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ABSTRACT: Rapid and precise diagnostic tools for Monkeypox (Mpox) lesions are crucial for effective treatment
because their symptoms are similar to those of other pox-related illnesses, like smallpox and chickenpox. The
morphological similarities between smallpox, chickenpox, and monkeypox, particularly in how they appear as rashes
and skin lesions, which can sometimes make diagnosis challenging. Chickenpox lesions appear in many simultaneous
phases and are more diffuse, often beginning on the trunk. In contrast, monkeypox lesions emerge progressively and
are typically centralized on the face, palms, and soles. To provide accessible diagnostics, this study introduces a novel
method for automated monkeypox lesion classification using the HMTNet (Hybrid Mobile Transformer Network).
The convolutional layers and Vision Transformers (ViT) are combined to enhance the spatial features. In addition, we
replace the classical MHSA (Multi-head self-attention) with the WMHSA (Window-based Multi-Head Self-Attention)
to effectively capture long-range dependencies within image patches and depth-wise separable convolutions for local
feature extraction. We trained and validated HMTNet on the two datasets for binary and multiclass classification. The
model achieved 98.38% accuracy for multiclass classification using cross-validation and 99.25% accuracy for binary
classification. These findings show that the model has the potential to be a useful diagnostic tool for monkeypox,
especially in environments with limited resources.
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1 Introduction
The Mpox disease is triggered by the monkeypox virus, which is also responsible for cowpox, smallpox,

and vaccinia viruses (used in smallpox vaccines). The DRC (Democratic Republic of the Congo) reported the
first human case of monkeypox in 1970. Subsequently, the illness has been identified as endemic in multiple
countries, including Central and West Africa [1]. Historically, Mpox has been an emerging public health
problem in endemic countries, though recent outbreaks beyond the African region, including the large global
outbreak in the year 2022. Approximately 107,725 cases of confirmed Mpox have been reported since the
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beginning of the outbreak. The Americas region is the largest, accounting for approximately 64% of cases,
followed by Europe at 27% and the African Region at around 5.4%. In the year 2024, more than 20,000
Mpox cases have been reported across 13 AUMS (African Union Member States), with the DRC experiencing
the highest burden, reporting over 16,000 cases and 501 deaths as of mid-2024. The signs of smallpox and
other poxviruses are comparable to those of Mpox [2]. While most Mpox cases are cured within two to
four weeks, serious complications can happen, especially in young children, mothers, and people with weak
immune systems. Bacterial infections can produce diseases such as bronchopneumonia, sepsis, encephalitis,
and corneal infections, which can result in blindness [3]. The West African clade has less efficient person-to-
person transmission, and the Central African clade is more virulent, with mortality rates ranging from 3% to
10% [4]. It is mainly predominant in the DRC and the rest of the Congo Basin. The clade can transmit better
from person to person and is often associated with more severe clinical outcomes and higher complication
rates [5]. The clinical severity and transmission rates might be higher for one of the clades compared to
the other.

Monkeypox and chickenpox share a similar rash, but the former’s lesions tend to develop more
uniformly, while the latter’s lesions show up in multiple stages at once. Moreover, unlike chickenpox, lesions
from monkeypox usually affect the face, palms, and soles. Because of these similarities, accurate diagnosis
requires laboratory confirmation, especially when these diseases co-circulate. The clinical overlap of these
conditions demands developing more sensitive diagnostic tools that can identify these conditions differently
and make the process faster and more accurate [6]. Artificial intelligence (AI)/Machine Learning (ML) based
technologies are increasingly being deployed within healthcare and other domains to enhance diagnostic
accuracy, particularly in overlapping symptoms of these conditions [7]. AI methods, especially deep learning
models, offer excellent robustness for binary multiclass classification. Recent work has combined CNNs
with transfer learning to classify monkeypox lesions from digital images with an accuracy of over 90% [8].
There are morphological similarities between smallpox, chickenpox, and monkeypox, particularly in how
they appear as rashes and skin lesions, which can sometimes make diagnosis challenging. Chickenpox
lesions appear in many simultaneous phases and are more diffuse, often beginning on the trunk. In
contrast, monkeypox lesions emerge progressively and are typically centralized on the face, palms, and soles.
Monkeypox is similar in distribution but more clinically severe, with smallpox lesions being deeper and more
uniform in development and primarily affecting the face and extremities.

In this study, we designed an HMTNet to achieve effective monkeypox image classification. The local
spatial feature is extracted using MobileNet, and the transformer blocks provide global context. Furthermore,
In the ViT module, we applied the WMHSA to assist spatial dependencies within Mpox image regions.
To maintain low computational costs, it separates the image into non-overlapping windows, applies self-
attention within each window, and records comprehensive region-based information. We evaluated the
model on two datasets, and results are compared with several CNN and ViT-based method. At the same time
lightweight nature of the models can be for edge devices and mobile applications.

The major contributions of this article include:
(1) Combining convolutional layers and vision transformers, this model provides a lightweight, accurate

solution that is tailored for mobile and edge devices.
(2) We utilized WMHSA to handle both local and global dependencies in images, allowing the model

to concentrate on both local image details and more general contextual information across image patches.
(3) We utilized a hierarchical feature aggregation, depth wise separable convolutions, and squeeze-and-

excitation module. Which preserves computational efficiency while optimizing the model’s performance,
which is crucial for real-time applications.
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Remainder of the manuscript is as follows. Detail survey of the past methods is described in Section 2,
meanwhile Section 3 elaborates the proposed method. In Section 4, quantitative results are presented and
We concluded the proposed method in Section 5 with limitation and future scope.

2 Literature Review
In this section, we examine the latest developments in approaches for resource-constrained, real-time

applications. In the research [9], they used Deoxyribonucleic acid (DNA) sequences to distinguish between
Monkeypox virus (MPV) and human papillomavirus (HPV). Further, A BiLSTM (Bidirectional Long Short-
Term Memory) was utilized for classification. The study [10] presents a combination of data mining and
artificial intelligence techniques. They utilized 500 samples, with positive and negative cases infected by
monkeypox. The experimental outcomes recall, accuracy, and precision are 91.1%, 88.91%, and 98.48%,
respectively. The research investigation [11] identifies and classifies monkeypox using MonkeyNet inspired
by DenseNet-201. A total of 770 photos were gathered from MSLD, which contains 107 chickenpox, 91
measles, 279 monkeypox, and 293 standard images. The testing for the original dataset had an accuracy of
91.91%. At the same time, on the augmented dataset model has a high accuracy of 98.91%. The strategy [12]
utilized two datasets for robust training. Their method contains two steps: first, preprocessing, which
selects the best features; then, there is the classification step, based on an ensemble of three classifiers. A
Fuzzified Voting Scheme (FVS) combines the classifiers’ outputs to determine the final diagnosis. They
obtained an accuracy of 97.2%, precision of 94.5%, recall of 93.1%, and F1-score of 94%. In another research,
features are extracted from medical images and correctly identified using transfer learning and CNN. Their
model attained the highest classification accuracy at 98.18% [13]. The research [14] utilized metaheuristic
optimization to improve the model’s classification for the monkeypox lesions. They obtained performance
measures through feature selection and a decision tree classifier: an F1-score of 0.92, sensitivity of 0.95, and
specificity of 0.61. Four convolutional layers based on 2-D CNN were utilized to classify chickenpox and
monkeypox. Their method achieved an accuracy of 99.60%. Furthermore, they confirm that the proposed
CNN model performed is better than AlexNet, VGG16 and VGG19 [15].

With the help of the base models (InceptionV3, EfficientNet, and VGG16) and the SENet attention
architecture, the method improved the classification accuracy of monkeypox. Hyperparameters like a
learning rate of 0.0001, the Adam optimizer was used to fine-tune the deep learning models. With an
accuracy of 98%, precision of 98.06%, recall of 97.97%, and an F1-score of 98.02%, the SENet+InceptionV3
model performed better than the other configurations [16]. In another study, they developed PoxNet22
using transfer learning to classify the monkeypox disease. They utilized the Monkeypox Skin Lesion Dataset
(MSLD), which contains 3192 photos from the public, case studies, and internet portals. Results show that
PoxNet22 performed very well with 100% recall, 100% accuracy, 100% precision, and 0% loss [17]. This
research [18] developed a fusion system to identify monkeypox. They fused the LSTM with a CNN model
to design a hybrid deep-learning model. This hybrid has a test accuracy and Cohen’s kappa score of 87%
and 0.8222%, respectively. In the literature [19], Vision Transformers (ViT) and modified transfer learning
models like M-VGG16, M-ResNet50, and M-ResNet101 were utilized for monkeypox lesion classification.
They utilized a dataset of 2524 images from various studies and achieved a classification accuracy of 89%
using M-ResNet50. The investigation [20] represents improved performance in the detection of monkeypox
through an RN-50, principal component analysis (PCA), and MXGBoost. Their method achieved a precision
of 97.41%. The study [21] used an attention-based MobileNetV2 model for monkeypox detection. The
attention-based MobileNetV2 outperformed 92.28% accuracy in the extended MSID dataset, 98.19% in the
original MSID dataset, and 93.33% in the Monkeypox Skin Lesion Dataset (MSLD) dataset. With the focus
on identifying monkeypox, foot ulcers, and other mouth and oral disorders, new research was conducted
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in the literature [22]. They proposed a Choquet Fuzzy Integral-based Ensemble, CFI-Net. Results show
that CFI-Net exhibited excellent performance by achieving an accuracy of 98.06%. The literature [23]
proposed an FL-based framework based on deep learning to classify monkeypox lesions. Their framework
consists of three main parts: (a) DL models, (b) An environment for security, and (c) a network to augment
data samples for training. Publicly accessible datasets are used for the training of the ViT-B32 model
and achieved an accuracy of 97.90%. The study [24] investigates the potential for using pre-trained deep-
learning models to identify monkeypox. It provides an overview of the challenges in correctly diagnosing
monkeypox. The performance of many pre-trained deep learning models is tested in the study, focusing
on how well they can extract useful features from medical pictures for classification tasks. Compared to
ResNet-50 and InceptionV3, EfficientNet-B7 showed significantly better monkeypox case detection, with a
maximum accuracy of 94.6%. A paper presents MOX-NET [25], a multi-stage deep hybrid feature fusion
and selection framework to classify monkeypox. The suggested model surpasses conventional methods with
a high accuracy of 96.8%. The hybrid feature fusion and an efficient feature selection procedure highly
enhance the model’s performance, making MOX-NET a reliable method for detecting monkeypox. In the
research [26], the monkeypox identification application applies a MobileNetV2 deep learning model with
a 93.5% classification accuracy in correctly identifying monkeypox from preprocessed medical images. The
strong and light architecture of MobileNetV2, jointly applied with strong preprocessing methods, guarantees
high performance, making it suitable for deployment in limited resource contexts. This level of precision
marks a potential for incorporating the model into portable diagnostic devices to rapidly and accurately
identify illnesses.

3 Methodology
We developed a hybrid model by combining Vision Transformer (ViT) and MobileNetV3 to classify

Mpox disease. The classical ViT calculates global attention using MHSA (multi-head self-attention), which
is computationally expensive and may miss the skin’s edge and boundary region features. At the same
time, in the standard convolution, a single filter is applied to the entire image channel. The proposed
WMHSA calculates attention locally in the window of the patches to improve the feature map and reduce
the computation burden. Moreover, the depthwise convolution applies a filter to each channel independently
to improve the spatial feature of the skin lesion. First, images are resized and fed to a convolutional layer
named Conv 3 × 3. It extracts basic features such as edges and textures. We obtain hierarchical features while
reducing computational costs using MobileNetV3 blocks. The image’s resolution progressively drops as it
moves through these blocks from 128 × 128 to 64 × 64, 32 × 32, and so on, making identifying patterns at
different sizes. The processed features are then passed to Mobile ViT blocks, integrating transformer layers
to enhance feature representation. The ViT encoder then refines feature extraction by dividing the processed
image into smaller patches and adding positional embedding to retain spatial information. An essential
component of this model is the WMHSA layer, which addresses the high computational cost of traditional
transformers by processing the image in smaller “windows,” effectively capturing long-range dependencies
while optimizing memory and processing efficiency. This approach makes the model concentrate on the
important parts of the image without unnecessary computation, thus being more feasible for mobile devices.
Finally, a global pooling layer aggregates the features, followed by a fully connected linear layer that outputs
the classification result. The architecture of the proposed method is shown in Fig. 1. Using a local feature
extraction module, our model efficiently extracts important patterns from the input image, including
textures, edges, and fine-grained details. The MV3 block uses depth-wise separable convolutions, which
divide the convolution into two stages: a pointwise (1 × 1) convolution to combine cross channel data and
a depth-wise convolution to process each channel separately. For a tensor input X∈Rˆ(H×W×C) the depth
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wise calculation is calculated as in Eq. (1).

Y = X ×Wd (1)

The convolution is applied to each channel independently, with n×n being the kernel size and pointwise
(1 × 1) is calculated as in Eq. (2).

Y ′ = Y ×Wp (2)

where Wd and Wp represent depth wise and pointwise filters, respectively. where Wd ∈ Rn×n×1 and Wp ∈
R1×1×Cin×Cout . An embedded Squeeze-and-Excitation (SE) module uses channel-wise attention, scaling the
channels according to their importance, to improve feature relevance. This aids the model in concentrating
on important characteristics needed for classification and is calculated as in Eq. (3).

Zc = σ(W2 ⋅ ReLU (W1 ⋅Global pool (Y ′))) (3)

where Zc is used to reweight the Y ′ channels and W1 and W2 are learnable weights. Furthermore, the h-
Swish activation function is used to preserve effective gradient flow while enhancing expressiveness and Skip
connections are added to preserve crucial information from previous layers and avoid vanishing gradients if
the input and output dimensions match and are calculated as in Eq. (4).

Yac tiv ated = h − Swish(Zc ⊙ Y′) (4)

Figure 1: The architecture of the proposed model

These components work together to guarantee that the MV3 block extracts rich, localized features in a
lightweight way, which makes it appropriate for mobile-friendly applications such as image classification for
monkeypox and the output is calculated as in Eq. (5).

Yout = X + Yac tiv ated (5)
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The locally processed feature map XL ∈ RH×W×d ,which extracts pertinent patterns from the input image,
is the end product of the MV3 block. The local feature map is broken up into smaller, more manageable pieces
for global processing using Weighted Multilayer Hierarchical Self-Attention (WMHSA) when the image is
unfolded into patches. This procedure aids in the model’s effective capture of both local and global patterns.
The feature map XL = ∈ RH×W×d is separated into non-overlapping patches following local feature extraction
using MobileNetv3 (MV3) blocks. Every patch is a tiny portion of the feature map that depicts a portion of
the spatial organization of the original input. The unfolding process in mathematics is as in Eq. (6).

XP = Un f old (XL) ∈ RP×N×d (6)

where P is number of pixels there are in each patch, the feature dimension for each patch is denoted by d.
The total number of patches created is N =H ×W/P. Through this transformation, the original large feature
map is divided into smaller, easier-to-manage patches, each of which contains localized data. The WMHSA
mechanism can more easily capture relationships within and between patches because these patches are
processed independently during attention. The model can concentrate on both local details within patches
and global dependencies between patches thanks to the unfolding step, which also makes global processing
less complicated.

Using weighted aggregation, WMHSA assigns greater weight to specific layers while capturing global
dependencies across various image patches. In order to increase accuracy, this attention mechanism ensures
the model can comprehend both local and long-range relationships, and to determine the significance of
the relationships between patches, each patch is processed through several self-attention layers that compute
queries, keys, and values. Self-attention is used to record dependencies between patches for every layer l in
the hierarchy and is calculated by in Eq. (7).

Attention (Ql × Kl × Vl) = So f tmax (
Ql KT

l√
d
)Vl (7)

Ql = XpW l
Q , Kl = XpW I

K , Vl = XpW I
V (8)

where the query, key, and value matrices for the l-th layer are Ql , Kl , and Vl as in Eq. (8), where W I
Q , W I

k ,
W I

V ∈ Rd×d are learnable weights. Finally, the output of each layer is combined using learned weights αl to
prioritize significant features called hierarchal weighted aggregation and calculated as in Eq. (9).

H = ∑L
l=1 αl ⋅ Attention(Ql × Kl × Vl) (9)

where L is the total number of attention layers and is the l-th layer’s learned weight, finally, WMHSA
produces a globally attended feature map, H∈, that integrates the relationships between patches at different
levels to contain rich global information. To restore the spatial structure, the patches are folded back into
the original image representation after undergoing WMHSA processing. The information from each patch
is accurately aligned within the image’s spatial grid thanks to this folding operation, which combines the
processed patches. The folding operation mathematically converts the patch-based representation back into
a feature map XG ∈ RH×W×d , with height, width, and channels that correspond to the original feature map
and calculated as in Eq. (10).

XG = Fold (H) ∈ RH×W×d (10)

This step is crucial for maintaining local and global patterns taken from the attention mechanism so
that the model can use the improved features in later phases for classification. By ensuring that the global
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relationships recorded by WMHSA are incorporated into the image’s spatial context, folding helps the model
produce more accurate predictions.

Another MV3 blocks are used to extract the local features, which include textures, edges, and minute
details. By connecting remote areas of the image, the global feature which are modelled using WMHS that
provide contextual understanding. Following the folding operation to reconstruct the global feature map
XG ∈ RH×W×d , it is concatenated with the local feature map XL = ∈ RH×W×d along the channel dimension.
By combining the advantages of both processing methods, this concatenation creates a richer feature map
while maintaining both local accuracy and global context. A point-wise 1 × 1 convolution is applied to
the concatenated output to guarantee that these combined features are used as efficiently as possible and
calculated as in Eq. (11).

XF = Conv1×1Concat(XL × XG)) (11)

In order to minimize dimensional redundancy and prepare the fused feature map for later tasks like
classification, the 1 × 1 convolution learns to efficiently weight and align the local and global features. The
model performs better on challenging tasks like monkeypox detection because of to this fusion process,
which enables it to comprehend both high-level dependencies and fine-grained details. It guarantees a
comprehensive and computationally efficient final representation. When local and global features are fused,
the resultant feature map, XF ∈ RH×W×d , is run through a global average pooling layer to minimize its spatial
dimensions while keeping the most crucial data. By calculating the average value for every feature channel,
global pooling reduces the size of the feature map. It creates a fixed-size vector independent of the size
of the input image. Reducing the number of parameters guarantees that the model stays lightweight and
avoids overfitting. After that, a fully connected (FC) layer receives the pooled vector and uses it to map
the features to the required number of output classes. Using a softmax activation function as calculated
in Eq. (12), the FC layer generates a probability distribution across the potential classes (such as monkeypox
or non-monkeypox) to classify the disease.

y′ = So f tmax(WF ⋅ Xpool ed + bF) (12)

where the learnable weights and biases of the FC layer are represented by WF and bF . The class with the
highest probability is chosen as the model’s prediction, and the softmax function makes sure that the outputs
are interpreted as probabilities. The cross-entropy loss is used to train the model. When the model makes
inaccurate predictions with high confidence, it is penalized more severely by this loss function, which
calculates the difference between the true class labels and the predicted class probabilities. A probability
distribution over C classes is produced by the model, and the predicted probability for each class i is
represented as ŷi and true labels are presented by yi. For a single prediction, the cross-entropy loss is provided
by as in Eq. (13).

L = −∑C
i=1 yiLog( ŷi) (13)

4 Result
In this section, dataset description and quantitative results for binary and multi-class Monkeypox lesion

diagnosis has been presented.

4.1 Dataset
Through intensive manual searching, the article mainly gathered the monkeypox skin lesion dataset

from publicly accessible case reports and websites. In order to preserve the aspect ratio, the photos were
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resized to 224 × 224 pixels and cropped to their area of interest. Of the 228 photos gathered, 102 are from the
“Monkeypox” class, and the remaining 126 are from the “Others” class, which includes measles and chick-
enpox. We expanded the dataset size by using rotation, translation, reflection, shear, and scaling. Following
augmentation, there were 5000 images in the Monkeypox and Others classes for binary classification.

The second dataset has four classes: Normal, Measles, Chickenpox (Cpox), and Monkeypox (Mpox). All
of the image classes were gathered from online health websites. It consists of Chickenpox 107, monkeypox
279, measles 91, and normal 293 images. Data augmentation has been used to increase the size of images by
10-fold in each class. We performed each experiment on NVIDIA Quadro RTX-4000 GPU, which had a dual
graphics card of 8 and 128 GB RAM. The script is written using Python 2.11 and executed on Windows 10
O.S. The Adam optimizer with an initial learning rate of 0.00001 is used to accelerate the training process,
and the model is trained for 160 epochs in a mini-batch of 32.

4.2 Binary Class Confusion Matrix
The binary class classification confusion matrix is shown in Fig. 2. Our model correctly predicted

996 instances as Mpox and 4 as false negatives. The bottom-right quadrant indicates that the model
correctly classified 989 as Normal, and the bottom-left, False Negatives, indicates that 11 Mpox cases were
wrongly predicted as Normal. The proposed model can predict precisely 1985 out of 2000. We presented the
performance measures in Table 1.

Figure 2: Result of binary class confusion matrix

Table 1: Performance indicators on the binary class classification

Class name Kappa (%) Recall (%) Precision (%) F1-score (%) Accuracy (%)
Mpox 0.985 0.9891 0.9960 0.9925 0.9925

Normal 0.985 0.9960 0.9890 0.9925 0.9925

Table 1 shows that each of the evaluation metrics Kappa, Recall, Precision, F1-score, and Accuracy, both
classes have a Kappa statistic value of 98.5%, which indicates an excellent performance, being a measure
of agreement between actual and expected classifications adjusted for chance. Similarly, the model’s high
recall of 98.91% for the Mpox class and 99.60% for the Normal class indicates its ability to classify almost all
positive examples correctly. Moreover, the precision scores of the model, 99.60% for Mpox and 98.90% for
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Normal indicate that it generates very accurate positive predictions with very few false positives. For both
classes, the F1-score, representing the harmonic mean of precision and recall, is consistently 99.25%. Such
balance suggests that the model is just as good in avoiding false positives as false negatives, making it reliable
in practice.

4.3 Multiclass Confusion Matrix
The confusion matrix for multiclass is presented in Fig. 3. Table 3 shows that the Fold 1 model can

predict 209 Cpox out of 214. For the Measles class, 176 out of 182 were correctly classified, except for a few
misclassified as Cpox, Mpox, and Normal. The model performed notably well for Mpox, correctly classifying
551 out of 558 cases. In Fold 2, among the 215 cases correctly classified as Cpox, one was misclassified
as Measles, Mpox, or Normal. In Measles, the model rightly predicted 177 out of 182 cases, with a small
percentage misclassifying them into other categories.

Figure 3: (Continued)
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Figure 3: Result of multiclass classification. (a) Fold 1; (b) Fold 2; (c) Fold 3; (d) Fold 4; (e) Fold 5

At the same time, in the Fold 3 out of 214 cases, the model correctly classified 212 cases as Cpox,
misclassifying one case as Measles and one as Normal. In the case of measles, the model predicted 178 out of
182 cases. The model predicted 555 as Mpox out of 558, and misclassifications occurred in just 3 instances.
In Fold 4, it correctly identified 213 out of 214 Cpox cases, misclassifying only 1 case as Normal. For Measles,
it correctly identified 179 of the 182 cases and misclassified 3 others. Finally, in Fold 5 it misclassifies only
one case as Normal out of 213. The model correctly classifies 182 out of 183 measles datasets, with just one
mislabeled as mpox. Kappa, Recall, Precision, F1-score, and Accuracy are some of the performance metrics of
the multiclass classification model, which evaluates five folds of cross-validation that are presented in Table 2.
This thorough analysis highlights the model’s generalization and stability over subsets of the dataset.

Table 2: Performance indicators of the multiclass classification

Fold Kappa (%) Recall (%) Precision (%) F1-score (%) Accuracy (%)
Fold-5 0.995 0.9961 0.9961 0.9962 0.9968
Fold-4 0.992 0.9916 0.9921 0.9918 0.9948
Fold-3 0.988 0.9886 0.9891 0.9887 0.9916
Fold-2 0.983 0.9832 0.9829 0.9830 0.9870
Fold-1 0.977 0.9772 0.9798 0.9785 0.9838

Average 0.987 0.9873 0.9880 0.9876 0.9908

The fold-wise performance demonstrates the model’s robustness in individual runs. The model performs
best for Fold-5 with a Kappa of 99.5%, Recall and Precision of 99.61%, F1-score of 99.62%, and Accuracy
of 99.68%, showing nearly flawless categorization. Fold-4, though with slightly lower metrics, still shows
excellent agreement, Kappa 99.2% and balanced classification metrics Recall 99.16%, Precision 99.21% and
F1-score 99.18%. The values of metrics. Fold-1 holds the lowest scores Kappa 97.7%, Recall: 97.72%, Precision:
97.98%, F1-score: 97.85%, Accuracy: 98.38%. This decrease is quite normal since the categorization problem
is inherently complex and because of probable variations in the data splits. The average performance across
all folds shows the general consistency and reliability of the model. After controlling for chance, the average
Kappa of 98.7% indicates very high agreement between the labels that were anticipated and the actual labels.
The excellent ability of the model to correctly identify true positives and maintain the accuracy of the forecast
is demonstrated by its average recall of 98.73% and precision of 98.80%, respectively.
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4.4 Training and Loss Curve
The training and validation accuracy and loss curves are shown in Fig. 4. Fig. 4 shows that initial training

and validation accuracy is less. After a few epochs, training accuracy increased by more than 99% on both
datasets. Similarly, the initial training and validation loss for both datasets are high. It started decreasing and
reached below 0.01.

Figure 4: Accuracy curve and loss curve. (a) Accuracy binary class; (b) Accuracy multiclass; (c) Loss binary class; (d)
Loss multiclass, respectively

4.5 Performance with SOTA
In this section, we present that quantitate results comparison with InceptionV3 [27], ResNet-50 [28],

MobileNetV3 [29], SwinT [30] and SI-ViT [31]. We utilized same experimental condition to evaluate all the
methods and binary class results are presented in Table 3.

Table 3 shows that with a Kappa of 98.50%, our model outperforms SwinT to 95.45% and SI-ViT to
96.23%. It has a better recall, 99.26%, and precision, 99.25%, than SI-ViT and SwinT, reflecting its ability to
intensely recognize true positives and support high precision in positive predictions. Moreover, the proposed
approach has an incredible F1-score of 99.25%, which also results in robust performance and a high accuracy
level of 99.25%, which is greater than the rest and also supports it as excellent. Compared to conventional
approaches such as ResNet-50, MobileNetV3, and InceptionV3, the suggested approach outperforms them
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highly. However, SI-ViT and SwinT perform closely, and finally, in total, the suggested approach represents a
benchmark for accuracy, sensitivity, and reliability. Furthermore, we presented multi-class results in Table 4.

Table 3: Performance comparison with SOTA for binary class

Method Kappa (%) Recall (%) Precision (%) F1-score (%) Accuracy (%)
InceptionV3 [27] 90.18 92.37 91.87 92.12 93.08
ResNet-50 [28] 92.37 93.56 94.23 93.89 94.15

MobileNetV3 [29] 90.17 92.05 91.74 91.89 92.56
SwinT [30] 95.45 96.18 97.16 96.67 97.28
SI-ViT [31] 96.23 97.08 96.23 96.65 98.08
Proposed 98. 50 99.26 99.25 99.25 99.25

Table 4: Performance comparison with SOTA for multiclass

Method Kappa (%) Recall (%) Precision (%) F1-score (%) Accuracy (%)
InceptionV3 [27] 92.32 93.12 92.13 92.62 92.20
ResNet-50 [28] 90.49 91.20 90.04 90.62 91.38

MobileNetV3 [29] 88.49 89.72 90.84 90.28 91.26
SwinT [30] 94.27 95.14 96.57 95.85 95.28
SI-ViT [31] 95. 27 96.88 97.02 96.95 97.34
Proposed 98. 70 98.73 98.80 98.76 99.08

The results of Table 4 showed that the proposed model achieved the highest metrics scores, showing
superiority in this task. With a Kappa value of 98.70%, the proposed method demonstrated exceptional
agreement between its predictions and the ground truth while significantly outperforming results for SI-
ViT at 95.27% and SwinT at 94.27%. It also achieved the highest precision of 98.80% and recall of 98.73%,
which means it would identify all relevant instances without missing any while still making extremely reliable
positive predictions. The F1-score of the proposed method is the highest among all the models at 98.76%,
which means that its precision and recall performance are almost balanced. The proposed method achieves
the highest accuracy of 99.08%, making it the most general efficient model. SI-ViT and SwinT are competitive
compared to the other models, and on all metrics, SI-ViT outperforms SwinT by a small margin. For instance,
SI-ViT obtains respectable scores of 96.88% Recall, 97.02% Precision, and 97.34% Accuracy but is still not
comparable with the proposed method. With a recall of 95.14%, precision of 96.57%, and accuracy of 95.28%,
SwinT is ranked second. The metrics above prove the efficiency of the proposed method while showing off
the sophisticated ability of these models compared to the traditional architectures.

4.6 The Grad-CAM
Fig. 5 shows examples of different dermatological conditions and grad-CAM visualizations of those

conditions. Images in the first group are examples of chickenpox: fluid-filled blisters and characteristic
rash caused by the Varicella zoster virus. The grad-CAM image of chickenpox may be of special interest
when assessing the severity or spread of infection. This can illustrate the characteristic lesions, similar to
chickenpox but typically more significant and have a central depression. In the image of monkeypox, a grad-
CAM result is added to emphasize specific regions that show the presence of lesions in higher density. The
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third set of pictures is of the measles rash, which typically begins on the face and spreads outward to other
body areas. The rash is usually flat, red spots that spread out and merge into a large, blotchy area.

Chickenpox Chickenpox grad-CAM MonkeyPox Monkeypox grad-CAM

Measles Measles grad-CAM Normal Normal grad-CAM

Figure 5: The grad-CAM results of the proposed method

4.7 The ROC Based Comparison with SOTA
The ROC curve, as shown in Fig. 6a, compares the performances of several models for binary classifi-

cation. A dashed, diagonal line performs an utterly random classifier AUC (Area Under the Curve). Each
curve represents different models, with the performing model closer to the left upper-hand corner of the plot,
which means low FPR and very high TPR. The AUC is used to evaluate each model’s discrimination ability.
The AUC is scaled between 0.5, the worst-case scenario of random guessing, and 1.0, representing perfect
classification. The highest AUC was that of HMTNet at 0.9931, followed by SI-ViT at 0.9817. MobileNetV3 has
the lowest AUC but performed better than random guessing at 0.9163. This comparison shows that HMTNet
is the best model for this classification task.

Multiple Models performance is shown in Fig. 6b and evaluated one-vs.-all, based on ROC curve
classification from more than two classes. Curves closer to the top-left corner mean better classification
ability. AUC is also measured for each model, and higher values indicate a more discriminative power of a
model. Our HMTNet scores with near-perfect results, at a level of 0.9986 AUC, topping other models. SI-ViT
came next with an AUC value of 0.9876. Even with the lowest AUC of 0.9386, MobileNetV3 outperforms
significantly. Overall, the results show that HMTNet is the best model for this multi-class classification task,
though all other models performed well.

4.8 Ablation Study
We performed the cross-sensor analysis of the proposed method to generalize the model. The model

is trained on the Mpox Skin Lesion Dataset Version 2.0 (MSLD v2.0) [32]. This dataset contains six classes:
mpox, chickenpox, measles, cowpox, hand-foot-mouth disease, and healthy. Furthermore, MSLD v2.0 has
755 original images and 10,570 augmented images. After training on the augmented dataset, we tested the
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binary and multiclass datasets used in the proposed study, and the results are presented in Table 5. Table 5
shows that the model achieved precision and accuracy of 97.83% and 97.81% on the binary class classification.
At the same time, our model obtained precision and F1-score of 96.20% and 95.80%, respectively, for the
multiclass classification.

Figure 6: The ROC plot (a) Binary class and (b) Multiclass

Table 5: Cross sensors based performance evaluation of the HMTNet

Class name Kappa (%) Recall (%) Precision (%) F1-score (%) Accuracy (%)
Binary 95.60 97.83 97.74 97.78 97.81

Multi-class 95.10 95.40 96.20 95.80 96.62

4.8.1 Performance Evaluation on Noisy Images
The dataset used in the study is less noisy. To evaluate the model on the noisy data, we added Gaussian

noise of different noise levels (NL) on the binary and multi-class datasets, and the results are presented
in Table 6. We notice that the model achieved precision and Kappa values of 98.14% and 97.26% for binary
classification on the NL = 10. At the same time, with the increase in NL, the HMTNet performance slightly
decreases. Furthermore, on the multi-class dataset, HMTNet obtained 96.15% Kappa and 97.03% precision
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value. In addition, Kappa and precision scores of 94.25% and 95.10% were obtained for NL = 30. For NL =
50, the HMTNet obtained precision and Kappa scores of 91.62% and 92.68%, respectively.

Table 6: The HMTNet performance with different Gaussian NL

Class name Kappa (%) Precision (%) Kappa (%) Precision (%) Kappa (%) Precision (%)

NL = 10 NL = 30 NL = 50
Binary 97.26 98.14 95.86 96.16 93.34 94.45

Multi-class 96.15 97.03 94.25 95.10 91.62 92.68

4.8.2 Statistical Analysis of Performance
We performed a statistical p-value test on the multiclass dataset. We made following assumptions.

Null Hypothesis (H0): The classification model does not perform better. Alternative Hypothesis (Ha):
The classification model performs better. Confidence Value and p-value are calculated using Multiclass
Classification results from Table 2 as given below:

Mean Accuracy (A): ∑ A
5 = 0.9908

where A is accuracy per each fold.

Standard Deviation (SD):
√
∑(Ai−A)2

n−1 = 0.0048

where Ai is the accuracy of each fold, A is the mean and n = 5
Standard Error (SE): SD√

n = 0.0021
And 95% Confidence Interval: using Z = 1.96 for 95% confidence:
CI = A ±Z ⋅ SE = (0.9867, 0.9949)
p-values are using the observed accuracy (A = 0.9908) and the null hypothesis (H0: A = 0.5):
Z = 233.71
The Z-score is extremely large, making the p-value effectively 0, indicating the null hypothesis can be

rejected. This confirmed model performed better, and it is statistically significant.

4.8.3 Effects of Different Components
We performed an ablation study using different components of the model on both datasets, and the

results are presented in Table 7. Table 7 shows that MV3 precision on the first dataset (binary classification)
has a precision value of 95.86%. At the same time, MV3+ViT (MHSA) improved the precision and kappa
value by 1.26% and 2.15%, respectively. Moreover, the proposed MV3+ViT (WMSA) obtained 99.25%
precision and 98.50% kappa score. Furthermore, on the second dataset, MV3 achieved 94.58% classification
accuracy. At the same time, MV3+ViT (MHSA) improved the precision by 2.12%. Moreover, our MV3+ViT
(WMSA) obtained 98.80 precision and 99.08% classification accuracy.

4.9 Performance Comparison with Other SOTA Methods
We compared the performance of the proposed method with the SOTA methods, as depicted in Table 8.

Table shows that the performance of the classical CNN-based method is relatively less than that of ViT-based
methods. In addition, federated learning achieved remarkable performance. Moreover, our CNN and ViT
with WMSA obtained relatively better performance.
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Table 7: Different components effects on model performance

Dataset Components Precision (%) Kappa (%) Accuracy (%)
MV3 95.86 94.19 96.08

Dataset1 (Binary) MV3+ViT (MHSA) 97.12 96.34 97.85
MV3+ViT (WMSA) 99.25 98.50 99.25

MV3 94.06 93.86 94.58
Dataset2 (Multiclass) MV3+ViT (MHSA) 96.18 95.73 96.49

MV3+ViT (WMSA) 98.80 98.70 99.08

Table 8: Performance comparison with the SOTA methods

Authors Method/Class Accuracy (%) Recall (%) Precision (%) F1-score (%)

Proposed HMTNet/Binary 99.25 99.26 99.25 99.25
HMTNet/Multiclass 99.08 98.73 98.8 98.76

Ahsan et al. [18] M-VGG16,
M-ResNet50 with

ViT/Multiclass

96.2 96.5 95.8 96.0

Kundu et al. [23] Federated
Learning on

GAN/Multiclass

98.1 97.8 97.5 97.6

Alhasson et al. [33] MobileNetV2/Multiclass 98.64 95 100 98
Kundu et al. [34] ViT/Binary 93 93 91 92

5 Conclusion
The research found that the HMTNet successfully addresses the requirement for accurate and easily

accessible monkeypox diagnostic tools, particularly in settings with limited resources. Our model effectively
captures local feature extraction and global context by combining transformer-based architecture with
convolutional layers. This results in a high accuracy rate in differentiating monkeypox from other comparable
dermatological conditions. The model’s performance demonstrates its resilience and dependability with a
binary classification accuracy of 99.25% and a multiclass classification accuracy of 98.38%. Its lightweight
design also makes it compatible with mobile and edge devices, providing a valuable way to help medical
professionals quickly identify and treat monkeypox cases, essential for containing outbreaks. The suggested
model will be improved in the future with an emphasis on increasing its effectiveness, usefulness, and
practicality. By using dispersed datasets from many locations, federated learning will enhance model
generalization while maintaining patient data security. The model’s lightweight design will make diagnosing
monkeypox in real-time on mobile and edge devices easier for medical personnel, especially in environments
with limited resources. Cross-validation across various areas will be expanded to improve dependability
and determine region-specific modifications needed for broader adoption. The use of explainable AI
methodologies to offer interpretable diagnostic insights will be one of the following usability improvements.
This will help clinical decision-making and build confidence in AI-driven technologies. Additionally, efforts
will be made to optimize the model through advanced quantization and pruning techniques to further reduce
memory consumption and inference time. Ensuring seamless integration with existing healthcare systems
and compliance with regulatory standards will also be key priorities.
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