented by the foreground-background IoU (FB-IoU) for additional
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insights. The mIoU metric is defined as:

mIoU = 1
C

C
∑
i=1

IoUi ,

where C is the total number of classes in each fold, and IoUi represents the intersection-over-union score for
the i-th class. This metric comprehensively evaluates the model’s segmentation accuracy across all classes. It
averages the IoU values to ensure balanced assessment.

The FB-IoU metric is calculated as:

FB-IoU = 1
2
(IoUF + IoUB),

where IoUF and IoUB represent the IoU values for the foreground and background regions, respec-
tively. Unlike mIoU, FB-IoU ignores class-specific distinctions and focuses on the overall segmentation
performance by computing the average IoU for foreground and background.

5.3 Comparison with Other FSS Methods
As shown in Table 1, CGFM demonstrates consistent and robust performance across the three back-

bones: VGG16, ResNet50, and ResNet101. Using the VGG16 backbone, CGFM achieves an average mIoU
of 67.3% in the 1-shot setting and 71.0% in the 5-shot setting, showing substantial improvement compared
to prior methods such as PFENet (58.0% and 59.0%, respectively). With the ResNet50 backbone, CGFM
achieves an average mIoU of 70.0% in the 1-shot setting and 72.7% in the 5-shot setting, consistently
outperforming other methods on both metrics. In ResNet101, CGFM achieves an average mIoU of 71.2%
in the 1-shot setting and 73.9% in the 5-shot setting, demonstrating its ability to generalize across folds
effectively. In addition to mIoU, CGFM achieves high FBIoU scores, with results of 75.5%, 78.5%, and 79.5%
in the 1-shot setting and 78.3%, 80.1%, and 81.1% in the 5-shot setting for VGG16, ResNet50, and ResNet101,
respectively. These results highlight the consistent performance of CGFM across various backbones and few-
shot settings and demonstrate its ability to handle different scenarios effectively. Based on Table 2, CGFM
shows strong performance in the COCO-20i dataset in both the 1-shot and 5-shot settings with the ResNet50
backbone. In the 1-shot setting, CGFM achieves an average mIoU of 50.4%, which is the highest among
all methods. Furthermore, CGFM achieves the best FBIoU score of 74.0%, further confirming its ability to
accurately recognize foreground objects from the background in complex scenarios. In the 5-shot setting,
CGFM maintains its advantage with an average mIoU of 56.5%. Its FBIoU also improves to 78.0%, which
shows that CGFM can effectively leverage additional support examples to improve segmentation accuracy. To
validate the generalization ability of our model on a larger number of categories, we conducted experiments
on FSS-1000. The results in Table 3 demonstrate that our model maintains promising performance, further
confirming its generalization capability across different target categories.

In summary, the experimental results demonstrate that CGFM performs well across various experi-
mental settings and datasets. CGFM not only achieves promising results in average mIoU but also exhibits
strong consistency across different folds, highlighting its potential as an effective few-shot segmentation
method. Furthermore, CGFM’s performance on the challenging COCO-20i dataset further confirms its
generalization ability and robustness in handling complex scenarios.
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Table 1: Comparison of our method and other FSS methods on PASCAL-5i . The best results are marked in bold

Backbone Methods 1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean FBIoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FBIoU
VGG16 OSLSM [11] 33.6 55.3 40.9 33.5 40.8 – 35.9 58.1 42.7 39.1 43.9 –

co-FCN [48] 31.7 50.6 44.9 32.4 41.1 – 37.5 50.0 44.1 33.9 41.4 –
SG-one [25] 40.2 58.4 48.4 38.4 46.3 – 41.9 58.6 48.6 39.4 47.1 –
PANet [12] 42.3 58.0 51.1 41.2 48.1 – 51.8 64.6 59.8 46.5 55.7 –
FWB [46] 47.0 59.6 52.6 48.3 51.9 – 50.9 62.9 56.5 50.1 55.1 –

RPMM [17] 47.1 65.8 50.6 48.5 53.0 – 50.0 66.5 51.9 47.6 54.0 –
PFENet [13] 56.9 68.2 54.4 52.4 58.0 72.0 59.0 69.1 54.8 52.9 59.0 72.3

CGFM 68.0 72.8 67.5 61.0 67.3 75.5 70.5 74.4 72.0 67.0 71.0 78.3
ResNet50 CANet [49] 52.5 65.9 51.3 51.9 55.4 – 55.5 67.8 51.9 53.2 57.1 –

PGNet [50] 56.0 66.9 50.6 50.4 56.0 – 54.9 67.4 51.8 53.0 56.8 –
RPMM [17] 55.2 66.9 52.6 50.7 56.3 – 56.3 67.3 54.5 51.0 57.3 –
PFENet [13] 62.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
HSNet [21] 64.3 70.7 60.3 60.5 64.0 76.7 70.3 73.2 67.4 67.1 69.5 80.6

CyCTR [23] 65.7 71.0 59.5 59.7 64.0 – 69.3 73.5 63.8 63.5 67.5 –
DPCN [47] 65.7 71.6 69.1 60.6 66.7 78.0 70.0 73.2 70.9 65.5 69.9 80.7

HDMNet [19] 71.0 75.4 68.9 62.1 69.4 – 71.3 76.2 71.3 68.5 71.8 –
RiFeNet [51] 68.4 73.5 67.1 59.4 67.1 – 70.0 74.7 69.4 64.2 69.6 –

NTRENet++ [52] 66.8 73.0 61.0 60.3 65.3 78.6 66.7 73.2 62.6 63.0 66.4 79.3
DCP [53] 67.2 72.9 65.2 59.4 66.1 77.6 70.5 75.3 68.0 67.7 70.3 81.5

CGFM 71.3 75.8 70.0 63.0 70.0 78.5 72.5 76.4 73.0 69.0 72.7 80.1
ResNet101 FWB [46] 51.3 64.5 56.7 52.2 56.2 – 54.8 67.4 62.2 55.3 59.9 –

DAN [20] 54.7 68.6 57.8 51.6 58.2 – 57.9 69.0 60.1 54.9 60.5 –
PFENet [13] 60.5 69.4 54.4 56.0 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5
CyCTR [23] 67.2 71.1 57.6 59.0 63.7 73.0 71.0 75.0 58.5 65.0 67.4 75.4

AAFormer [54] 69.9 73.6 57.9 59.7 65.3 74.9 75.0 75.1 59.0 63.2 67.4 77.3
ABCNet [14] 65.3 71.3 76.2 59.3 68.0 – 71.4 75.0 68.2 63.1 69.4 –

NTRENet++ [52] 67.2 72.3 60.0 59.6 64.8 76.8 69.2 75.6 62.5 68.8 69.0 79.0
DCP [53] 68.9 74.2 63.3 62.7 67.3 78.5 72.1 77.1 66.5 70.5 71.5 82.7

CGFM 72.2 77.1 71.1 64.3 71.2 79.5 73.7 77.3 74.2 70.2 73.9 81.1

Table 2: Comparison of our method and other FSS methods on COCO-20i . The best results are marked in bold

BackBone Methods 1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean FBIoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FBIoU
VGG-16 PANet [12] – – – – 20.9 – – – – – 29.7 –

FWB [46] 18.4 16.7 19.6 25.4 20.0 – 20.9 19.2 21.9 28.4 22.6 –
PFENet [13] 35.4 38.1 36.8 34.7 36.3 – 38.2 42.5 41.8 38.9 40.4 –
BAM [55] 36.4 47.1 43.3 41.7 42.1 – 42.9 51.4 48.3 46.6 47.3 –

HDMNet [14] 40.7 50.6 48.2 44.0 45.9 – 47.0 56.5 54.1 51.9 52.4 76.7
CGFM 41.9 51.3 49.0 45.3 46.9 72.3 48.4 57.1 55.3 52.7 53.4 –

ResNet50 PPNet [16] 28.1 30.8 29.5 27.7 29.0 – 39.0 40.8 37.1 37.3 38.5 –
ASGNet [18] – – – – 34.6 – – – – – 42.5
CyCTR [23] 38.9 43.0 39.6 39.8 40.3 – 41.1 48.9 45.2 47.0 45.6 –
DPCN [47] 42.0 47.0 43.2 39.7 43.0 63.2 46.0 54.9 50.8 47.4 49.8 67.4
HSNet [21] 36.3 43.1 38.7 38.7 39.2 68.2 43.3 51.3 48.2 45.0 46.9 70.7

ABCNet [19] 42.3 46.2 46.0 42.0 44.1 69.9 45.5 51.7 52.6 46.4 49.1 72.7

(Continued)
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Table 2 (continued)

BackBone Methods 1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean FBIoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FBIoU
DiffSeg [56] 45.2 54.1 47.9 48.3 48.9 69.0 50.7 58.9 51.6 52.4 53.4 72.6

CGFM 42.9 57.1 52.8 48.7 50.4 74.0 49.8 63.2 57.4 55.6 56.5 78.0
ResNet101 DCAMA [22] 41.5 46.2 45.2 41.3 43.5 – 48.0 58.0 54.3 47.1 51.9 –

SSP [57] 39.1 45.1 42.7 41.2 42.0 – 47.4 54.5 50.4 49.6 50.2 –
IPMT [58] 40.5 45.7 44.8 39.3 42.6 – 45.1 50.3 49.3 46.8 47.9 –

NTRENet++ [52] 43.5 46.8 47.3 43.5 45.3 – 45.7 52.6 50.5 47.5 49.1 –
CGFM 44.4 57.1 53.8 49.7 51.3 74.5 50.9 64.2 58.4 56.7 57.6 79.1

Table 3: Comparison of our method and other FSS methods on FSS-1000. The best results are marked in bold

Backbone Methods 1-shot 5-shot
ResNet-50 HSNet [21] 85.5 86.5

DCAMA [22] 88.2 88.8
NTRENet++ [52] 89.3 90.4

CGFM 90.7 91.5
ResNet-101 DAN [20] 85.2 88.1

HSNet [21] 86.5 88.5
DCAMA [22] 88.3 89.1

NTRENet++ [52] 89.7 91.2
CGFM 91.2 92.7

5.4 Ablation Study
We conducted ablation experiments on COCO-20i to validate the effectiveness of the DPGBP module

and the SGCRE module. Results in Table 4 show that the average mIoU of the baseline model (without
DPGBP and SGCRE) under 1-shot and 5-shot settings are 47.4% and 53.8%, respectively. Performance
improves significantly for 2.2% and 1.8% when DPGBP is added into the baseline model and improves for
1.3% and 1.0% when SGCRE is added into the baseline model. Best performances are obtained when DPGBP
and SGCRE modules are both added into the baseline model, which achieves an improvement of 3.0%
and 2.7% over the baseline model. In Fig. 4, we visualize the comparison between the baseline model and
CGFM prediction results, with green highlighted areas representing the foreground region masks derived
from ground truth and predictions. The results show that CGFM can effectively alleviate the impact of
class-irrelevant noise in the baseline model and significantly enhance the model’s prediction.

Table 4: Ablation studies on our proposed modules

DPGBP SGCRE 1-shot mIoU (%) 5-shot mIoU (%)
47.4 53.8

✓ 49.6 55.6
✓ 48.7 54.8

✓ ✓ 50.4 56.5
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Figure 4: Comparison of CGFM model predictions with the baseline model

5.5 Analysis of DBGBP Module
The third row in Fig. 5 illustrates the effect of the DBGBP module, where the support set annotations

and query set ground-truths are highlighted in green in the first row. The remaining three rows display heat
maps of the feature activations. The results indicate that, without frequency enhancement, the original feature
maps struggle to focus on category-relevant areas and instead show high responses in background and edge
regions. After applying the DBGBP module, the model begins to focus on the target objects, and its response
to the target class is gradually improved, in contrast to the surrounding background objects.

Table 5 explores the impact of using different class embedding strategies in DBGBP. When only a
randomly initialized vector is used, as shown in the ‘RI’ column, the model’s performance decreases by
approximately 1.7% compared to the original results, highlighting the importance of category information
in the embedding vector. When randomly initialized vectors are updated alongside sample tokens in the
Transformer blocks, as shown in the ‘RIU’ column, the model learns both class and instance information
from the query and support features, resulting in a performance improvement of around 1.2%. The ‘PI’
column shows that using class prototypes to initialize the class embedding vector results in a 1% improvement
over the randomly initialized vector. The best performance is achieved in the ‘PIU’ column, where the
prototype-initialized vector is updated in the subsequent Transformer blocks, underscoring the importance
of the dual-perception mechanism in DBGBP.
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Figure 5: Comparison of the model’s response to the target category

Table 5: Comparison of COCO-20i 1-shot results using different initialization and update strategies for the class
embedding vector in DBGBP

Vector type RI RIU PI PIU
mIoU (%) 48.7 49.9 49.7 50.4

Fig. 6 demonstrates cases where the generated Gaussian kernels change according to different classes
and instances. These results show that DBGBP can dynamically adjust the Gaussian kernel generation process
based on the inherent characteristics of the target class and instance. This ability ensures the activation of the
most relevant frequency bands for the current task.

5.6 Analysis of SGCRE Module
The last row of Fig. 4 shows that, compared to the DBGBP, SGCRE further suppresses class-irrelevant

background noise and effectively strengthens the model’s response to the target class in fine-grained
structures. The two-stage CGFM method gradually directs the model’s focus toward the target objects,
leading to a notable improvement in the model’s performance. We investigated the impact of different scaling
coefficients θ and γ in Eq. (5) on model performance, as shown in Fig. 7. The model achieves its best results
when θ is 0.7 and γ is 0.5.
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Figure 6: Gaussian kernels generated under different classes and instances

Figure 7: Comparison of model performance under different θ and γ

In Fig. 8, we compare feature activations using different frequency fusion methods. The first and second
columns present images from the support and query sets. The target classes are marked by highlighted
green areas. The third column displays the query features enhanced directly with the undecomposed support
frequency features, while the fourth column shows the query features enhanced by SGCRE, in which
support frequency features are decomposed to remove the positional information in the phase spectrum.
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Experimental results reveal that incorporating raw support features without decomposition transfers spatial
information from the support set to query features, adversely affecting model performance. As a comparison,
when using decomposed support frequency features to enhance query features in SGCRE, the impact from
support position information is largely alleviated and class-relevant information is successfully enhanced.

Query
Image

Support 
Image

Original Query
Feature

Direct
Fusion

Fusion Using 
SGCRE

Figure 8: Comparison of query features enhanced using direct frequency fusion and SGCRE

5.7 Comparison of Results Using Different λ
We compared the model’s performance using different objective function weights λ based on the 5-

shot mIoU on COCO-20i , as shown in Table 6. The results highlight the importance of λ in training the
CGFM model. When λ is 0, the model is trained without any auxiliary supervision, and the average mIoU
is approximately 55.3%. As the weight increases, the model’s performance gradually improves, reaching a
maximum of 56.5% when λ is 1.2. The hyperparameters in our method, including θ, γ, and λ, are all selected
according to the performance using different values. To achieve the best performance, we use grid search to
find out the optimal hyperparameter group. We compare the θ, γ values under different λ in Fig. 9. Results
indicate that theta and gamma exhibit robust stability across a wide range of lambda values. This proves the
stability of our method during training.

Table 6: The performance of models trained with different λ

λ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
mIoU (%) 55.3 55.7 55.6 55.9 56.0 56.3 56.5 56.3 56.3 56.4 56.3

5.8 Comparison of Computation Cost
In Table 7, we present a comprehensive performance comparison of various methods in terms of mIoU,

the number of parameters and FLOPS. Compared with other non-transformer methods, CGFM achieves a
higher mIoU of 50.4% with only 2.3 million parameters. Compared to transformer-based methods (CyCTR
and HDMNet), CGFM achieves a comparatively FLOPS amount. The above results demonstrate that our
method achieves promising results with few additional computation costs.
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Figure 9: θ and γ value when using differen λ

Table 7: Performance comparison of different decoders

Method Params (M) FLOPs (G)
CyCTR [23] 5.6 95.0
HSNet [21] 2.6 20.8
BAM [55] 4.1 22.0

HDMNet [55] 2.7 8.8
DCP [53] 11.3 10.6

CGFM 2.3 10.2

6 Conclusion
We propose a two-stage Category-Guided Frequency Modulation (CGFM) method for Few-Shot

Segmentation (FSS). In the first stage, we leverage category embedding vector-guided Gaussian kernels
to activate target class-related frequency band regions in the Dual-Perception Gaussian Band Pre-
activation (DBGBP) module. This module leverages dynamically generated Gaussian filter kernels to activate
class-relevant frequency bands. The kernels are derived from class embedding vectors to ensure robust gen-
eralization across various categories and instances. These embeddings are initialized using class prototypes
and subsequently refined through transformer blocks by incorporating contextual information from both
support and query sets. In the second stage, we further enhance the response to the target class through
the Support-Guided Category Response Enhancement (SGCRE) module. SGCRE specifically strengthens
class-related components in activated frequency bands and suppresses class-irrelevant background noise.
To achieve this and alleviate the impact of the position information, SGCRE decomposes the frequency
features from the support set and leverages the amplitude parts as the target class representation to enhance
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corresponding components on query features. Experiments show that our CGFM model achieves promising
results, demonstrating the effectiveness of our approach.

7 Future Direction
CGFM alleviates the impact of structure information loss caused by class prototypes, but it still suffers

from the inherent limitations of few-shot semantic segmentation. It enhances class-relevant information
based on extracted example features, but there are only limited examples in the support set. This undermines
the representational capability of the extracted class prototypes and further impacts the performance of the
information enhancement module. Additionally, few-shot segmentation aims to reduce the annotation cost
of the segmentation task. Although existing few-shot semantic segmentation settings have greatly reduced
the number of annotated samples needed per class, the masks for the support and query sets used in training
still require careful pixel-level annotation, which makes dataset production costly. In the future, on the one
hand, we will work on improving feature extractors to obtain more representative example features, which
may help to develop more effective frequency enhancement methods. On the other hand, we will resort to
semi-supervised or self-supervised methods to further reduce the cost of training few-shot segmentation
models and improve the efficiency in leveraging class information contained in provided samples.
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