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ABSTRACT: Generation of good-quality distractors is a key and time-consuming task associated with multiple-choice
questions (MCQs), one of the assessment items that have dominated the educational field for years. Recent advances in
language models and architectures present an opportunity for helping teachers to generate and update these elements to
the required speed and scale of widespread increase in online education. This study focuses on a text-to-text approach
for joints generation of distractors for MCQs, where the context, question and correct answer are used as input, while
the set of distractors corresponds to the output, allowing the generation of three distractors in a single model inference.
By fine-tuning FlanT5 models and LongT5 with TGlobal attention using a RACE-based dataset, the potential of this
approach is explored, demonstrating an improvement in the BLEU and ROUGE-L metrics when compared to previous
works and a GPT-3.5 baseline. Additionally, BERTScore is introduced in the evaluation, showing that the fine-tuned
models generate distractors semantically close to the reference, but the GPT-3.5 baseline still outperforms in this area.
A tendency toward duplicating distractors is noted, although models fine-tuned with Low-Rank Adaptation (LoRA)
and 4-bit quantization showcased a significant reduction in duplicated distractors.
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1 Introduction
The educational field employs a diverse array of assessment instruments, each serving different purposes

and learning outcomes. Among those, multiple-choice quizzes have been fundamental, playing an important
role over the years [1]. Today, they continue to be a valuable assessment tool [2], and their success and
acceptance in education are due to two main reasons. First, they facilitate the measurement of different types
and levels of acquired knowledge in different domains, including measuring higher-order cognitive abilities
such as synthesis and problem-solving [3]. Secondly, they are easy and quick to manage, allowing objective
qualifications [4].

The basic structure of a multiple-choice item consists of three elements: the question to be answered
(also called stem), the correct answer, and the incorrect (or in some cases, partially incorrect) options called
distractors [2,5,6]. In some cases, the stem also includes the context of the question, something common
in reading comprehension assessments. When developing multiple-choice questions (MCQs), selecting
plausible and effective distractors is crucial for setting the difficulty level of items, minimizing random
guessing, and distinguishing between the different cognitive levels of students [5,6].

Latest advancements in Natural Language Processing (NLP) and new Large Language Models (LLMs)
offer the possibility to assist educators in routine tasks like assessment generation, so they can spend more
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time with the students, motivating them, and sharing their knowledge [7]. Although distractor generation
(DG) is a key and time-consuming component of MCQs for student assessments, it has not gained as much
attention in the natural language processing (NLP) community as other tasks like question answering (QA)
or question generation (QG) [8]. This lack of popularity can be attributed to several factors, including the
absence of standard benchmarks, metrics, and specific datasets dedicated to DG [9].

However, recent studies have begun to bridge this gap by exploring the automatic generation of
distractors using Reading Comprehension (RC) datasets and MCQs datasets as a source of data [9–13]. This
shift shows an emerging interest in understanding how the DG task can be improved.

The fundamental role of distractors in MCQs is to confuse students by introducing plausible alternatives
that challenge their understanding and application of knowledge. If this is not achieved, the quality of the
multiple-choice item is compromised, as students might identify the correct answer without requiring the
application of the knowledge or skills that are being assessed [13].

To address this problem, guidelines and recommendations for manually generating high-quality dis-
tractors have been developed in the past [4]. However, a concrete methodology for evaluating the quality of
automatically generated distractors remains elusive. Currently, researchers rely on standard text generation
metrics such as BLEU [14] and ROUGE [15], which may not fully capture the nuanced effectiveness of
a distractor.

Despite the growing interest in the automatic generation of distractors, many existing approaches often
miss an integrated mechanism to ensure that all generated distractors share a semantic relationship while
remaining distinct from both the correct answer and from each other. Methods that generate one distractor at
a time [9,10,13] (e.g., approaches based on beam-search [16]) may struggle to keep the plausibility or semantic
diversity across all distractors. In addition, they frequently rely on ranking or filtering steps, increasing
complexity and computation. This opens an opportunity to explore approaches that jointly generate all
distractors, allowing the model to capture cross-dependencies and potentially prevent too evident or overly
similar distractors. A joint generation can improve semantic relevance, diversity, and overall quality of
distractors compared to more traditional, single-output methods.

In response to these challenges, this research focuses on improving the creation of distractors for MCQs
in the context of RC datasets. A joint generation of distractors (i.e., all at once) using a text-to-text approach
is proposed, by fine-tuning the Flan-T5 [17] and LongT5 [18] models using the RACE dataset [19]. This
approach is designed to generate all distractors at once in a single inference step, potentially offering a more
cohesive and contextually relevant set of options, as an alternative to more common methods that output a
single distractor at a time, as previously mentioned.

For evaluating the generated distractors, in addition to the standard BLEU and ROUGE metrics, an
analysis of the semantic distance between the distractors and the correct answers is incorporated, with
outputs compared across different models and datasets. In addition to the RACE dataset, the MCTest,
SciQ, and OpenBookQA datasets are included in the evaluation framework, enabling the assessment of
performance across various contexts that differ from the training data. Additionally, BERTScore [20] is
utilized to assess the semantic relevance of distractors in relation to the references. Finally, a grammar check
for each distractor is performed, comparing results across datasets and models. This approach helps to
narrow the gap in the evaluation of distractor effectiveness.

In summary, the main contributions of this research are (1) Different versions of Flan-T5 and LongT5
models fine-tuned for DG task; (2) An alternative approach to jointly generate distractors using a text-to-text
paradigm; (3) Implementation of BERTScore and cosine similarity analysis in the evaluation framework,
offering a comprehensive assessment of the semantic proximity and diversity of the generated distractors.
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The rest of this paper is organized into five sections. Section 2 reviews current research and models
related to the distractor generation task. In Section 3, Materials and Methods, we describe our text-to-
text approach for generating distractors jointly and detail our experimental setup. Section 4 then presents
our evaluation data and benchmarks, followed by the Discussion (Section 5), where we analyze these
findings and explore future work and Limitations (Section 6). The Section 7, Conclusion, summarizes our
main contributions.

2 Related Work

2.1 Distractor Generation Approaches
Distractor generation for MCQs has long been a focus in the fields of education and assessment.

Recently, there has been interest in using automated methods to create these distractors. Various approaches
have been explored, including sequence-to-sequence models [21] along with the application of large
Transformer-based language models [22], such as GPT-2 [23], BERT [24], or T5 [25], usually fine-tuned
specifically for the DG task.

During the construction of the SciQ dataset [26], the DG problem was addressed more traditionally.
The focus was to help crowdsources in selecting the best options from a large set of distractors created
using a GloVe vocabulary [27]. To facilitate this, a classifier was trained to rank good candidates based on
multiple features, including embeddings, POS-tagging, the distance between the correct answer and candi-
date distractor, token length, token overlap, and hypernymy/hyponymy indicators. Similarly, for technical
domains like engineering, the use of ontologies to generate distractors in MCQs has been suggested [6].
Another study used the T5 model for producing English grammar MCQs [28]. However, distractors were
generated based on inputs composed of a keyword and a part-of-speech template and then selected using a
rule-based algorithm.

Another study introduced a framework called EDGE (quEstion and answer guided Distractor GEner-
ation) [13]. This approach generates distractors based on the context, the question, and the correct answer,
using a sequence-to-sequence model. Two important characteristics of distractors are improved with this
model: incorrectness (using a gate mechanism that constrains answer-relevant words based on distance)
and plausibility (employing the semantic representation of the question and the context). The study used a
modified version of the RACE dataset named DG-RACE [10].

Exploring transformer-based approaches, the DG-RACE dataset was also used to fine-tune a T5 model
specifically for the DG task in the context of the end-to-end generation of MCQs [9]. This study proposed
a text-to-text approach, which generates a single distractor by leveraging the context, the question, and the
correct answer.

The aforementioned studies share a common area for improvement: the output of newly generated
distractors is not conditioned on the ones previously generated for the same MCQ. Also, they rely on
beam-search methods for regulating the output [9,13].

In addition to T5, alternative Transformer models such as GPT-2 have also been explored. For example,
another work approached the DG task by fine-tuning a GPT-2 language model with the RACE dataset to
generate three distractors for a given question, correct answer, and context [12]. Following this, an additional
step was incorporated, utilizing a DistilBERT model [29] fine-tuned as a classifier. This classifier, also trained
using the RACE dataset, had the objective of filtering out MCQs composed of the generated distractors that
could be answerable. However, this latter step did not show a meaningful improvement.
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2.2 Datasets
Distractors, integral to the structure of MCQs, are typically found in RC datasets, such as MCTest,

RACE, OpenBookQA, SciQ, CosmosQA, ARC [30], and CommonsenseQA [31], among others. Conse-
quently, these datasets can be used as rich resources when training models for the DG task due to the
inclusion of context for each question-answer pair, along with carefully constructed distractors. Many studies
referenced above utilize the context paragraph, the question, and the correct answer as inputs to guide the
generation of distractors.

The subject domain across these datasets is varied. Topics in the RACE dataset include narratives,
ads, information, and passages across multiple subjects and domains like history, science, and geography,
designed with the focus of evaluating the comprehension of texts built from English language exams for
middle and high school students [19]. MCTest is an open-domain dataset, mainly composed of fictional
narratives that a child could understand [32]. In the case of SciQ and OpenBookQA, topics are specific
to the science domain, including biology, physics, chemistry, earth science, and others [26,33]. While the
correct answer for a given context and question can be inferred from the passage for RACE, MCTest, and
SciQ, OpenBookQA is designed to use multi-step reasoning and common-sense knowledge to answer the
questions [33].

In another line of research, a study utilized these RC datasets to train a unified model for question-
answering (QA) tasks [34,35]. The model, which implemented answering of MCQs (with and without context
paragraphs), used a text-to-text approach based on T5 and BART [36]. This model could be used as a tool to
validate automatically generated distractors by incorporating it as an answerability filter, a method proposed
by other studies [12,37].

2.3 T5 Model Variants
The inherent flexibility of T5 models and their text-to-text approach for a variety of NLP tasks have led to

the development of new T5 model variants that can potentially be used for DG tasks. Among these, LongT5
has exhibited superior performance in processing long sequence inputs and offers a solution to the issue of
size scalability often associated with the standard T5 model [18]. Furthermore, a version of LongT5 has been
enhanced with an attention mechanism known as Transient Global (TGlobal) attention. This mechanism
divides the input sequence into blocks, each one of k tokens. A global token is then calculated based on the
summation and normalization of the embeddings associated with the tokens within the block. As a result,
the attention mechanism enables the input tokens to attend not only to their immediate neighbors but also
to the global token collection [18].

Another significant development is Flan-T5, which represents a T5 model fine-tuned on a larger corpus
comprising 473 datasets and 1836 tasks. This comprehensive fine-tuning has enabled Flan-T5 to surpass the
performance of published T5 checkpoints, in some instances by a margin exceeding 10% [17].

2.4 Evaluation Challenges
Despite these advancements in model development, some challenges remain in the realm of DG

evaluation. Multiple studies have highlighted the absence of standardized metrics and benchmarks for
evaluating the quality of distractors [9,12]. Traditionally, these studies have relied on metrics like BLEU and
ROUGE, which measure word overlap and are widely used in machine translation tasks. However, distance
measures, which have been employed both as features for distractor generation [26] and as supplementary
evaluation metrics [9], offer an interesting alternative.
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To improve the evaluation of text generation broadly, BERTScore has been introduced. This metric
utilizes the contextual embeddings from BERT to calculate a similarity score between reference and
generated text, thus providing, in the study, a better correlation with human judgment [20].

2.5 Research Gap and Proposed Approach
Multiple prior approaches to DG exhibit limitations in maintaining semantic coherence and diversity

between distractors. Some methods rely on beam search, producing iterative outputs where distractors are
generated independently, often leading to additional ranking and filtering steps. Others do not condition
generated distractors on those already produced, increasing the possibility of redundant or trivial options. In
addition, given the lack of a standard metric for DG, existing methods mostly use word overlap metrics and
have not explored the deeper semantic characteristics of distractors, with only a few starting to incorporate
cosine similarity.

To address these limitations, a joint distractor generation approach is proposed, utilizing fine-tuned
FlanT5 and LongT5 models with a RACE-based dataset. By generating multiple distractors in a single
inference step, this method leverages the text-to-text nature of the models to enhance the coherence and
semantic relationship of the options. Additionally, BERTScore and cosine similarity are incorporated into
the evaluation framework to assess the relevance of the generated distractors.

3 Materials and Methods
The appearance of the Transformer architecture has enabled the emergence of LLMs that revolutionized

multiple domains of NLP [38]. These LLMs showcase an outstanding ability to capture linguistic patterns
and dependencies at a level not seen before. Among these, the T5 model stands out due to its versatile
interface, with a design approach where NLP problems such as summarization, classification, translation,
and others, are framed as text-to-text tasks [25]. This characteristic allows the use of these models for multiple
applications. T5 models use both encoder and decoder layers from the original Transformer architecture,
unlike BERT or the GPT-X model family, which are based only on encoders or decoders, respectively.

LongT5 and Flan-T5 represent an evolution over the original T5 model, and their selection for this study
was motivated by the improved efficiency in processing larger inputs and the adaptability to various tasks,
respectively. These characteristics are interesting for the domain of MCQs because an efficient multi-task
model can be optimized to perform QG, QA, and DG tasks, which are 3 dimensions of the MCQ generation
problem [9].

To optimize LLMs for specific tasks, Parameter Efficient Fine-Tuning (PEFT) techniques [39] have
recently emerged, such as LoRA, and quantization. These techniques offer ways to fine-tune larger models
with fewer computational resources by introducing efficient parameter updates and adaptations, as well as
weight precision reduction. In this study, full-finetuning for medium-size models is used, while PEFT is
performed for larger models.

The approach of this research for DG uses a text-to-text paradigm, which is natural to T5-like multitask
language models, as mentioned before. The context, question, and correct answer are used as input for the
model while the set of distractors is the expected output (Fig. 1). The question is added at the beginning
of the input, followed by the correct answer and the context paragraph, which are separated by the labels
“CORRECT-ANSWER:” and “CONTEXT:”, respectively. The output text is structured as a lettered list of
distractors. To avoid ambiguity during fine-tuning (especially for Flan-T5), the task is prefixed with the label
“GENERATE-DISTRACTORS:”.
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Figure 1: Text-to-Text approach for the joint generation of distractors

Both the Flan-T5 and LongT5 models are fine-tuned using the specified input and output structures.
The maximum input length for these models is set to 1024 tokens and training examples that exceed this limit
are excluded from the training set. The ordering of elements in the formatted input is intentionally designed
to retain most of the pertinent information, even when inputs are larger than the limit during inferences.
This ensures that the question and correct answer are always included, with only the less critical portions of
the context potentially being truncated.

The training and evaluation processes are illustrated in Fig. 2. The training process begins by formatting
the train and validation splits of the RACE dataset, according to the format presented in Fig. 1. Each example
is then tokenized using the model-specific tokenizer (both Flan-T5 and LongT5 have their own tokenizers).
Next, the process diverges based on the fine-tuning technique. For models undergoing full fine-tuning, the
approach is straightforward: the pre-trained public model is fetched, and the training is executed using
the Seq2SeqTrainer from the Transformers library in Python [40]. In the scenario of larger models, the
methodology adopted is slightly different. Upon retrieving the pre-trained model, a LoRA adapter model,
which is significantly smaller than the full model, is prepared. This adapter model will go through the
fine-tuning process, updating only its parameters instead of the whole pre-trained model, which, in this
case, is loaded to GPU memory using 4-bit quantization. This process effectively reduces memory demands
during training. Following this, the training proceeds similarly to the full fine-tuning approach, utilizing a
Seq2SeqTrainer from the Transformers library. However, in this instance, the output is an adapter model
optimized for the DG task, which must be merged with the original pre-trained model. The output of this
entire process is a model fine-tuned for the DG task.

For the evaluation, the test splits from the RACE, MCTest, SciQ, and OpenBookQA datasets are
formatted according to the structure proposed in Fig. 1. The inputs undergo tokenization before using the
models to generate distractors. The performance of each fine-tuned model is assessed using BLEU and
ROUGE metrics, in addition to calculating the BERTScore. To further evaluate and understand the behavior
of the generated distractors, an analysis of their grammatical correctness, as well as their distances with the
correct answers is conducted.
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Figure 2: Training and evaluation process. Boxes with dashed lines showcase specific steps for the case of full fine-
tuning and LoRA + quantization fine-tuning

3.1 Experimental Setup
3.1.1 Datasets

As previously noted, datasets featuring MCQ structures composed of context, question, correct answer,
and distractors are well-suited for the DG task. In the scope of this study, the RACE dataset, collected from
English examinations for both middle and high school students, was pre-processed and used for model fine-
tuning. Table 1 shows the number of examples in the dataset. Each example in the RACE dataset is composed
of an article (the context of the question), the question stem, a set of 4 options (including the correct one),
and the answer (the correct option identified by a letter from A to D). The letter of the answer is used to
identify the correct answer in the set of 4 options.

All dataset examples were transformed into the input-output format previously described in Fig. 1.
Specifically, each input is structured as follows: “GENERATE-DISTRACTORS: <question stem>\nCORRECT-
ANSWER: <correct answer text>\nCONTEXT: <context/article>”. Each output is a lettered list of distractors:
“(A) <distractor 1>\n(B) <distractor 2>\n(C) <distractor 3>”. These distractors are composed of the options
available in the original MCQ dataset but removing the correct one. A training example is shown in Fig. 3,
where the Formatted Input block is used to feed the model, and the Expected Output block is the target
to match.
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Table 1: Number of formatted text-to-text examples per dataset, including train, validation, and test splits for RACE,
and only the test splits for SciQ, MCTest (mc500), and OpenBookQA

Dataset (Split) Examples
RACE (Train) 87,560
RACE (Val) 4867
RACE (Test) 4934
SciQ (Test) 1000

MCTest-mc500 (Test) 600
OpenBookQA (Test) 500

Figure 3: Formatted training example based on the RACE dataset for the distractor generation task

Once the input and output were structured accordingly, a tokenization process was applied to enforce
the 1024-token input limit. As mentioned before, examples exceeding this limit were excluded, reducing the
training samples for the train split of the RACE dataset from 87,866 to 87,560. This filtering procedure was
consistently applied to all splits and additional datasets.

The test split was used to generate distractors for unseen inputs and then compared with baseline
models. Additional evaluation was performed on test splits from the MCTest, SciQ, and OpenBookQA
datasets, enabling the assessment of performance across various contexts that differ from the training dataset
(Table 1).

3.1.2 Fine-Tuned Models
For the purpose of this study, three versions of pre-trained Flan-T5 and LongT5-TGlobal models were

fine-tuned: Base (250 M parameters), Large (780 M parameters), and XL (3 billion parameters). The Base and
Large models underwent a full fine-tuning process on an RTX A6000 GPU, with a cost of $1.89/h. Due to
memory limitations and the availability of GPUs, the XL models were fine-tuned on a Nvidia A10 G Tensor
Core GPU ($1.21/h), utilizing Low-Rank Adaptation (LoRA) [41] and 4-bit quantization techniques [42]. To
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establish a reference for models employing LoRA and quantization, a LongT5 Base model was also fine-tuned
using these methods.

In the fine-tuning process for all models, the max_source_length was set to 1024 tokens and the
max_target_length to 256. These parameters were selected based on the distribution of text lengths in the
RACE dataset, which has the longest inputs and outputs among the datasets used in the study. By using
1024 tokens for max_source_length, the training process was able to include 99.6% of the training examples
using the proposed input format (Fig. 1) without truncation, while keeping the memory requirements within
the GPU and resource availability constraints. A max_target_length of 256 tokens provides enough output
length for generating distractors in the proposed format for the studied datasets.

3.1.3 Baseline Models
To benchmark the performance of fine-tuned Flan-T5 and LongT5 models, BLEU and ROUGE results

were compared with those reported by models from three separate studies: GPT-2 + DistilBERT [12], T5-
DG [9], and a Seq-to-Seq model [10]. In these studies, models were fine-tuned on the DG task using the
RACE dataset, requiring the context, question, and correct answer as input, similar to the present study. In
the case of GPT-2 + DistilBERT, the reported model sizes were 355 M and 66 M parameters, respectively.
The T5-DG model was based on T5-Small (60 M parameters) and the Seq-to-Seq model was based on a
custom long short-term memory (LSTM) network that used GloVE as embeddings (840 B.300 d version).
More details on the fine-tuning process of these models can be found in their respective studies.

Furthermore, for a comprehensive baseline across various datasets, distractors were generated for the
test splits of RACE, MCTest, SciQ, and OpenBookQA using GPT-3.5-turbo-1106 via the OpenAI API,
incurring a total cost of approximately $3.05. A system prompt indicated the details of the DG task and the
expected output format, while a user prompt was utilized to input the question, correct answer, and context,
as illustrated in Fig. 4. The produced distractors and the corresponding metrics obtained serve as a reference
for the DG task applied to all datasets evaluated in the research.

Figure 4: Prompts for generating distractors with GPT-3.5 and OpenAI API
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3.1.4 Automatic Evaluation
To assess the quality of the generated distractors, three metrics were employed: BLEU (ranging from 1

to 4 n-grams) [14], ROUGE-L [15], and BERTScore [20]. These evaluation metrics were compared against
the baseline models mentioned before.

While BLEU and ROUGE measure n-gram or subsequence token overlap, they can fail to capture
semantic differences (or similarities). This is especially interesting when analyzing distractors because they
should be contextually plausible but distinct from the correct answer. BERTScore leverages contextual
embeddings from BERT-based models, offering a better approximation of semantic similarity, with improved
correlation to human judgments [20,43] compared to traditional token overlap metrics.

An additional distance analysis was conducted on pairs consisting of a correct answer and its corre-
sponding distractors, as shown in Fig. 5. These pairs were extracted from the test splits of all the datasets
used in this study. Cosine similarity calculations were performed using embeddings from Sentence-BERT
(all-MiniLM-L6-v2 version) [44]. The resulting similarity scores from the test splits served as a reference for
comparison against the similarity scores obtained from distractors generated by both the fine-tuned models
and the GPT-3.5 baseline.

Figure 5: Example of correct-answer and distractor pairs extracted from the same question, with the respective cosine
similarity measure

Both BERTScore and cosine similarity can offer opportunities for analyzing distractors. However, it is
important to note that both metrics can overestimate similarity for pairs sharing common tokens or fail to
capture small changes like negations [45]. The usage of contextual embeddings should help to mitigate this
effect in similarities; however, these metrics are incorporated to provide an additional perspective to BLEU
and ROUGE-L.

Finally, an analysis of the grammatical correctness of the generated distractors was performed. This
is particularly relevant for the RACE dataset, where distractors are typically composed of multiple words.
The analysis was based on LanguageTool1, an open-source grammar checker that shows high accuracy and
exhibits a significant correlation with human ratings [46]. For this evaluation, the original distractors from
the test split of all datasets, as well as those generated by the fine-tuned models and the GPT-3.5 baseline, are
used. Specifically, the percentage of distractors that contain errors in the “GRAMMAR” category is computed.
This category covers issues related to verb usage, pluralization, tense, nouns, and more [46]. It is important
to note that this evaluation focuses primarily on structural errors rather than on spelling, capitalization,
punctuation, or whitespace issues.

1https://github.com/languagetool-org/languagetool (accessed on 1 January 2025).

https://github.com/languagetool-org/languagetool
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4 Results
Table 2 presents the BLEU, ROUGE-L, and BERTScore F1 metrics for the models trained in this study,

evaluated on the test split of the RACE dataset, alongside comparisons with baseline models. The table
also includes the percentage of inferences that resulted in duplicated distractors, a phenomenon observed
during the analysis of the generated outputs. BLEU (B1–B4) and ROUGE-L (R-L) scores range from 0 to
100, with higher values indicating greater n-gram and longest common subsequence overlap, respectively.
BERTScore F1 (BS-F1) also ranges from 0 to 100, reflecting semantic similarity to the reference, where higher
scores are better. The percentage of duplicated distractors (%DUP) ranges from 0 to 100, with lower values
being preferable.

Table 2: Automatic evaluation results for DG on the RACE dataset. BLEU scores in columns B1 to B4, ROUGE-L in
column R-L, BERT-Score F1 in column BS-F1. Percentage of instances with duplicated distractors in column %DUP.
Results from GPT-2 + DistilBERT, T5-DG, and Seq-to-Seq were sourced directly from their published studies. Bolded
values indicate the highest performance for that metric

Model B1 B2 B3 B4 R-L BS-F1 %DUP
FlanT5-Base 52.53 35.73 23.98 12.42 37.32 90.18 10.9
FlanT5-Large 54.05 37.2 25.24 13.53 38.55 90.53 3.95

FlanT5-Base (LoRA) 40.82 26.21 15.69 4.69 23.25 87.52 0.79
FlanT5-XL (LoRA) 55.62 37.78 24.77 11.58 35.18 90.19 1.34

LongT5-Base 51.74 35.05 23.62 12.41 37.38 90.2 7.36
LongT5-Large 52.83 35.21 23.12 11.18 35.51 89.98 6.97

LongT5-XL (LoRA) 55.94 38.2 25.39 12.59 36.6 90.6 0.85
GPT-3.5 46.98 29.65 18.04 6.85 32.01 91.43 0

GPT-2 + DistilBERT 60.12 26.56 13.64 9.17 12.36 – –
T5-DG 14.80 7.06 3.75 2.16 14.91 – –

Seq-to-Seq 26.93 13.57 8.0 5.21 14.54 – –

It is visible that FlanT5 and LongT5 models, particularly in their Large (780 M parameters) and XL (3 B
parameters) versions, achieve strong performance across BLEU scores, indicating an improvement in word
overlap with reference texts, especially from 2 to 4 n-grams. The ROUGE-L scores, which focus on the longest
common sequence between the generated text and the reference, are also robust for the fine-tuned models,
with all fine-tuned versions improving the performance of the baselines, except by FlanT5-Base fine-tuned
with LoRA.

Regarding BERTScore F1 metrics, values gravitate around 0.9, suggesting that the generated distractors
are semantically close to the reference. However, GPT-3.5 scores slightly higher than all other models. This
might suggest that despite lower n-gram overlap, distractors generated by GPT-3.5 might be semantically
closer to the references.

As mentioned above, duplication of distractors in model outputs was observed. This can be an indicator
of the inability of the models to generate diverse distractors. Notably, models fine-tuned with LoRA and
quantization exhibit the lowest rates of duplication when compared to fully fine-tuned versions. This can
be evidenced by the more than 10% reduction in duplication when comparing the fully fine-tuned and
LoRA fine-tuned FlanT5-Base models. Nevertheless, GPT-3.5 generated zero duplicated distractors for all
the inferences.
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Another observation from the results data is that the TGlobal attention mechanism in the LongT5
models does not demonstrate a significant performance advantage over the FlanT5 models. In fact, the
FlanT5-Large model clearly outperforms its LongT5 counterpart.

Table 3 reinforces the observed phenomenon of duplication across other RC datasets, indicating that in
the presence of other contexts, there is a higher tendency to duplicate one distractor, especially by smaller
models. Regarding BERTScore, values still gravitate around 0.89 and 0.9, suggesting that the generated
distractors are semantically close to the reference. However, they still underperform in this metric when
compared to the GPT-3.5 baseline.

Table 3: Automatic evaluation results for other popular RC datasets. BLEU scores in columns B1 to B4, ROUGE-L in
column R-L, and BERT-Score F1 in column BS-F1. Percentage of instances with 1 duplicated distractor in column %DUP1
and with 2 duplicated distractors in %DUP2

Dataset B1 B2 B3 B4 R-L BS-F1 %DUP1 %DUP2
FlanT5-Base

MCTest 66.19 50.96 35.15 18.93 50.77 91.6 20.33 4
SciQ 69.83 51.16 29.99 5.3 48.3 89.23 30.6 25.8

OpenBookQA 60.67 42.99 26.2 8.05 42.15 89.34 29.2 16.6
FlanT5-Large

MCTest 68.97 53.97 37.4 20.45 51.15 92.08 3.67 0.17
SciQ 69.55 51.3 30.09 5.82 48.06 89.62 18.8 6.7

OpenBookQA 60.38 43.16 26.23 7.91 41.86 89.6 19.2 2.6
FlanT5-Base (LoRA)

MCTest 45.36 31.22 18.54 4.78 29.7 88.18 0.33 0
SciQ 27.89 18.59 9.71 0.23 33.42 87.31 1.8 0.7

OpenBookQA 21.26 13.72 7.28 0.59 29.26 86.71 1 0.2
FlanT5-XL (LoRA)

MCTest 63.27 46.9 30.54 13.25 43.69 91.08 0.17 0
SciQ 65.18 47.81 27.53 4.71 46.41 90.66 1.1 0.2

OpenBookQA 60.59 43.15 25.77 6.58 40.6 90.02 1.4 0
LongT5-Base

MCTest 66.6 51.72 35.76 19.43 50.84 91.76 9.17 2.17
SciQ 68.08 49.57 28.89 5.17 47.81 89.29 25.9 16.3

OpenBookQA 59.05 41.81 25.42 7.64 41.33 89.11 24.6 14.6
LongT5-Large

MCTest 61.76 45.03 29.93 13.91 45 90.88 9.33 2.17
SciQ 61.97 44.24 24.74 2.35 42.11 88.61 26.5 4.8

OpenBookQA 55.37 38.27 22.12 4.73 37.55 88.96 14.6 1
LongT5-XL (LoRA)

MCTest 70.09 54.23 36.89 18.73 49.29 92.04 0 0
SciQ 48.92 34.35 18.5 1.45 44.31 89.54 0.3 0

OpenBookQA 45.41 30.7 16.5 1.82 36.07 88.61 1.2 0

(Continued)
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Table 3 (continued)

Dataset B1 B2 B3 B4 R-L BS-F1 %DUP1 %DUP2

GPT-3.5
MCTest 58.12 41.44 25.71 9.83 43.42 93.41 0 0

SciQ 72.7 54.85 32.17 6.88 49.68 94.24 0 0
OpenBookQA 57.29 40.25 23.67 6.23 40.18 92.69 0 0

When looking at the XL models, LongT5-XL (LoRA) excels at MCTest, showing no duplication
and outperforming GPT-3.5 in BLEU and ROUGE-L metrics. However, it is still behind on BERTScore.
FlanT5-XL (LoRA) notably outperforms its LongT5 counterpart in SciQ and OpenBookQA. Additionally,
it outperforms GPT-3.5 in BLEU and ROUGE-L metrics for OpenBookQA, while showing relatively low
duplication. GPT-3.5 clearly outperformed in BERTScore and generated no duplicated distractors.

4.1 Distance Analysis
The cosine similarity between the distractors and correct answers, measured for the test splits in the four

evaluated datasets, showed a median value of around 0.4, with the interquartile range (IQR) falling between
0.2 and 0.6. However, there were large whiskers and outliers present in the box plots, indicating that the
measures were not distributed evenly (Fig. 6). It is visible that OpenBookQA behaves differently from the
rest, with a range and median slightly lower than the other datasets.

Figure 6: Ranges of distance measures (cosine similarity) between distractors and correct answers for the test splits
from the MCTest, OpenBookQA, RACE, and SciQ datasets
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A distance analysis based on the distractors generated by the fine-tuned models (Fig. 7) shows a similar
spread when compared to the reference and tends to have a higher cosine similarity median than the
reference. FlanT5-XL (LoRA) closely approximates the behavior of distance ranges observed in the reference
and GPT-3.5. Additionally, the lower performance of FlanT5-Base (LoRA), as observed in Table 2, becomes
more evident in Fig. 7, exhibiting a similarity median below 0.2.

Figure 7: Ranges of distance measures (cosine similarity) between the correct answer and distractors generated by
fine-tuned models for the test split from the RACE dataset, compared against the reference and GPT-3.5

A similar comparison for MCTest, SciQ, and OpenBookQA is shown in Fig. 8. It is evident that smaller
models struggled to approximate the distances between the distractors and the correct answer across datasets.
In particular, the Base versions with full fine-tuning, which also showed a high duplication rate, present
a larger IQR, especially in the SciQ dataset. An upper quartile extending to 1 (the maximum similarity)
indicates that these models are generating distractors that, in some form, are paraphrasing or synonymous
with the correct answer. An example of this is shown in Table 4 for FlanT5-Base, where the generated
distractors include the correct answer “nervous system” as a part of them. When compared to the reference
and LongT5-XL (LoRA), the cosine similarity of the examples for FlanT5-Base is considerably higher. A
similar phenomenon is also observed in OpenBookQA, as shown in Fig. 8.
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Figure 8: Ranges of distance measures (cosine similarity) between the correct answer and distractors generated by fine-
tuned models for the test split from MCTest, SciQ, and OpenBookQA datasets, compared with reference and GPT-3.5
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Table 4: Example of distractors generated by FlanT5-Base that include the correct answer as a part of the options and
show high cosine similarity (CS) compared to distractors generated by a larger model and the SciQ reference

Model or reference Correct answer Distractor CS
FlanT5-Base Nervous system The nervous system 0.915
FlanT5-Base Nervous system The nervous system of the brain 0.870
FlanT5-Base Nervous system The nervous system of the body 0.891

LongT5-XL (LoRA) Nervous system Respiratory system 0.490
LongT5-XL (LoRA) Nervous system Digestive system 0.431
LongT5-XL (LoRA) Nervous system Circulatory system 0.496

SciQ Reference Nervous system Cardiovascular system 0.542
SciQ Reference Nervous system Circulatory system 0.496
SciQ Reference Nervous system Central system 0.440

4.2 Grammatical Correctness
Overall, the larger models (XL versions) fine-tuned using LoRA and quantization tend to have a lower

rate of distractors with grammatical issues (less than 0.25%), across all fine-tuned models (Fig. 9). However,
it is worth noting that FlanT5-Base (LoRA) exhibits an even lower percentage of distractors with grammatical
errors for the RACE dataset but is one of the higher for SciQ. In general, FlanT5 models show fewer
grammatical problems across all datasets when compared to LongT5, with LongT5-Large being the worst
performer in the grammar analysis. These results could be due to the nature of the pre-trained FlanT5, which
has been fine-tuned on several other datasets and tasks.

Figure 9: Percentage of distractors with grammar issues, generated by the fine-tuned models for the test split from
RACE, MCTest, SciQ, and OpenBookQA datasets, compared with reference and GPT-3.5
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The GPT-3.5 baseline has consistently the lowest percentage of distractors with grammatical errors,
except for MCTest. Interestingly, the references from each dataset tend to be on the higher end of the
percentage of errors (although still very low, around 0.50% for RACE, MCTest, and OpenBookQA).
This could be caused by the fact that these datasets were built using a mix of crowdsourcing and semi-
automated techniques.

5 Discussion
The results demonstrate that the proposed approach can outperform baseline models in the DG task,

evidenced by the improvements in BLEU and ROUGE-L metrics in Table 2. When compared to previous
works [9,10,12], the fine-tuned models in this study, which employ a text-to-text format to generate all
distractors in a single inference jointly, improved BLEU-2 to 38.2, BLEU-3 to 24.39, BLEU-4 to 13.53 and
ROUGE-L to 38.55 for the RACE dataset. These results showcase an improvement in the overlap between
the generated distractors and the reference, especially for multiple n-grams. It is worth noting that one of
the reference models (GPT-2 +DistilBERT) still shows a higher BLEU-1 score. However, the relevance of 1-g
metrics for distractors in the RACE dataset is limited, given that most distractors are composed of multiple-
word tokens. The baseline models, T5-DG and Seq-to-Seq, which generate a single distractor per inference
without any ranking, exhibit significantly lower performance than the fine-tuned models, including the
smaller ones.

Further analysis is needed to understand the extent to which some distractors generated by this
approach may represent variations of the correct answer, for instance, through the use of synonyms or
paraphrasing. Another recent study also observed this phenomenon, focused on generating MCQs related
to programming [47]. This study used GPT-4, and in some instances, all distractors generated for a question
were valid correct answers. The presented analysis of cosine similarity metrics between the correct answer
and distractors can provide insights into this tendency, which is indicated by an increase in the median and
upper quartile of cosine similarity scores.

It is also worth noting that the distractors contained in the datasets do not necessarily originate from
the text or refer to it. Sometimes, options are plausible for a human reader but may not directly relate to the
context, making them challenging to model. This is why conventional token overlapping metrics like BLEU
or ROUGE do not reflect an accurate quality measure for distractors. The inclusion of BERTScore provides
insights into the semantic proximity to the reference text. However, unlike this study, the metrics reported
by baseline models of other works do not include this score, opening opportunities for future research in
this area.

It is also important to mention that the BERTScore for GPT-3.5 outputs was consistently higher across
all datasets. This is particularly evident for MCTest, SciQ, and OpenBookQA. The best-performing fine-
tuned models in this study achieved BERTScores of 92.08, 90.66, and 90.02, respectively. In contrast, GPT-3.5
scored 93.41, 94.24, and 92.69, respectively, indicating that the fine-tuned models still fall behind in terms of
semantic proximity of the distractors, when compared to a LLM like GPT-3.5. One potential explanation for
this is the GPT-3.5 model size and the vast amount of data used for its training, allowing it to model semantic
relationships better. Using larger T5 variants, like XXL, and increasing the diversity of the datasets used for
fine-tuning them (not only RACE), could potentially improve this metric.

The observed tendency to duplicate distractors was not fully removed. Models fine-tuned using LoRA
exhibited higher distractor diversity, evidenced by a significantly lower rate of distractor duplication. The
precise reasons for this require further investigation, and future work could explore them. However, it could
be due to the nature of LoRA, where only a small set of parameters is fine-tuned, and the majority remains
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unchanged. This leads to more efficient learning of patterns necessary for generating diverse distractors and
prevents overfitting, consequently leading to better generalization.

Given that the datasets used in the experiments were mostly composed of questions with 4 options (1
correct answer + 3 distractors), the flexibility to control the resulting number of distractors for each question
is limited. This could be addressed by enriching the training dataset with a variable number of distractors per
question (for example, generated by GPT-3.5) and adjusting the prefix of the DG task to specify the number
of distractors to generate.

Also, the semantic proximity of distractors with the correct answer (and between them) cannot be
controlled. The datasets utilized consist of MCQs with a single correct answer option. Therefore, further
research is required to investigate the performance of the proposed approach when dealing with correct
answers comprising multiple options.

Fine-tuned models were capable of generating distractors that are grammatically correct, sometimes
matching the level of GPT-3.5 and even surpassing the reference. However, a deeper analysis and future
research are needed to automatically evaluate their effectiveness and quality, including considerations such
as the length of the distractor compared to the correct answer, the plausibility of the generated options,
grammatical concordance with the question, and linguistic complexity, among other recommendations for
writing effective multiple-choice items [4]. In addition, human evaluation could offer an opportunity to
further assess the quality of generated distractors using the proposed method and explore to what extent
these distractors can confuse examinees. Due to the constraints of the current study, this was outside of the
scope, presenting an opportunity for future work.

When comparing the fine-tuned XL versions, FlanT5 outperformed LongT5 on SciQ and Open-
BookQA. These datasets have significantly shorter inputs and distractors compared to RACE and MCTest,
where LongT5 with the TGlobal attention mechanism exhibited better performance. However, for smaller
models, FlanT5 outperformed LongT5 most of the time across all datasets. As a consequence, further research
is needed to understand the impact and effectiveness of the TGlobal attention mechanism, particularly for
the DG task.

LLMs typically require extensive fine-tuning and significant computational resources, even when using
LoRA and quantization to reduce memory usage. Most of the cost comes from training, which can take
many hours (XL models took between 60–65 h on a single GPU). However, the cost difference compared to
API-based solutions like GPT-3.5 is smaller during inference. For instance, the fine-tuned Large models can
generate distractors for all test splits for about $1.89 (1 h compute time), compared to $3.05 from GPT-3.5-
Turbo.

Overall, the findings of this study demonstrate the potential of using a text-to-text approach for the
joint generation of distractors for MCQs. Nevertheless, more comprehensive research is required to fully
understand its limitations and potential and investigate alternate datasets, architectures, and methodologies
for distractor generation via large language models.

6 Limitations
Due to GPU resource limitations, this study only fine-tuned models up to 3 billion parameters (XL

versions), and it was not possible to fine-tune the larger models with 11 billion parameters (XXL versions).
The evaluation of distractor quality in this study relies mainly on automatic metrics, which do not

capture the impact of the distractors on learning outcomes. Human evaluation, case studies, and psychome-
tric analyses for examining item difficulty and discrimination are recommended to validate the educational
effectiveness of the generated distractors and their applicability in educational settings.
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The method was based on the RACE dataset, and the evaluation included other RC datasets with
different domains, such as science and common knowledge. However, its generalizability to any other
domain, question type, or language besides English remains unconfirmed.

Finally, while metrics like BERTScore provide useful perspectives for the DG task, they do not model
all the characteristics of a good distractor. In fact, they can overestimate similarity for cases like negations.

7 Conclusion
This study presents a text-to-text approach for the joint generation (i.e., all at once) of distractors and

evaluates its potential by fine-tuning FlanT5 models and LongT5 with TGlobal attention models using a
RACE-based dataset. Both Base and Large model variants are fully fine-tuned, while XL variants are fine-
tuned using LoRA and 4-bit quantization. Compared to previous works, the proposed method and models
demonstrate an improvement in the standard metrics, BLEU and ROUGE-L, for distractors generated for
the RACE dataset. They also show better performance on the same metrics than a baseline generated in this
study using GPT-3.5. The fine-tuned models have been published and made available on the Huggingface
platform (Appendix A).

An additional evaluation is performed by generating distractors for other MCQ datasets (MCTest, SciQ,
and OpenBookQA). The FlanT5-XL model fine-tuned with LoRA outperformed its LongT5 counterpart on
SciQ and OpenBookQA, but LongT5-XL performed better on MCTest and RACE. In the case of smaller
models, FlanT5 typically outperformed LongT5 across all datasets.

This study introduces BERTScore as an additional metric in the evaluation framework for DG, given
that research suggests token overlapping metrics like BLEU and ROUGE do not fully measure the quality
of distractors. BERTScore results show that models fine-tuned using the proposed approach generate
distractors that are semantically close to the reference. However, despite underperforming in BLEU and
ROUGE, the GPT-3.5 baseline still scored better on this metric.

The presented approach generates multiple distractors per model inference, taking into consideration
the relationship of all distractors with the context, question, and correct answer. This leads to better
performance when compared to generating a single distractor per inference. Additionally, this method
generates sets of grammatically correct distractors that can approximate the range of semantic distances with
the correct answer observed in the references, especially those generated by the XL models. A tendency
toward the repetition of distractors has been observed, with models fine-tuned using LoRA exhibiting a
considerably lower rate of duplicated distractors when compared to fully fine-tuned models. Additional
research is needed to fully understand how LoRA fine-tuning leads to better diversity with the proposed
approach for DG.

Future work can explore how elements like distractor length, option plausibility, grammatical consis-
tency, and linguistic complexity, alongside the relationship of distances between distractors, correct answers,
and the context, could help develop better metrics to automatically assess the quality of distractors generated
for MCQs. Although the ability of the generated distractors to confuse examinees is not analyzed, human
evaluation offers an opportunity for future studies. Furthermore, this study suggests how the proposed
text-to-text approach can be improved by enriching the training dataset and adjusting the task prefix to
control the number of distractors generated in a single inference. Lastly, distractors generated using GPT-3.5-
turbo-1106 for the test splits of RACE, MCTest, SciQ, and OpenBookQA datasets have been made available
(Appendix B). These distractors can be used by other studies as baselines for comparing performance in
future works.
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Appendix A
Fine-tuned FlanT5 and LongT5 models for DG have been made public under the Apache-2.0 License

in the Huggin Face2 platform (Table A1).

Table A1: List of published models

Variant URL
FlanT5-Base https://huggingface.co/rrodrigu3z/flan-t5-base-joint-dg

(accessed on 1 January 2025)
FlanT5-Large https://huggingface.co/rrodrigu3z/flan-t5-large-joint-dg

(accessed on 1 January 2025)
FlanT5-Base (LoRA) https://huggingface.co/rrodrigu3z/flan-t5-base (accessed

on 1 January 2025)
FlanT5-XL (LoRA) https://huggingface.co/rrodrigu3z/flan-t5-xl/tree/main

(accessed on 1 January 2025)
LongT5-Base https://huggingface.co/rrodrigu3z/

long-t5-tglobal-base-joint-dg (accessed on 1 January 2025)
LongT5-Large https://huggingface.co/rrodrigu3z/

long-t5-tglobal-large-joint-dg (accessed on 1 January
2025)

LongT5-XL (LoRA) https://huggingface.co/rrodrigu3z/long-t5-tglobal-xl/tree/
main (accessed on 1 January 2025)

2https://huggingface.co/ (accessed on 1 January 2025).

https://huggingface.co/rrodrigu3z/flan-t5-base-joint-dg
https://huggingface.co/rrodrigu3z/flan-t5-large-joint-dg
https://huggingface.co/rrodrigu3z/flan-t5-base
https://huggingface.co/rrodrigu3z/flan-t5-xl/tree/main
https://huggingface.co/rrodrigu3z/long-t5-tglobal-base-joint-dg
https://huggingface.co/rrodrigu3z/long-t5-tglobal-large-joint-dg
https://huggingface.co/rrodrigu3z/long-t5-tglobal-xl/tree/main
https://huggingface.co/
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Appendix B
Distractors generated for all datasets using GPT-3.5-turbo-1106 via OpenAI API can be downloaded

in the following URL: https://dg-inferences.s3.amazonaws.com/gpt-3.5-baseline/chatgpt_predictions.jsonl
(accessed on 1 January 2025).
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