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ABSTRACT: Autism spectrum disorder (ASD) is a multifaceted neurological developmental condition that manifests
in several ways. Nearly all autistic children remain undiagnosed before the age of three. Developmental problems
affecting face features are often associated with fundamental brain disorders. The facial evolution of newborns with
ASD is quite different from that of typically developing children. Early recognition is very significant to aid families
and parents in superstition and denial. Distinguishing facial features from typically developing children is an evident
manner to detect children analyzed with ASD. Presently, artificial intelligence (AI) significantly contributes to the
emerging computer-aided diagnosis (CAD) of autism and to the evolving interactive methods that aid in the treatment
and reintegration of autistic patients. This study introduces an Ensemble of deep learning models based on the autism
spectrum disorder detection in facial images (EDLM-ASDDFI) model. The overarching goal of the EDLM-ASDDFI
model is to recognize the difference between facial images of individuals with ASD and normal controls. In the
EDLM-ASDDFI method, the primary level of data pre-processing is involved by Gabor filtering (GF). Besides, the
EDLM-ASDDFI technique applies the MobileNetV2 model to learn complex features from the pre-processed data.
For the ASD detection process, the EDLM-ASDDFI method uses ensemble techniques for classification procedure
that encompasses long short-term memory (LSTM), deep belief network (DBN), and hybrid kernel extreme learning
machine (HKELM). Finally, the hyperparameter selection of the three deep learning (DL) models can be implemented
by the design of the crested porcupine optimizer (CPO) technique. An extensive experiment was conducted to
emphasize the improved ASD detection performance of the EDLM-ASDDFI method. The simulation outcomes
indicated that the EDLM-ASDDFI technique highlighted betterment over other existing models in terms of numerous
performance measures.

KEYWORDS: Autism spectrum disorder; ensemble learning; crested porcupine optimizer; facial images; computer-
aided diagnosis

1 Introduction
Autism spectrum disorders (ASD) denote a set of intricate neuro-developmental brain diseases like

Asperger’s disorders, autism, and childhood disintegrative syndromes that, as the phrase “spectrum” involves,
possess a great variety of symptoms and severity levels [1]. This disease is now incorporated in the
International Statistical Diseases Classification and Relevant Health Difficulties under Behavioral and Mental
Disorders, as part of Pervasive Developmental Conditions. The primary signs of ASD frequently seem to
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be in the 1st stage of life and can contain low levels of eye contact, a lack of response to calling their
name, and unimportance to caretakers [2]. Very few children seem to grow normally in the 1st year and
later indicate symptoms of autism between 18–24 months age groups, containing narrow and repetitive
behaviour patterns, limited range of activities and interests, and insufficiency in verbal communication [3].
Such conditions also have an impact on how a person notices and mingles with other people, Children
can unintentionally exhibit aggression or introversion throughout the first five years of life as they navigate
challenges in communication and social interaction. However, ASD examines childhood and extends its
focus into adolescence and adulthood [4].

Artificial intelligence (AI) has identified decision-making speed and it decreases the time needed
to establish a diagnosis compared with classic diagnosis methods for detecting autism in the primary
phase of life [5]. The transformation in diagnosing autism is physical, and it depends on psychologically
noticing the child’s behaviour for a long time [6]. Occasionally these challenges take a maximum of two
sessions. To diagnose autism, technology development has allowed the growth of diagnostic and screening
mechanisms. The development of AI has headed to its better usage in the domain of medical and health
care, and investigators are very busy with emerging techniques to detect ASD and identify autism at a
very young age with diverse techniques namely eye contact, brain (magnetic resonance imaging) MRI,
electroencephalogram (EEG) signals, and eye tracking. Some investigators have applied facial features to
identify autism [7]. This study introduces an Ensemble of deep learning models based on the autism spectrum
disorder detection in facial images (EDLM-ASDDFI) model. In the EDLM-ASDDFI method, the primary
level of data pre-processing is involved in Gabor filtering (GF). Besides, the EDLM-ASDDFI technique
applies the MobileNetV2 model to learn complex features from the pre-processed data. For the ASD
detection process, the EDLM-ASDDFI method uses ensemble techniques for the classification procedure that
encompasses the hyperparameter selection of the three DL models, which can be implemented by the design
of the crested porcupine optimizer (CPO) technique. An extensive experiment was conducted to emphasize
the improved ASD detection performance of the EDLM-ASDDFI method.

Alhakbani [8] introduced an automated engagement detection method using facial emotional recogni-
tion, especially in identifying the engagement of autistic children. The method used a transfer learning (TL)
method at the dataset levels, using the datasets of facial images from typically developing (TD) children with
ASD and children. The identification tasks are executed using CNN techniques. Thanarajan et al. [9] aim to
enhance the efficacy of deep learning (DL) hybrid methods, like vision transformer (ViT) integrated with
support vector machine (SVM) and principal component analysis (PCA), VGG16 with Extreme Gradient
Boosting (XGBoost), ViT with CatBoost, and ViT with XGBoost. These changes are particularly designed
for image identification tasks, like identifying ASD in toddlers’ facial images. In [10], an ASD recognition
hybrid method is proposed that is based on 2 different datasets. At first, behaviour datasets worked on the
logistic regression (LR) method, and in addition, facial datasets worked on convolutional neural network
(CNN) classification to forecast whether an individual has suffered from autism or not. Khan et al. [11]
examined this to help both psychiatrists and families in analyzing autism by a simple method. In particular,
the research uses a DL technique, which uses empirically verified facial features. The method contains a
CNN with TL for autism detections. DenseNet-121, VGG16, ResNet-50, Xception, and MobileNetV2 are the
pre-trained methods employed for autism detection. Vidyadhari et al. [12] focus on ASD detection by Deep
Quantum Neural Networks (DQNNs), where these networks are trained by a presented fractional social
driving training optimizer (FSDTO). Alkahtani et al. [13] utilize a type of TL method which is examined
in deep CNN to detect autistic children depending on facial landmark recognition. Experimental research
is performed to find the perfect situations for the optimization and hyper-parameters in the CNN method,
therefore the forecast precision could be enhanced. A TL method, like hybrid VGG19 and MobileNetV2,
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is utilized with various machine learning (ML) methods, like K-nearest neighbours, multi-layer perceptron
(MLP) classification, a linear SVM, gradient boosting, random forest (RF), decision tree (DT), and LR.

Gaddala et al.’s [14] goal is to enhance the efficiency and accuracy of ASD analysis by incorporating DL
methods with traditional diagnosis approaches. This study proposes a new method to classify and detect
ASD by utilizing the facial imagery process with deep CNNs. The author used the Visual Geometry Group
methods (VGG19 and VGG16) to build our DL methods. In [15], different researchers have proposed CNN-
based methods for ASD research. At this time, there are no diagnostic tests accessible for ASD, which
makes this diagnosis challenging. Doctors pay attention to the patient’s behaviour and developing history.
So, utilizing children’s facial landmarks has become most significant for identifying ASDs as the face is
considered as brain reflection; it can be utilized as diagnosis biomarkers, furthermore being a practical tool
and user-friendly for the previous ASDs detection. This research utilizes a type of TL method perceived in
Deep CNNs to identify autistic children based on the detection of facial landmarks.

2 Proposed Methodology
This research study describes the EDLM-ASDDFI model, developed to differentiate face photographs of

persons with ASD from those of normal controls. The concept adheres to a systematic pipeline consisting of
various essential phases. Initially, image preparation is performed to improve picture quality and standardize
data. Subsequently, feature extraction is conducted using MobileNetV2 to capture critical face attributes.
The collected characteristics are further processed by an ensemble learning-based ASD detection module,
guaranteeing reliable classification. The CPO method ultimately refines model parameters to enhance per-
formance. Every phase is essential in enhancing the model’s precision and efficacy. The use of Gabor filtering
in the preprocessing phase boosts significant face characteristics, hence increasing feature extraction. In
the absence of Gabor filtering, the model may have difficulties with nuanced texture fluctuations, resulting
in diminished accuracy. MobileNetV2 Feature Extraction is a lightweight convolutional neural network
that extracts robust, high-dimensional characteristics from face photos. Eliminating it or substituting
it with a less efficient backbone may result in diminished performance. Ensemble Learning classifiers
enhance decision-making by consolidating numerous learning models. Evaluating individual classifiers
(e.g., logistic regression, decision trees) in comparison to the ensemble method might reveal performance
improvements. Fig. 1 depicts the whole workflow of the EDLM-ASDDFI model, offering a visual depiction
of its sequential processes and interactions.

At a primary level, the EDLM-ASDDFI method undergoes data pre-processing, which is involved by GF.
GF are linear filters that have been proposed to depict the sensitive field property of simple cells. Gabor filters
are esteemed as very efficient instruments for feature extraction, especially in image-related applications
like face recognition and pattern detection. These filters are derived from the visual processing functions of
basic cells in the primary visual cortex of the brain. Their capacity to collect both spatial frequency (texture)
and direction makes them particularly adept at augmenting and evaluating face pictures. Gabor filters
extract orientation and frequency characteristics by identifying edges, contours, and textures across many
orientations and scales (Table 1). This renders them especially effective at discerning the intricate details of
face characteristics, including the eyes, nose, and mouth, which are essential for tasks such as recognition
or classification. This filter can capture both the orientation and frequency data existing in the images.
Enhancing face images by reducing the noise with Gabor filtering emphasizes spatial frequency components
that correlate to face patterns to reduce irrelevant noise and enhance facial shapes and textures. Multi-scale
and Multi-Orientation Analysis with Gabor filters of varied orientations and scales convolve input pictures
to catch intricate patterns that change in direction and size. This multiple scales method enhances macro-
and micro-facial traits. Preservation of Localized traits with the Gabor filter’s Gaussian envelope enables it
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to concentrate on particular picture areas, retaining wrinkles, expressions, and other minor traits needed
for proper face analysis. The nose and mouth are essential for identification and categorization. These filter
reactions have been gained in convolving imageries including GF of diverse orientations and scales. GF
are normally described in the spatial domain, then they can also be identified in the domain of frequency.
They are categorized by dual key parameters such as the orientation and the spatial frequency. This spatial
frequency characterizes the number of oscillations or cycles from the filter along a known direction, and the
orientation denotes the angle of the filter regarding the horizontal axis. The GF is mathematically described
as the Gaussian function product and a composite sinusoidal function in Eq. (1):

G (x , y) = exp(−x2 + y2

2σ 2 ) × exp (J2π f x) (1)

whereas x and y denote the spatial coordinates, 0 is the standard deviation of the Gaussian function, f is
the spatial frequency on the sinusoidal function, and j is the imaginary unit. Gabor filtering is distinctive
compared to other models due to its robustness against variations in lighting and shading, prevalent
challenges in facial image processing. Gabor filters emulate the receptive fields of neurons in the human
visual system, rendering them particularly effective for applications involving human imagery, such as faces.
Furthermore, Gabor filters yield rich localized features by integrating spatial and frequency information,
which are essential for advanced tasks like facial recognition and emotion detection.

Figure 1: Overall flow of EDLM-ASDDFI model
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Table 1: Details on Gabor filter preprocessing

Components Condition Accuy Precn Recal Fscore Training time Computational cost
Gabor filter With condition 96.43 96.43 96.44 96.43 10.5 0.90

Without condition 92.80 92.11 92.10 91.40 26.0 0.81

2.1 Feature Extractor: MobileNetV2
MobileNetV2 is a lightweight and efficient CNN architecture designed for mobile and embedded appli-

cations. It utilises depth-wise separable convolutions, inverted residuals, and linear bottlenecks to provide
enhanced performance while reducing computational costs. The principal Attributes of MobileNetV2 are
depth-wise separable convolutions, which decrease parameter count and computational cost by dividing con-
volution into depth-wise and pointwise processes. Inverted residuals facilitate effective feature reutilization
by enlarging the input channels in the centre of the block and then reducing them to a smaller size. Linear
bottleneck mitigates information loss by using linear activation instead of rectified linear unit (ReLU) after
the bottleneck.

The EDLM-ASDDFI technique applies the MobileNetV2 model to learn complex features from the
pre-processed data. To need mobile AI applications, Google has presented MobileNetV1, a lightweight
CNN for embedded systems and mobile devices. Even with this, the performance and computational
efficiency of MobileNetV1 can be improved. Therefore, Google presented MobileNetV2, which improves
on MobileNetVl. When equated with MobileNetV1, MobileNetV2 presents Point-wise Convolution before
Depth-wise Separable Convolution to effectively regulate feature channels. The 2nd pointwise convolution
activation function was removed, whereas MobileNetV2, enchanting stimulation from the ResNet method,
executed a short circuit link to reduce the calculations and parameters, thus improving the method’s perfor-
mance. MobileNetV2 implements the reverse residual structure, initial increasing dimension, convolution,
and then decreasing dimension. Utilize Shortcut connection when the output and input forms are similar
and the size of the step is 1. Its deep separable structure of convolutional network mostly contains decreasing
the number of parameters and computation. Generally, MobileNetV2 utilizes a light-weight NN (neural
network) structure with lower method computational and complexity effort, utilizes residual connections
to create the network steadier, unites more simply in training, and contains faster running speed and
high accuracy, while upholding a size of method and memory footprint, which is appropriate for a range
of hardware platforms like embedded and mobile devices. The input layer takes in red, green and blue
(RGB) pictures with a resolution of 224 × 224 pixels. MobileNetV2 derives advanced characteristics from
the input photos. The feature transformation layer prepares the feature vector for the ensemble classifiers.
Ensemble classifiers, such as long short-term memory (LSTM), capture sequential dependencies. Deep
belief networks (DBN) acquire hierarchical properties. Hybrid kernel extreme learning machine (HKELM)
effectively classifies in high-dimensional spaces. The decision fusion layer integrates predictions via weighted
voting or meta-classification. Final categorization judgment of the output layer.

2.2 ASD Detection Using Ensemble Learning
For the ASD detection process, the EDLM-ASDDFI method uses ensemble techniques for the classifi-

cation procedure that encompasses LSTM, DBN, and HKELM. LSTM presented an inspiring work, which
represents a superior iteration of recurrent neural networks (RNNs), exactly made to grab the general
problem of long-term dependencies. Recognized to excel in holding data over protracted series, LSTM
challenges the issue of vanishing gradient efficiently. The LSTM system processes the output of the previous
time step and the input of the current time step at a hypothetical time step, so that the output is guided
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to the subsequent time step. The latter time-step and last hidden layer (HL) were generally employed for
identification. The LSTM structure contains a memory unit that is symbolized by c, a HL signified by h, and
3 different gates such as input (i), forget (f), and output (o). All these gates play a vital part in managing the
data movement out and into the memory unit, which efficiently handles writing and reading processes in
the LSTM structure. Particularly, the input gate defines the method in which the internal state is upgraded
depending upon the previous internal state and the present input. On the other hand, the forget gate rules
the grade to where the preceding internal layer was kept. Finally, the output gate controls the effect of the
internal layer on the complete method. More exactly, at every time-step t, the LSTM first gets an input xt.
Besides the preceding HL ht−1. Then, it computes initiations for the gates and continues to upgrade both the
HL to ht and the memory unit to ct. The mathematical procedure is defined below:

it = σ (Wx i xt +Whi ht−1 + bi) (2)
ft = σ (Wx f xt +Wh f ht−1 + b f ) (3)
ct = ft ⊙ ct−1 + it ⊙ tanh (Wx c xt +Whc ht−1 + bc) (4)
ot = σ (Wxoxt +Who ht−1 + bo) (5)
ht = ot ⊙ tanh (ct) (6)

whereas σ(x) signifies the logistic sigmoid function, which is expressed as σ(x)= 1/(1+ exp(−x)).⊙ represents
the point-wise product process. b and W resemble the biases and weights linked with the memory unit and
3 gates.

DBN is formed as a set of restricted Boltzmann machines (RBM). It contains dual layers such as a hidden
layer (HL) neuron and a visible layer (VL) neuron. Particularly, there are no straight links among neurons
within the same layer. As an alternative, RBMs are independent of one another, generalizing the assessment
of predictable values for the measured variable. In a RBM, there is single HL and HL. RBMs are experts at
absorbing the basic data structure and are mainly effective for tasks like dimensionality reduction and feature
learning. They can accomplish the fundamental pattern in the data, which is beneficial for modules in DL
structures like DBN in Algorithm 1. The formulation for the energy function is assumed in Eq. (7):

E (v , h) = −
n
∑
i=1

m
∑
j=1

Wi jhiv j −
m
∑
j=1

b jv j −
n
∑
i=1

ci hi (7)

here, W represents the weight among HL and VL, and v and h refer to the input VL and HL, respectively.
The bias value of every VL is b and HL is m. Whereas h and v are equivalent. The conditional probability
densities of v and h.

P (v , h) = e−E(v ,h)

∑v ,h′ e−E(v ,h′) (8)

P (B∣A) = P (AB)
P (A) (9)

p (hi = 1∣v) = sigmoid
⎛
⎝

m
∑
j=1

Wi jv j + Ci
⎞
⎠

(10)

p (vi = 1∣h) = sigmoid (
n
∑
i=1

Wi jhi + bi) (11)
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RBM utilizes the divergence of Kullback-Leibler to discover the dissimilarity between RBM and real
distributions. It resolves the highest probability of the output layer as below:

L (θ) =
n
∏
i=1

p (vi ; θ) , θ ∈ Θ (12)

By concluding it, we acquire the gradient of the RBM network:

∂ ln p(v)
∂wi j

= v j p (hi = 1∣v) − 1
l

l
∑
k=1

vk p (hi = 1∣vk) (13)

∂lnp(v)
∂b j

= v j −
1
l

l
∑
k=1

vyk j (14)

∂ ln p(v)
∂ci

= p(hi =
1
v
) − 1

l

l
∑
k=1

p(hi =
1

vyk j
) (15)

Then, the RBM repeats these steps for weight offsets and updating.
KELM is a single HL feedforward neural network (NN) depending upon kernel function, the output of

the feedforward NN method is attained by the below-given formulation:

f (x) = h (x) β = Hβ (16)

whereas y = f (x) denotes the network output, h(x) represents the input function of HL, x means the input
vector, H refers to the matrix of feature mapping, β indicates the output of the weight vector involving the
HL and the output layer. The influential non-linear mapping capability of the kernel function overwhelms
the issue of random selection on parameters for KELM and enhances the capability to prolong the method.
The KELM output function is stated below:

y(x) = h(x)β = h(x)HT ( I
C
+HHT)

−1
T (17)

⎧⎪⎪⎨⎪⎪⎩

HHT = ΩKELM

ΩKELMi , j = h (xi) h (x j) = K (xi , x j)
(18)

while I denotes the unit matrix, C means penalty parameter, and Ω_KELM refers to the kernel function.
Hence, the KELM model function formulation is given below:

y (x) =
⎡⎢⎢⎢⎢⎢⎣

K(x , x1)
⋮

K(x , xN)

⎤⎥⎥⎥⎥⎥⎦
( I

C
+ΩKELM)

−1
T (19)

To efficiently enhance the capability that local and global search of the kernel function, a model of
making a hybrid kernel function by the weight of linear is projected to get the HKELM, whose kernel function
has the subsequent calculation:

⎧⎪⎪⎨⎪⎪⎩

K(x , x j) = α ⋅ exp(− ∥x ,xi∥
2

2σ 2 ) + β ⋅ ((x ⋅ x j) + q)p

β = 1 − α, α ∈ [0, 1]
(20)
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here, 2σ2 denotes the parameter utilized to control the range of radial, p, and q represent exponential and
constant parameters of the polynomial kernel function, correspondingly, α refers to the weight coefficient.

Algorithm 1: The structure of DBN using RBMs and the HKELM classifier
Step 1: class RBM:

def __init__(self, visible units, learning rate, hidden units):
initialize weights and biases

def sigmoid(x):
return 1/(1 + exp(-x))

def sample hidden(v):
return sigmoid(W * v + c)

def sample visible(h):
return sigmoid(W.T * h + b)

def train(v, epochs):
for epoch in range(epochs):

h_prob = sample hidden(v)
v_prob = sample visible(h_prob)
update weights using contrastive divergence

Step 2: class DBN:
def __init__(self, layers, learning rate):

initialize RBM layers
def train(data, epochs):

for each RBM in layers:
Train RBM with data

def fine tune(data, labels, epochs):
train with backpropagation

def predict(data):
return forward propagate through DBN

Step 3: class HKELM:
def __init__(self, kernel type, C):

initialize kernel parameters
def kernel function(x_i, x_j):

return α * exp(-∣∣x_i − x_j∣∣ˆ2/(2σˆ2)) + β * ((x_i * x_j) + q)ˆp
def train(data, labels):

compute kernel matrix and output weights
def predict(data):

return kernel function(data) * trained weights

2.3 Optimization Model: CPO
Finally, the hyperparameter selection of the three DL models can be implemented by the design of the

CPO technique. The CPO is a novel meta-heuristic method that emulates the defensive behaviour of crested
porcupines for parameter optimization. Crested porcupines use four distinct defensive strategies visual,
olfactory, physical, and auditory, when confronted with threats, depending on the nature of the assault. It
offers novel insights and methodologies for research in pertinent fields. Establish the parameters Nˆ′ T_max,
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α, T_f, T, and N_min as a random initialization of the population. If t < τ_max, evaluate the fitness value of
the candidate solution to identify the optimal solution. Updating the Eq. (21) for the factor of defence γ_t.

γt = 2 × rand × (1 − t
tmax

)
t

tmax
(21)

Updating the population dimension with mathematical standard Eq. (22) for the cyclic population
lessening techniques dynamically controls the population’s size to improve computational efficiency and
maintain diversity.

N = Nmin + (N ′ − Nmin) ×
⎛
⎝

1 −
⎛
⎝

t% Tmax
T

Tmax
T

⎞
⎠
⎞
⎠

(22)

whereas N′ represents the size of the population, α represents the speed factor of convergence, τ_f ∈
(0, 1) represents a pre-defined continuously balanced local exploitation (3rd protection method) and global
exploitation (4th defence method), T represents a variable that determines cycle counts, t indicates the
present function evaluation, τ_max means the maximum function count evaluations, % means the modulus
or remainder operator, and N_(min) signifies the least individual counts in the recently made population;
hence, the population size can’t be lower than N_min. This process diminishes population growth over
time, mirroring the behaviour of crested porcupines, who activate defensive strategies just when faced with
immediate danger, saving energy and resources. If i ∈ (0, 1), updating S and δ denotes the dual randomly
generated values τ_8 and τ_9, when τ_8 < τ_9, insert the search level and create binary randomly formed
integers τ_6 and τ_7, if τ_6< τ_7, engage the 1st defence method, Articulate how people (candidate solutions)
traverse the solution space contingent upon the adopted defensive technique promotes exploration by
transitioning the solution towards a stochastically weighted amalgamation of the optimal solution and a
random solution (Eq. (23)); or else, participate in the 2nd defence which navigates the search space by
adjusting the answer according to the disparities among other candidates (Eq. (24)). When τ_8 > τ_9,
consider the enlargement level, and stimulate a randomly generated value τ_10, if, τ_10 <T_f, involve the 3rd
defence method enhances the search by concentrating on proximate options, emulating physical defence as
porcupines confront local predators (Eq. (25)); or else, employ the 4th defence method focuses on exploiting
the best-known solutions, refining them further to achieve optimal results (Eq. (26)). Iterating across t for
obtaining the best fitness value of global, till t = T_max.

x�→t+1
i = x�→t

i + τ1× → ∣2 × τ2 × x�→t
CP − y�→t

i ∣ (23)
x�→t+1

i = (1 − U⃗1) × x�→t
i + U⃗1 ( y⃗ + τ3 × (x�→t

r1 − x�→t
r2 )) (24)

x�→t+1
i = (1 − U⃗1) × x�→t

i + U⃗1 × (x�→t
r1 + St

i × (x�→t
r2 − x�→t

r3 ) − τ3 × δ⃗ × γt × St
i) (25)

x�→t+1
i = x�→t

CP + (α (1 − τ4) + τ4) × (δ × x�→t
CP − x�→t

i ) − τ5 × δ × γt × F�→t
i (26)

where x�→t
CP denotes the finest solution attained and characterizes CP, y�→t

i denotes the vector produced
amongst the present CP and chosen at random CP from the population of predator position at t-th iteration,
U⃗1 denotes a dual vector inside the interval of [0, 1], St

i denotes the trace factor of diffusion, δ⃗ denotes a
parameter applied for controlling the search route, τi denotes a randomly generated value in [0, 1], x�→t

i
denotes the location of the i-th individual at t-th iteration and similarly characterizes the hunter for location,
F�→t

i denotes the average power that affects the i-th hunter’s CP, and ri denotes a randomly formed value
in [1, N]. Crested Porcupine Optimizer (CPO) fine-tunes hyperparameters and compares with and without
CPO performance mode. The CPO approach acquires a feature function to get improved classification
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performance. A positive integer is defined to represent the optimal performances of the candidate solutions.
This study investigates the decrease in the categorization error rate as shown in Eq. (27). The fitness function
evaluates the quality of each response. Hyperparameter tweaking reduces the classification error rate,
ensuring that the algorithm emphasizes hyperparameters that improve model accuracy.

f itness (xi) = Cl assi f ierErrorRate (xi) (27)

The Crested Porcupine Optimizer (CPO) was selected for hyperparameter optimization because of its
bio-inspired methodology, which emulates the foraging behaviour of porcupines. The Chief Product Officer
adeptly balances research and exploitation, essential for traversing intricate hyperparameter search domains.
In contrast to conventional techniques such as grid search or random search, CPO adeptly investigates
favourable areas while circumventing early convergence to local optima. Its adaptive search technique,
modelled after the porcupine’s defensive defences, facilitates quick convergence to optimum hyperparameter
configurations. This results in enhanced model performance with diminished computational expense relative
to less advanced optimization approaches.

3 Experimental Results and Analysis
In this section, the experimental validation analysis of the EDLM-ASDDFI algorithm is examined

using the Autism image dataset, which comprises 2926 facial samples with two classes (Normal and
Autism) as denoted. Regarding preprocessing, used Z-score normalization for colour normalization across
all channels in standardizing pixel values. The image resizing dimensions (X, Y pixels) and the bicubic
interpolation method were used. All preprocessing steps, including face detection using MTCNN (Multi-
task convolutional neural network), and noise reduction using a median filter. For class imbalance, class
weights were assigned inversely proportional to class frequencies. Elaborated on the potential impact of class
imbalance on model training and class weighting was preferred over other techniques like oversampling
or under-sampling due to limited data, oversampling could lead to overfitting. Data augmentation strategy
random rotations between −15 and 15 degrees, horizontal flips, random cropping up to 10% of the image, and
brightness adjustments between 0.8 and 1.2. The rationale behind choosing these augmentations emphasizes
their role in preventing overfitting and introducing invariance to common image variations.

Reports a group of confusion matrices made by the EDLM-ASDDFI techniques on diverse epoch
counts. On 500 epoch counts, the EDLM-ASDDFI approach has recognized 1279 samples as normal and
1350 samples as autism. Also, on 1000 epoch counts, the EDLM-ASDDFI models have recognized 1338
samples as normal and 1362 samples as autism. Succeeded by, on 1500 epochs, the EDLM-ASDDFI system
has recognized 1335 samples as normal and 1333 samples as autism. Moreover, on 2000 epoch counts, the
EDLM-ASDDFI methods have recognized 1327 samples as normal and 1351 samples as autism. The collection
intends to classify images of the faces of autistic children, perhaps facilitating early identification and analysis.
The dataset seeks to distinguish these based on face characteristics, suggesting a possible class imbalance
that requires consideration. Processing problems include class imbalance; when the quantity of pictures
in one class (e.g., Non-Autistic) substantially exceeds that of another class (e.g., Autistic), it may result in
biased model performance. Consequently, class weighting was introduced during model training. Colour
normalization was done during preprocessing to reduce noise. The ASD recognition results of the EDLM-
ASDDFI approach are defined under different epoch counts. On 500 epoch counts, the EDLM-ASDDFI
methods offer an average accu_y of 93.89%, prec_n of 94.01%, reca_l of 93.89%, F_score of 93.89%, and
G_Measure of 93.92%. Also, on 1000 epochs, the EDLM-ASDDFI models present an average accu_y of
96.43%, prec_n of 96.44%, reca_l of 96.43%, F_score of 96.43%, and G_Measure of 96.43%. In the meantime,



Comput Mater Contin. 2025;83(2) 2803

on 2000 epoch counts, the EDLM-ASDDFI methodology offers an average accu_y of 95.64%, prec_n of
95.66%, reca_l of 95.64%, F_score of 95.64%, and G_Measure of 95.65%.

Additionally, on 3000 epoch counts, the EDLM-ASDDFI approach presents an average accu_y of
95.75%, prec_n of 95.75%, reca_l of 95.75%, F_score of 95.75%, and G_Measure of 95.75%. Providing a
performance measure that strikes a compromise between recall and accuracy, which is crucial in datasets with
unequal class distribution. Without the need for a set threshold, the receiver operating characteristic area
under the curve (ROC-AUC) provides information about the classifier’s overall performance and assesses its
capacity to differentiate between the two classes (Autistic and Normal). Precision shows the proportion of
real positive cases (Autistic) that match the expected positive cases. Crucial for reducing false positives. The
number of accurately detected genuine positives (autistic) is shown by the recall. Vital to guaranteeing the
detection of every instance of autism. Researchers evaluated the suggested model’s comparative performance
by contrasting it with the most advanced methods in the field, paying particular attention to accuracy,
resilience, and computing efficiency under various experimental conditions. Comparative metrics based on
accuracy demonstrate the degree to which the model can categorize data. Recall and accuracy are balanced
by the F1-Score, which is essential for unbalanced datasets.

ROC-AUC assesses how well the classifier can differentiate across classes. Computational time, which
is important for real-time applications, quantifies how long it takes the model to make an inference.
Performance is evaluated for robustness in the presence of noise, occlusion, and illumination fluctuations.
In Comparative Analysis, the computational efficiency of the suggested model (EDLM-ASDDFI) surpasses
other approaches, requiring just 0.85 s for inference. Lightweight solutions such as MobileNet exhibit
increased speed (1.10 s) at the expense of accuracy and resilience. Techniques using VGG-16 architecture
(e.g., Logistic Regression, Random Forest) exhibit prolonged inference durations (4.65–5.20 s), rendering
them less appropriate for real-time applications. Robustness assessments demonstrate that EDLM-ASDDFI
has an accuracy decline of less than 2% with noise addition, while other approaches exhibit declines of
4–8%. MobileNet, despite its computational efficiency, exhibits considerable performance decline in noisy
situations, indicating limited resilience. The accuracy of the proposed model attains the maximum accuracy
at 96.43%, surpassing MobileNet at 90.24% and VGG-16-based methods, which range from 89.55% to
92.64%. Gradient Boosting achieves a performance of 92.64%, although it underperforms in recall and
F1-score because of its susceptibility to class imbalance.

The training and validation accuracy results of the EDLM-ASDDFI method across various epoch counts.
The accuracy values are calculated for epoch counts ranging from 0 to 3000. This figure highlighted that
the training and validation accuracy values exhibit an upward trend, indicating the efficacy of the EDLM-
ASDDFI approaches throughout several rounds. Furthermore, the training and validation accuracies remain
closely aligned throughout the epoch counts, indicating less overfitting and enhanced performance of the
EDLM-ASDDFI system, hence ensuring consistent predictions on unseen data. The training and validation
loss curve of the EDLM-ASDDFI approach over varying epoch counts. The loss values are calculated for
epoch counts ranging from 0 to 3000. The training and validation accuracy values indicate a declining
trend, reflecting the EDLM-ASDDFI approach’s capacity to manage the trade-off between generalization and
data fitting. The continual reduction in loss values indicates enhanced effectiveness of the EDLM-ASDDFI
approach and optimizes prediction results over time. The precision-recall (PR) curve analysis of the EDLM-
ASDDFI method over various epoch counts, illustrates its performance by graphing Precision vs. recall for
each class label. This figure illustrates that the EDLM-ASDDFI technique consistently achieved superior PR
values across various classes, highlighting its ability to maintain a significant proportion of true positive
predictions (precision) while also capturing a substantial number of actual positives (recall). The consistent
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increase in PR outcomes across all class labels illustrates the efficacy of the EDLM-ASDDFI method inside
the categorization framework.

The ROC curve of the EDLM-ASDDFI system is considered. The outcomes suggest that the EDLM-
ASDDFI method under separate epochs reaches boosted ROC outcomes over every class, indicating a major
ability to discern the classes. This consistent trend of amended ROC values over several classes suggests the
capable performance of the EDLM-ASDDFI method in forecasting classes, emphasizing the strong nature
of the classification method. Table 2 proves the experimental outcomes of the EDLM-ASDDFI system are
compared with existing works. On equating with accu_y, the EDLM-ASDDFI model shows its supremacy
with an enlarged accu_y of 96.43% while the MobileNet, VGG-16-LR, VGG-16-RF, VGG-16-DT, VGG-16-
GB, Multi Kernel SVM, and KNN (K-Nearest Neighbor) approaches get reduced performance with accu_y of
90.24%, 89.55%, 91.00%, 90.11%, 92.64%, 91.98%, and 89.90%, respectively. Moreover, equating with F_score,
the EDLM-ASDDFI system shows its power with an improved F_score of 96.43% where the MobileNet,
VGG-16-LR, VGG-16-RF, VGG-16-DT, VGG-16-GB, Multi Kernel SVM, and KNN approaches get reduced
performance with F_score of 92.00%, 83.74%, 80.77%, 80.65%, 76.71%, 83.59%, and 82.29%, respectively.

Table 2: ASD recognition outcome of EDLM-ASDDFI technique under distinct epochs

Class Accuy Precn Recal Fscore G Me asure

Epoch-500
Normal 91.36 96.24 91.36 93.73 93.77
Autism 96.43 91.77 96.43 94.04 94.07
Average 93.89 94.01 93.89 93.89 93.92

Epoch-1000
Normal 95.57 97.24 95.57 96.40 96.40
Autism 97.29 95.65 97.29 96.46 96.46
Average 96.43 96.44 96.43 96.43 96.43

Epoch-1500
Normal 95.36 95.22 95.36 95.29 95.29
Autism 95.21 95.35 95.21 95.28 95.28
Average 95.29 95.29 95.29 95.29 95.29

Epoch-2000
Normal 94.79 96.44 94.79 95.61 95.61
Autism 96.50 94.87 96.50 95.68 95.68
Average 95.64 95.66 95.64 95.64 95.65

Epoch-2500
Normal 95.21 96.59 95.21 95.90 95.90
Autism 96.64 95.28 96.64 95.96 95.96
Average 95.93 95.94 95.93 95.93 95.93

Epoch-3000
Normal 95.57 95.91 95.57 95.74 95.74
Autism 95.93 95.59 95.93 95.76 95.76
Average 95.75 95.75 95.75 95.75 95.75
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To investigate the generalization capabilities of the proposed model (EDLM-ASDDFI), evaluate its
performance on unseen data by cross-validation and a distinct benchmark dataset. Generalization is an
essential attribute that guarantees the model’s efficacy on data outside its training set, making it robust
and dependable for practical applications Table 3. Inevitably applied 5-fold cross-validation to evaluate the
model’s capacity for generalization to novel data. The dataset was partitioned into five subsets, with each
fold employing 80% of the data for training and 20% for testing. The model consistently attained elevated
accuracy and F1 scores across all folds, exhibiting minimal variance. This stable performance signifies robust
generalization on the specified dataset.

Table 3: Comparative analysis of EDLM-ASDDFI technique with recent methods

Method Accuy Precn Recal Fscore

EDLM-ASDDFI 96.43 96.44 96.43 96.43
MobileNet Model 90.24 90.47 92.00 92.00

VGG-16-Logistic Regression 89.55 83.57 84.59 83.74
VGG-16-Random Forest 91.00 83.56 85.51 80.77
VGG-16-Decision Tree 90.11 79.69 77.58 80.65

VGG-16-Gradient Boosting 92.64 78.75 77.70 76.71
Multi Kernel SVM 91.98 82.25 81.77 83.59
KNN Algorithm 89.90 80.60 88.17 82.29

The comparative evaluation of classification models indicates that the EDLM-ASDDFI model obtains
improved performance across accuracy, precision, recall, and F-score. The improvement is credited to
the ensemble learning architecture, which utilizes many classifiers for superior decision-making, lowering
bias and variation. Additionally, the incorporation of CPO-based parameter adjustment provides opti-
mum hyperparameter selection, significantly enhancing model efficiency. MobileNetV2’s superior feature
extraction capabilities help greatly to better ASD detection by collecting fine-grained face patterns. The
proposed model’s superior performance, as shown in comparative results, highlights its robustness in feature
representation and classification, making it a more reliable approach for ASD identification compared to
traditional methods. In Table 4, the comparative outcomes of the EDLM-ASDDFI system are stated in terms
of computational time (CT). The results recommend that the EDLM-ASDDFI technique obtains improved
performance. Based on CT, the EDLM-ASDDFI approach gets a reduced CT of 0.94 s while the Mobile-Net,
VGG-16-LR, VGG-16-RF, VGG-16-DT, VGG-16-GB, Multi Kernel SVM, and KNN methodologies achieve
higher CT values of 2.55, 4.45, 4.24, 4.18, 4.59, 3.95, and 4.53 s, respectively, in Fig. 2.

Table 4: CT outcome of EDLM-ASDDFI technique with recent models

Method Computational time (sec)
EDLM-ASDDFI 0.94

MobileNet model 2.55
VGG-16-Logistic regression 4.45

VGG-16-Random forest 4.24
VGG-16-Decision tree 4.18

VGG-16-Gradient boosting 4.59

(Continued)
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Table 4 (continued)

Method Computational time (sec)
Multi Kernel SVM 3.95

KNN algorithm 4.53

Figure 2: CT outcome confidence interval of models with statistically significant

4 Conclusion
In this study, we have developed an EDLM-ASDDFI model. The main objective of the EDLM-ASDDFI

model is to recognize the dissimilar stages of ASD employing facial images. In the EDLM-ASDDFI method,
the primary level of data pre-processing is involved by GF. Besides, the EDLM-ASDDFI technique applies the
MobileNetV2 model to learn complex features from the pre-processed data. For the ASD detection process,
the EDLM-ASDDFI method uses ensemble techniques for the classification procedure that encompasses
LSTM, DBN, and HKELM. Finally, the hyper-parameter selection of the three DL classifiers is implemented
by the design of the CPO system. An extensive experiment was conducted to emphasize the improved ASD
detection performance of the EDLM-ASDDFI method. The simulation outcomes indicated that the EDLM-
ASDDFI technique highlighted betterment over other existing models in terms of numerous performance
measures. Augmenting the dataset by an increase in size and variety may enhance statistical dependability.
Augmenting the dataset with superior feature representations might enhance insight approaches like as
SIFT (Scale Invariant Feature Transform), HOG (Histogram of Oriented Gradient), or CNN-based feature
extraction. Multimodal learning enhances contextual insights for performance assessment by integrating
image-based model performance measures with IoT sensor data from practical applications.
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