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ABSTRACT: This paper introduces a novel method for medical image retrieval and classification by integrating a
multi-scale encoding mechanism with Vision Transformer (ViT) architectures and a dynamic multi-loss function. The
multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features, while
the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance. Our
approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets, yielding notable improvements. Specifically, on
the ISIC-2018 dataset, our method achieves an F1-Score improvement of +4.84% compared to the standard ViT, with
a precision increase of +5.46% for melanoma (MEL). On the ChestX-ray14 dataset, the method delivers an F1-Score
improvement of 5.3% over the conventional ViT, with precision gains of +5.0% for pneumonia (PNEU) and +5.4%
for fibrosis (FIB). Experimental results demonstrate that our approach outperforms traditional CNN-based models
and existing ViT variants, particularly in retrieving relevant medical cases and enhancing diagnostic accuracy. These
findings highlight the potential of the proposed method for large-scale medical image analysis, offering improved tools
for clinical decision-making through superior classification and case comparison.

KEYWORDS: Medical image retrieval; vision transformer; multi-scale encoding; multi-loss function; ISIC-2018;
ChestX-ray14

1 Introduction
Medical image retrieval has become a vital tool in clinical diagnostics, enabling physicians to compare

patient data with historical cases to improve diagnostic accuracy [1,2]. Traditional image retrieval techniques,
particularly those based on Convolutional Neural Networks (CNNs), have demonstrated effectiveness by
capturing local features and hierarchical spatial patterns [3–5]. However, these methods often struggle to
capture the global context of images, which is crucial for medical imaging tasks that require a comprehensive
analysis of both local and global structures [6,7].

Vision Transformers (ViTs) [6] have gained significant attention due to their self-attention mechanisms,
which enhance context modeling and improve performance in tasks requiring a holistic understanding
of data [7,8]. Recent studies have demonstrated the effectiveness of ViTs in medical imaging, particularly
in handling complex and heterogeneous datasets [7,9]. Despite these advancements, challenges persist in
efficiently integrating multi-scale information and optimizing models for small-object representation [10].

A fundamental challenge in medical image retrieval lies in managing the complexity and diversity of
medical datasets, which often involve multi-label classifications [11]. Datasets such as ISIC-2018 [12,13] and
ChestX-ray14 [1] pose unique difficulties due to the wide range of disease categories and the need for models
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to generalize across varying conditions. Fig. 1 presents sample images from these datasets, highlighting their
complexity and diversity. Traditional CNN-based approaches often struggle to effectively capture both global
and local features, particularly in multi-label classification settings [11,14].

Figure 1: Sample images from the ISIC-2018 [12] and ChestX-ray14 [1] datasets. These examples illustrate the diversity
of medical conditions, including skin lesions (melanoma, basal cell carcinoma) and thoracic pathologies (pneumonia,
cardiomegaly), emphasizing the need for robust models capable of accurate image classification and retrieval

To address these limitations, recent research has focused on enhancing network architectures and loss
functions. Multi-scale context-aware attention models [15] and improved U-Net variants [16,17] have been
proposed to enhance feature extraction in medical images. Furthermore, efficient segmentation techniques
integrating knowledge distillation [18] and lightweight models [19] have demonstrated promising results in
skin lesion analysis.

In this paper, we present a novel approach for medical image classification and retrieval that integrates
a multi-scale encoding mechanism [20] with a Vision Transformer (ViT) architecture [6]. Our method
is evaluated on the ISIC-2018 [12,13] and ChestX-ray14 [1] datasets. The multi-scale encoding enhances
the model’s ability to capture both fine-grained and global features, leading to improved classification and
retrieval performance. Additionally, we introduce a dynamic multi-loss function that adapts to different
training stages, optimizing classification accuracy, feature space structuring for retrieval, and overall model
robustness. By adjusting the contributions of various loss components, including cross-entropy loss [21],
triplet loss [22], contrastive loss [23], and distillation loss [24], our approach achieves a balanced learning
process, resulting in enhanced performance across both datasets.

Our method is tested on two widely used medical image datasets: ISIC-2018, which focuses on
skin lesion classification [12,13], and ChestX-ray14, which involves the identification of various thoracic
diseases [1]. The ISIC-2018 dataset presents challenging lesion categories such as melanoma, basal cell
carcinoma, and benign keratosis [12], while the ChestX-ray14 dataset contains diverse pathologies, including
atelectasis, edema, and pneumonia [1]. Our approach achieves higher precision, recall, and F1-scores across
both datasets, significantly outperforming existing methods [7,8].

Experimental results demonstrate that the proposed approach not only achieves high classification
accuracy but also excels in medical image retrieval tasks, which are critical for case-based reasoning in
clinical applications. The integration of multi-scale encoding with the ViT framework [6], combined with
the dynamic multi-loss function, results in a well-structured feature space that enhances both diagnostic
accuracy and retrieval performance. As shown in ‘Results and Analysis’ Section 5, our approach surpasses
traditional CNN-based models and existing ViT variants [7,8], demonstrating its potential for large-scale
medical image analysis.
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2 Related Work
Convolutional Neural Networks (CNNs) have long served as the backbone for image recognition and

retrieval tasks, largely due to their hierarchical architectures that capture both low-level and high-level
features effectively [3–5]. Pioneering architectures such as VGGNet [3], GoogLeNet [4], and ResNet [5]
have substantially advanced the field by introducing innovative techniques to enhance performance and
training efficiency. VGGNet underscored the significance of network depth in feature extraction, GoogLeNet
optimized computational efficiency via Inception modules, and ResNet mitigated the degradation problem
in deep networks through residual learning, enabling the effective training of networks with over 100 layers.
Despite these advancements, CNNs inherently struggle to capture long-range dependencies and global
contextual information because of their localized receptive fields.

Lightweight CNN models such as DenseNet [25], MobileNet [26], SqueezeNet [27], and Fast&Focused-
Net [10] have made notable contributions to image retrieval and classification, particularly in
resource-constrained settings. DenseNet improves feature reuse through dense connectivity, MobileNet
lowers computational cost with depthwise separable convolutions, SqueezeNet achieves high accuracy with
fewer parameters via Fire modules, and Fast&Focused-Net enhances small object encoding through a
Volume-wise Dot Product (VDP) layer. Nonetheless, these traditional CNN approaches often fall short in
generalizing to complex datasets characterized by high intra-class variance and inter-class similarities.

More recently, Vision Transformers (ViTs) have emerged as a powerful alternative by employing self-
attention mechanisms to capture long-range dependencies and global features more effectively [6]. Unlike
CNNs, ViTs treat images as sequences of patches and use attention to focus on the most relevant regions, a
strategy that is particularly beneficial in medical image analysis where both local details and global context
are critical [7]. However, standard ViTs typically require large-scale training datasets due to their limited
inductive biases, which can lead to overfitting when applied to smaller medical datasets.

In medical imaging, ViTs have been increasingly adopted across various applications. For instance,
they have been applied to tumor classification in MRI scans, where they effectively differentiate between
tumor types. In segmentation tasks, models such as TransUNet have improved the delineation of anatomical
structures [28,29]. Additionally, ViTs have demonstrated utility in MRI reconstruction and automated report
generation in telehealth systems [28]. Nonetheless, a key limitation of ViTs in this domain is their reduced
capacity to integrate multi-scale feature representations, which are crucial for segmenting small lesions and
detecting subtle abnormalities.

For multi-label datasets such as ISIC-2018 [12,13] and ChestX-ray14 [1], current ViT-based approaches
show promising results yet continue to face challenges including difficulties in capturing fine-grained details,
high computational demands, and reliance on large annotated datasets. Some studies have attempted to over-
come these issues by integrating CNN-like hierarchical feature extraction into ViTs [7] or by incorporating
attention mechanisms into CNNs [14], but a comprehensive multi-scale approach remains underexplored.

Loss functions play a critical role in optimizing deep learning models for classification and retrieval
tasks. Loss functions from deep metric learning, such as contrastive loss [23], triplet loss [22], and cross-
entropy loss [21], enhance retrieval performance by structuring the feature space. Additionally, knowledge
distillation [24] has been used to transfer insights from larger models to smaller ones, thereby improving
efficiency [18]. Recently, dynamic multi-loss functions that adaptively adjust weight contributions during
training have shown promise in balancing classification accuracy with retrieval performance. However,
existing multi-loss strategies have yet to fully exploit training stage-dependent weight adjustments, which
could further enhance model performance [7].
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In medical image segmentation, architectures such as U-Net [30] and its variants, including H-
DenseUNet [31], V-Net [32], and U-Net++ [30], have been widely employed for lesion segmentation.
Efforts to improve these models have focused on integrating attention mechanisms [33] and using hybrid
preprocessing techniques [34]. Despite these enhancements, challenges persist in efficiently capturing multi-
scale contextual information. Similarly, disease classification models like CheXNet [35] have achieved
performance comparable to that of radiologists in pneumonia detection, yet their dependence on fixed-scale
feature extraction limits their adaptability to diverse datasets.

Our proposed approach addresses these limitations by integrating multi-scale encoding within a ViT
framework and employing a dynamic multi-loss function. Unlike traditional CNNs, which struggle with
long-range dependencies, or standard ViTs, which lack hierarchical feature extraction, our model explicitly
incorporates multi-scale representations. Furthermore, by dynamically adjusting loss function weights
during different training stages, our method optimizes both classification and retrieval performance, making
it particularly effective for complex medical image datasets.

3 Proposed Method
In this work, we propose a novel approach that integrates a multi-scale Vision Transformer (ViT)

architecture [6] with a dynamic multi-loss function to address the challenges inherent in medical image
retrieval and classification tasks. The method leverages multi-scale image encoding to effectively capture
both fine-grained and global features, while the dynamic loss scheme balances multiple learning objectives
throughout the training process, enhancing both classification accuracy and retrieval performance.

3.1 Overview
Our approach begins by generating scaled versions of each input image by progressively downscaling

it until the smallest side is greater than 16 pixels, similar to multi-scale techniques used in medical image
analysis [15]. At each scale, the image is partitioned into patches of size 16 × 16 pixels, which are then flattened
into one-dimensional vectors, following the methodology of ViT [6]. We augment each patch vector with a
three-dimensional positional encoding that represents the scale level and the patch’s spatial coordinates (X
and Y), enabling the model to capture spatial relationships across different scales. This results in a sequence
of enriched vectors for each image. A special classification token ([CLS]) is prepended to this sequence to
aggregate global information, as demonstrated in transformer architectures [6].

This sequence is fed into a stack of multi-head self-attention encoder layers within the ViT architec-
ture [6]. Each encoder layer consists of multi-head attention mechanisms and feed-forward networks that
enable the model to learn long-range dependencies and global context. The output corresponding to the
[CLS] token is extracted after the encoding layers and processed through a feed-forward layer to produce
an embedding vector. This embedding is utilized for image retrieval tasks and serves as input for computing
loss components like triplet loss [22] and contrastive loss [23].

An overview of the proposed architecture is depicted in Fig. 2.
For classification tasks, the embedding vector is passed through an additional feed-forward layer

followed by a softmax activation function to generate class probabilities. The cross-entropy loss [21] is
computed using these probabilities and the ground truth labels.
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Figure 2: Overview of the proposed multi-scale Vision Transformer architecture for medical image classification and
retrieval tasks. The input image is downscaled multiple times, divided into patches, and processed through a series
of multi-head attention layers with positional encoding added. The final output vector is used for image retrieval and
classification tasks, leveraging a dynamic multi-loss function

3.2 Dynamic Multi-Loss Function
To balance the model’s performance on both classification and retrieval tasks, we employ a combined

loss function that integrates cross-entropy loss (LCEL), contrastive loss (LContrastive) [23], and triplet loss
(LTriplet) [22]:

Loss =WCEL × LCEL +WContrastive × LContrastive +WTriplet × LTriplet (1)

Here, WCEL, WContrastive, and WTriplet are weights assigned to each loss component. These weights are
dynamically adjusted during different training phases to optimize the model’s learning objectives. Initially,
the model emphasizes learning discriminative features through higher weights on the contrastive and triplet
losses, which structure the embedding space for improved retrieval [7]. As training progresses, the weight of
the cross-entropy loss is increased to fine-tune classification accuracy.

3.3 Training Strategy
The training process is structured into multiple phases, each focusing on different aspects of the model’s

capabilities. In the early phases, the emphasis is on feature embedding and retrieval performance, facilitated
by higher weights on metric learning losses and a relatively higher learning rate to encourage exploration
of the feature space [7]. In subsequent phases, the focus shifts toward enhancing classification accuracy
by increasing the weight of the cross-entropy loss and gradually reducing the learning rate to refine the
model’s predictions.

An exponential decay schedule is applied to the learning rate across the training phases to ensure smooth
convergence and adapt the model to the data’s complexities [22]. This dynamic adjustment of both loss
weights and learning rates allows the model to balance and optimize multiple objectives effectively.

By integrating multi-scale encoding [15], a dynamic multi-loss function [7], and a phased training
strategy, our proposed method effectively captures both global and local features. This leads to enhanced
performance in medical image classification and retrieval tasks, particularly when dealing with complex and
diverse datasets like ISIC-2018 [12] and ChestX-ray14 [1].
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4 Experiments Setup
In this section, we provide a detailed description of the datasets used in our experiments, the evaluation

metrics employed to assess the performance of our proposed method, and the hyperparameter settings
configured during training.

4.1 Datasets
We conducted experiments using two widely recognized medical imaging datasets: ISIC-2018 [12,13] and

ChestX-ray14 [1]. Fig. 1 presents sample images from both datasets, illustrating the diversity and complexity
of skin lesions and chest pathologies.

4.1.1 ISIC-2018 Dataset
The International Skin Imaging Collaboration (ISIC) 2018 dataset [12] is a comprehensive collection

of 10,015 high-resolution dermoscopic images designed to support automated skin cancer diagnosis. It
includes seven lesion classes: Melanoma (MEL), Melanocytic Nevus (NV), Basal Cell Carcinoma (BCC),
Actinic Keratoses and Intraepithelial Carcinoma (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF),
and Vascular Lesions (VASC). Released as part of the ISIC 2018 challenge [13], this dataset is widely
used for benchmarking lesion segmentation, feature extraction, and disease classification algorithms. Key
challenges include class imbalance, variations in image quality, and significant visual similarities between
lesion types [13]. To maintain consistency with prior studies, we utilized the official training, validation, and
test splits provided by the ISIC challenge [7,13].

4.1.2 ChestX-ray14 Dataset
The ChestX-ray14 dataset [1], compiled by Wang et al. [1] from the National Institutes of Health Clinical

Center, is one of the largest publicly available chest X-ray databases. It consists of 112,120 frontal-view
X-ray images from 30,805 unique patients, annotated with 14 common thoracic conditions: Atelectasis
(ATL), Cardiomegaly (CARD), Effusion (EFF), Infiltration (INF), Mass (MAS), Nodule (NOD), Pneumonia
(PNEU), Pneumothorax (PNE), Consolidation (CONS), Edema (EDE), Emphysema (EMP), Fibrosis (FIB),
Pleural Thickening (PLT), and Hernia (HER). This dataset has been extensively used for training and
evaluating deep learning models in chest pathology detection and classification [1,11,14,35]. Its primary
challenges include multi-label annotations, high inter-class similarity, and variations in image quality [1]. To
ensure fair comparison with existing methods, we followed the official training and testing splits provided
by Wang et al. [1,14,35].

4.2 Evaluation Metrics
To comprehensively evaluate the performance of our proposed method on both classification and

retrieval tasks, we employed a set of widely used metrics, consistent with prior studies [7,11].
For classification tasks, we used:

• Precision: The ratio of true positive predictions to the total number of positive predictions, measuring
the model’s accuracy in identifying relevant instances [11].

• Recall: The ratio of true positive predictions to the total number of actual positive instances, indicating
the model’s ability to capture all relevant cases [11].

• F1-Score: The harmonic mean of precision and recall, providing a single measure that balances both
metrics [11].
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• Area Under the ROC Curve (AUC): Measures the ability of the model to distinguish between classes
across all classification thresholds, with higher values indicating better performance [11].

For retrieval tasks, we utilized:

• Precision at K (P@K): The proportion of relevant images among the top K retrieved images, assessing
the quality of the retrieval results [7].

• Recall at K (R@K): The proportion of relevant images retrieved among the top K, relative to the total
number of relevant images, indicating the retrieval system’s completeness [7].

• Mean Average Precision (mAP): The average of precision values computed at the point of each relevant
image retrieved, providing a summary of the precision-recall curve [7].

These metrics provide a comprehensive assessment of the model’s performance in both accurately
classifying medical images and effectively retrieving similar images for clinical reference. The use of multiple
evaluation measures ensures a thorough analysis of the model’s strengths and weaknesses in different aspects
of medical image analysis [7].

4.3 Hyperparameter Settings
Our model was implemented using the PyTorch framework and trained on NVIDIA Tesla V100 GPUs.

The training process was divided into three phases, each consisting of 70 epochs, totaling 210 epochs, similar
to the training strategies employed in previous studies [7].

The key hyperparameters used in the experiments are as follows:

• Optimizer: We used the Adam optimizer for training, with parameters β1 = 0.9, β2 = 0.999, and ε =
1e−8.

• Initial Learning Rate (LRinit i al ): Set to 0.0004.
• Learning Rate Decay: The learning rate decayed exponentially in each phase as defined by:

LRphase1 = LRini t i a l × (
1
4
)

e poch
70

(2)

LRphase2 = LRini t i a l × (
1

16
)

e poch−70
70

(3)

LRphase3 = LRini t i a l × (
1

64
)

e poch−140
70

(4)

This dynamic learning rate schedule was designed to facilitate the model’s convergence and performance
across different training phases [7].

• Batch Size: Set to 32 for both datasets.
• Loss Weights: The dynamic multi-loss function employed weights for cross-entropy loss (WCEL),

contrastive loss (WContrastive), and triplet loss (WTriplet) as specified in Table 1, following the strategy
outlined in [7].

• Image Preprocessing: Images were resized to a fixed size while maintaining aspect ratio and normalized
using the mean and standard deviation of the ImageNet dataset [36].

• Data Augmentation: To enhance model generalization, random horizontal and vertical flips and
rotations up to 15 degrees were applied during training, as commonly used in prior works [6,14].

• Patch Size: Each image was divided into patches of size 16 × 16 pixels for input into the ViT architec-
ture [6].



2228 Comput Mater Contin. 2025;83(2)

• Positional Encoding: A 3-dimensional positional encoding vector representing scale, X-coordinate, and
Y-coordinate was added to each patch embedding to capture spatial and scale information, following the
methodology in [6].

• Regularization: Dropout with a rate of 0.1 was applied to prevent overfitting.

Table 1: Loss weight configurations for each training phase

Phase WCEL WContrastive WTriplet

Phase 1 0.1 0.45 0.45
Phase 2 0.2 0.5 0.3
Phase 3 0.45 0.5 0.05

The hyperparameters were selected based on preliminary experiments and tuned to achieve optimal
performance on both datasets. The dynamic adjustment of loss weights and learning rates was critical in
balancing the multiple objectives of classification accuracy and retrieval effectiveness [7].

5 Results and Analysis
In this section, we present the experimental results of our proposed multi-scale Vision Transformer

(ViT) architecture with a dynamic multi-loss function on the ISIC-2018 and ChestX-ray14 datasets. We
compare our method with several state-of-the-art models, including traditional Convolutional Neural
Networks (CNNs) and other transformer-based architectures, to demonstrate the effectiveness of our
approach in both classification and retrieval tasks. We also perform ablation studies to assess the contribution
of each component of our method.

5.1 Classification Performance
5.1.1 ISIC-2018 Dataset

Table 2 summarizes the classification performance of different models on the ISIC-2018 dataset. The
proposed method achieves the highest overall precision, recall, and F1-score, significantly outperforming
traditional CNNs like VGG16 and ResNet50, as well as the standard ViT and its variants.

Table 2: Comparison of classification performance across multiple deep learning models on the ISIC-2018 dataset.
Metrics include Precision, Recall, and F1-Score for each skin lesion category. The proposed method integrates the Vision
Transformer (ViT) with multi-scale and dynamic loss adjustments, achieving competitive results across most categories.
Bold numbers indicate the best results in each category

Method Metric MEL NV BCC AKIEC BKL DF VASC Overall

vgg16
Precision 0.5769 0.8738 0.9412 0.6519 0.5503 0.9383 0.7769 0.7585

Recall 0.1500 0.9000 0.8000 0.8800 0.8200 0.7600 0.9400 0.7500
F1-Score 0.2381 0.8867 0.8649 0.7489 0.6586 0.8398 0.8507 0.7268

squeezenet
Precision 0.7901 0.8817 0.8737 0.7436 0.7265 0.8140 0.7928 0.8032

Recall 0.6400 0.8200 0.8300 0.8700 0.8500 0.7000 0.8800 0.7986
F1-Score 0.7072 0.8497 0.8513 0.8018 0.7834 0.7527 0.8341 0.7972

(Continued)
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Table 2 (continued)

Method Metric MEL NV BCC AKIEC BKL DF VASC Overall

mobilenet
Precision 0.8250 0.8614 0.9310 0.7360 0.7000 0.9155 0.7241 0.8133

Recall 0.6600 0.8700 0.8100 0.9200 0.8400 0.6500 0.8400 0.7986
F1-Score 0.7333 0.8657 0.8663 0.8178 0.7636 0.7602 0.7778 0.7978

resnet50
Precision 0.8681 0.9592 0.9667 0.8378 0.7981 0.9518 0.7317 0.8733

Recall 0.7900 0.9400 0.8700 0.9300 0.8300 0.7900 0.9000 0.8643
F1-Score 0.8272 0.9495 0.9158 0.8815 0.8137 0.8634 0.8072 0.8655

resnet101
Precision 0.8515 0.9588 0.9892 0.8598 0.8131 0.9419 0.8349 0.8927

Recall 0.8600 0.9300 0.9200 0.9200 0.8700 0.8100 0.9100 0.8886
F1-Score 0.8557 0.9442 0.9534 0.8889 0.8406 0.8710 0.8708 0.8892

googlenet
Precision 0.8462 0.9691 1.0000 0.8174 0.8700 0.9545 0.9231 0.9115

Recall 0.8800 0.9400 0.9200 0.9400 0.8700 0.8400 0.9600 0.9071
F1-Score 0.8627 0.9543 0.9583 0.8744 0.8700 0.8936 0.9412 0.9078

densenet121
Precision 0.9216 0.9700 0.9579 0.8447 0.8462 0.9205 0.8796 0.9058

Recall 0.9400 0.9700 0.9100 0.8700 0.8800 0.8100 0.9500 0.9043
F1-Score 0.9307 0.9700 0.9333 0.8571 0.8627 0.8617 0.9135 0.9042

ViT
Precision 0.8396 0.9691 1.0000 0.8393 0.8544 0.9286 0.8491 0.8971

Recall 0.8900 0.9400 0.9200 0.9400 0.8800 0.7800 0.9000 0.8929
F1-Score 0.8641 0.9543 0.9583 0.8868 0.8670 0.8478 0.8738 0.8932

ViT-Swin
Precision 0.8318 0.9691 1.0000 0.8393 0.8462 0.9277 0.8396 0.8934

Recall 0.8900 0.9400 0.9100 0.9400 0.8800 0.7700 0.8900 0.8886
F1-Score 0.8599 0.9543 0.9529 0.8868 0.8627 0.8415 0.8641 0.8889

Proposed
Precision 0.8942 1.0000 0.9896 0.9074 0.9208 0.9663 0.8962 0.9392

Recall 0.9300 0.9600 0.9500 0.9800 0.9300 0.8600 0.9500 0.9371
F1-Score 0.9118 0.9796 0.9694 0.9423 0.9254 0.9101 0.9223 0.9373

Figs. 3a, 4a, and 5a illustrate the precision, recall, and F1-score comparisons for each skin lesion category.
The proposed method consistently outperforms other models across all categories, with particularly notable
improvements in detecting melanoma (MEL) and basal cell carcinoma (BCC), which are critical for early
diagnosis and treatment.

The normalized confusion matrix in Fig. 6a provides a visual representation of the classification
accuracy for each class. The high values along the diagonal indicate that the model accurately classifies
most samples, while the low off-diagonal values suggest minimal misclassifications. The Receiver Operating
Characteristic (ROC) curves in Fig. 7a further demonstrate the model’s strong ability to distinguish between
different lesion types, with Area Under the Curve (AUC) values exceeding 0.92 for all classes.
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Figure 3: Precision comparison for Classification and Retrieval tasks. The precision scores are presented for both tasks
(classification on top, retrieval on bottom) using ViT, ViT MultiScale, ViT MultiLoss, and the proposed method. The
results highlight the superior performance of the proposed method across most lesion categories

Figure 4: Recall comparison for Classification and Retrieval tasks. Recall scores for both tasks (classification on top,
retrieval on bottom) are compared across the ViT, ViT MultiScale, ViT MultiLoss, and proposed method. The proposed
method consistently shows improved recall, especially for challenging lesion categories
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Figure 5: F1-Score comparison for Classification and Retrieval tasks. The bar charts illustrate F1-scores for both
classification (top) and retrieval (bottom) tasks, comparing performance across ViT, ViT MultiScale, ViT MultiLoss,
and proposed method. The proposed method achieves higher F1-Scores, indicating balanced precision and recall across
categories

Figure 6: Normalized Confusion Matrix for classification task using the proposed method. This figure shows the
classification accuracy for each skin lesion category, normalized to highlight the distribution of correct and incorrect
predictions
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Figure 7: ROC Curve for each skin lesion class for classification task using the proposed method. The Receiver
Operating Characteristic (ROC) curve and corresponding Area Under the Curve (AUC) values are plotted for each
lesion category, showcasing the model’s ability to distinguish between classes

5.1.2 ChestX-ray14 Dataset
Table 3 presents the classification results on the ChestX-ray14 dataset. Our proposed method achieves

superior performance with higher precision, recall, and F1-score compared to other models. The improve-
ment is particularly significant for pathologies such as cardiomegaly (CARD) and pneumonia (PNEU).

Table 3: Comparison of classification performance across various methods on the ChestX-ray14 dataset. This table
includes Precision, Recall, and F1-Score for each chest pathology. The proposed ViT-based method with multi-scale
encoding and dynamic loss achieves superior results in terms of overall diagnostic accuracy. Bold numbers indicate the
best results in each category

Method Metric ATL CONS INF PNEU EDE EMP FIB EFF PNE PLT CARD NOD MAS HER Overall

vgg16
Precision 0.644 0.789 0.728 0.503 0.816 0.914 0.787 0.795 0.781 0.800 0.904 0.884 0.724 0.536 0.758

Recall 0.560 0.900 0.670 0.980 0.800 0.640 0.370 0.620 0.890 0.800 0.850 0.760 0.630 0.740 0.729
F1-Score 0.599 0.841 0.698 0.664 0.808 0.753 0.503 0.697 0.832 0.800 0.876 0.817 0.674 0.622 0.727

squeezenet
Precision 0.693 0.671 0.713 0.419 0.753 0.738 0.792 0.810 0.808 0.627 0.768 0.905 0.819 0.615 0.724

Recall 0.610 0.940 0.720 0.850 0.580 0.450 0.380 0.680 0.800 0.790 0.760 0.670 0.680 0.720 0.688
F1-Score 0.649 0.783 0.716 0.561 0.655 0.559 0.514 0.739 0.804 0.699 0.764 0.770 0.743 0.664 0.687

mobilenet
Precision 0.656 0.758 0.641 0.472 0.787 0.780 0.776 0.731 0.786 0.748 0.875 0.886 0.887 0.548 0.738

Recall 0.610 0.940 0.660 0.940 0.630 0.710 0.450 0.570 0.810 0.800 0.770 0.700 0.630 0.690 0.708
F1-Score 0.632 0.839 0.650 0.629 0.700 0.743 0.570 0.640 0.798 0.773 0.819 0.782 0.737 0.611 0.709

resnet50
Precision 0.618 0.867 0.786 0.569 0.804 0.818 0.849 0.780 0.833 0.748 0.899 0.859 0.872 0.642 0.782

Recall 0.630 0.910 0.770 0.950 0.740 0.630 0.450 0.780 0.900 0.860 0.890 0.670 0.750 0.770 0.764
F1-Score 0.624 0.888 0.778 0.712 0.771 0.712 0.588 0.780 0.865 0.800 0.894 0.753 0.806 0.700 0.762

resnet101
Precision 0.730 0.744 0.802 0.575 0.830 0.824 0.845 0.811 0.840 0.719 0.912 0.865 0.946 0.659 0.793

Recall 0.730 0.930 0.770 0.880 0.730 0.700 0.490 0.770 0.890 0.870 0.930 0.640 0.700 0.810 0.774
F1-Score 0.730 0.827 0.786 0.696 0.777 0.757 0.620 0.790 0.864 0.787 0.921 0.736 0.805 0.726 0.773

googlenet
Precision 0.720 0.853 0.762 0.596 0.886 0.926 0.841 0.878 0.840 0.837 0.892 0.886 0.878 0.557 0.811

Recall 0.770 0.930 0.770 0.960 0.780 0.500 0.580 0.790 0.890 0.870 0.910 0.700 0.790 0.780 0.787
F1-Score 0.744 0.890 0.766 0.736 0.830 0.649 0.686 0.832 0.864 0.853 0.901 0.782 0.832 0.650 0.787

(Continued)
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Table 3 (continued)

Method Metric ATL CONS INF PNEU EDE EMP FIB EFF PNE PLT CARD NOD MAS HER Overall

densenet121
Precision 0.701 0.839 0.753 0.752 0.903 0.933 0.911 0.812 0.821 0.748 0.968 0.952 0.847 0.708 0.832

Recall 0.750 0.940 0.730 0.970 0.840 0.700 0.720 0.820 0.870 0.890 0.910 0.800 0.830 0.750 0.823
F1-Score 0.725 0.887 0.741 0.847 0.870 0.800 0.804 0.816 0.845 0.813 0.938 0.870 0.838 0.728 0.823

ViT
Precision 0.729 0.864 0.832 0.577 0.913 0.887 0.903 0.847 0.854 0.756 0.948 0.934 0.925 0.664 0.831

Recall 0.780 0.950 0.790 0.940 0.840 0.710 0.560 0.830 0.880 0.900 0.910 0.710 0.740 0.790 0.809
F1-Score 0.754 0.905 0.810 0.715 0.875 0.789 0.691 0.838 0.867 0.822 0.929 0.807 0.822 0.721 0.810

ViT-Swin
Precision 0.724 0.864 0.825 0.570 0.913 0.887 0.903 0.856 0.854 0.769 0.958 0.934 0.926 0.658 0.832

Recall 0.760 0.950 0.800 0.940 0.840 0.710 0.560 0.830 0.880 0.900 0.910 0.710 0.750 0.790 0.809
F1-Score 0.741 0.905 0.812 0.709 0.875 0.789 0.691 0.843 0.867 0.829 0.933 0.807 0.829 0.718 0.811

Proposed
Precision 0.817 0.865 0.915 0.627 0.946 0.961 0.957 0.897 0.921 0.841 0.960 0.962 0.932 0.721 0.880

Recall 0.850 0.960 0.860 0.990 0.870 0.740 0.660 0.870 0.930 0.900 0.970 0.760 0.820 0.880 0.861
F1-Score 0.833 0.910 0.887 0.767 0.906 0.836 0.781 0.883 0.925 0.870 0.965 0.849 0.872 0.793 0.863

Figs. 3b, 4b, and 5b display the performance metrics for each chest pathology. The proposed method
shows marked improvements in detecting diseases that are challenging due to visual similarity or class
imbalance, such as infiltration (INF) and edema (EDE).

The confusion matrix in Fig. 6b illustrates the classification performance across all pathologies. The
ROC curves in Fig. 7b highlight the model’s discriminative power, with high AUC values indicating strong
classification capabilities.

5.2 Retrieval Performance
5.2.1 ISIC-2018 Dataset

Table 4 presents the retrieval performance on the ISIC-2018 dataset at different top-K levels (K= 2, 5, 10).
The proposed method achieves the highest precision and recall at all levels, demonstrating its effectiveness
in retrieving relevant images for clinical reference.

Table 4: Retrieval performance analysis for different methods over the ISIC-2018 dataset. The performance at top-K
retrieval levels (K = 2, 5, 10) for each lesion category is presented. The best results in each category are highlighted in
bold

Metric @K Method MEL NV BCC AKIEC BKL DF VASC Overall

vgg16

Precision
2 0.8950 0.9100 0.8700 0.8200 0.7700 0.9050 0.9250 0.8707
5 0.8760 0.9040 0.8640 0.8140 0.7700 0.8840 0.9300 0.8631
10 0.8620 0.8920 0.8450 0.8120 0.7530 0.8580 0.9320 0.8506

Recall
2 0.9200 0.9300 0.9100 0.8900 0.8900 0.9500 0.9400 0.9186
5 0.9400 0.9500 0.9500 0.9600 0.9200 0.9600 0.9500 0.9471
10 0.9600 0.9500 0.9500 0.9600 0.9400 0.9800 0.9600 0.9571

F1-Score
2 0.9033 0.9167 0.8833 0.8433 0.8100 0.9200 0.9300 0.8867
5 0.8940 0.9159 0.8919 0.8615 0.8161 0.9097 0.9361 0.8893
10 0.8856 0.9045 0.8742 0.8661 0.8086 0.8971 0.9388 0.8821

(Continued)
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Table 4 (continued)

Metric @K Method MEL NV BCC AKIEC BKL DF VASC Overall

mobilenet

Precision
2 0.8900 0.9350 0.8850 0.8100 0.7850 0.8900 0.9300 0.8750
5 0.8660 0.9260 0.8740 0.8000 0.7720 0.8880 0.9100 0.8623
10 0.8410 0.9040 0.8610 0.8010 0.7710 0.8650 0.8810 0.8463

Recall
2 0.9300 0.9500 0.9200 0.9300 0.8600 0.9200 0.9600 0.9243
5 0.9600 0.9800 0.9500 0.9800 0.9100 0.9400 0.9700 0.9557
10 0.9800 1.0000 0.9700 0.9900 0.9600 0.9800 0.9700 0.9786

F1-Score
2 0.9033 0.9400 0.8967 0.8500 0.8100 0.9000 0.9400 0.8914
5 0.8934 0.9421 0.8949 0.8547 0.8137 0.9042 0.9285 0.8902
10 0.8748 0.9317 0.8880 0.8582 0.8266 0.8919 0.9086 0.8828

resnet50

Precision
2 0.9550 0.9600 0.8900 0.8750 0.8400 0.9150 0.9350 0.9100
5 0.9440 0.9320 0.8800 0.8580 0.8300 0.9060 0.9180 0.8954
10 0.9180 0.9280 0.8710 0.8450 0.8160 0.8910 0.9070 0.8823

Recall
2 0.9800 0.9900 0.9100 0.9700 0.8900 0.9500 0.9600 0.9500
5 0.9800 0.9900 0.9300 0.9900 0.9700 0.9700 0.9800 0.9729
10 0.9800 0.9900 0.9600 0.9900 0.9700 0.9900 0.9900 0.9814

F1-Score
2 0.9633 0.9700 0.8967 0.9067 0.8567 0.9267 0.9433 0.9233
5 0.9579 0.9462 0.8951 0.9025 0.8716 0.9218 0.9329 0.9183
10 0.9389 0.9396 0.8907 0.8981 0.8635 0.9122 0.9242 0.9096

resnet101

Precision
2 0.9550 0.9500 0.9300 0.8500 0.8100 0.9350 0.9650 0.9136
5 0.9340 0.9400 0.9180 0.8360 0.8000 0.9120 0.9440 0.8977
10 0.9020 0.9300 0.9160 0.8280 0.8010 0.8790 0.9230 0.8827

Recall
2 0.9700 0.9800 0.9400 0.9500 0.8700 0.9600 0.9700 0.9486
5 0.9800 0.9800 0.9600 0.9800 0.9600 0.9700 0.9700 0.9714
10 0.9800 0.9800 0.9800 0.9900 0.9900 0.9700 0.9800 0.9814

F1-Score
2 0.9600 0.9600 0.9333 0.8833 0.8300 0.9433 0.9667 0.9252
5 0.9485 0.9509 0.9298 0.8810 0.8497 0.9309 0.9525 0.9205
10 0.9260 0.9407 0.9290 0.8840 0.8593 0.9067 0.9374 0.9119

googlenet

Precision
2 0.9700 0.9450 0.9800 0.8800 0.8200 0.9550 0.9750 0.9321
5 0.9520 0.9400 0.9520 0.8620 0.8300 0.9360 0.9660 0.9197
10 0.9320 0.9380 0.9330 0.8560 0.8320 0.9070 0.9610 0.9084

Recall
2 0.9900 0.9500 0.9800 0.9200 0.8700 0.9800 0.9900 0.9543
5 0.9900 0.9500 0.9800 0.9500 0.9400 0.9900 0.9900 0.9700
10 0.9900 0.9600 0.9800 0.9700 0.9800 0.9900 0.9900 0.9800

F1-Score
2 0.9767 0.9467 0.9800 0.8933 0.8367 0.9633 0.9800 0.9395
5 0.9614 0.9422 0.9613 0.8899 0.8648 0.9506 0.9700 0.9343
10 0.9457 0.9413 0.9442 0.8946 0.8731 0.9285 0.9654 0.9275

(Continued)
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Table 4 (continued)

Metric @K Method MEL NV BCC AKIEC BKL DF VASC Overall

densenet121

Precision
2 0.9700 0.9750 0.9650 0.8650 0.8450 0.9450 0.9600 0.9321
5 0.9540 0.9720 0.9540 0.8380 0.8340 0.9280 0.9540 0.9191
10 0.9470 0.9710 0.9270 0.8350 0.8290 0.9010 0.9510 0.9087

Recall
2 0.9800 0.9800 0.9800 0.9100 0.9100 0.9800 0.9600 0.9571
5 0.9800 0.9800 1.0000 0.9500 0.9800 0.9800 0.9700 0.9771
10 0.9800 0.9800 1.0000 1.0000 0.9900 0.9800 0.9700 0.9857

F1-Score
2 0.9733 0.9767 0.9700 0.8800 0.8667 0.9567 0.9600 0.9405
5 0.9631 0.9746 0.9663 0.8743 0.8785 0.9430 0.9586 0.9369
10 0.9543 0.9728 0.9440 0.8822 0.8756 0.9244 0.9561 0.9299

ViT

Precision
2 0.9700 0.9700 0.9450 0.8700 0.8500 0.9500 0.9450 0.9286
5 0.9440 0.9620 0.9320 0.8720 0.8620 0.9220 0.9300 0.9177
10 0.9290 0.9500 0.9290 0.8740 0.8550 0.9050 0.9120 0.9077

Recall
2 0.9800 0.9800 0.9700 0.9600 0.9300 0.9600 0.9600 0.9629
5 0.9800 0.9900 0.9800 0.9900 0.9800 0.9900 0.9700 0.9829
10 0.9900 0.9900 0.9900 1.0000 0.9900 0.9900 0.9700 0.9886

F1-Score
2 0.9733 0.9733 0.9533 0.9000 0.8767 0.9533 0.9500 0.9400
5 0.9556 0.9694 0.9422 0.9098 0.8976 0.9412 0.9415 0.9368
10 0.9454 0.9578 0.9394 0.9160 0.8984 0.9291 0.9272 0.9305

ViT-Swin

Precision
2 0.9700 0.9850 0.9450 0.8700 0.8600 0.9500 0.9600 0.9343
5 0.9480 0.9640 0.9320 0.8740 0.8600 0.9180 0.9360 0.9189
10 0.9270 0.9530 0.9230 0.8740 0.8470 0.9030 0.9180 0.9064

Recall
2 0.9800 0.9900 0.9700 0.9600 0.9300 0.9600 0.9600 0.9643
5 0.9800 0.9900 0.9800 0.9900 0.9800 0.9900 0.9700 0.9829
10 0.9800 0.9900 0.9900 1.0000 0.9900 0.9900 0.9800 0.9886

F1-Score
2 0.9733 0.9867 0.9533 0.9000 0.8833 0.9533 0.9600 0.9443
5 0.9581 0.9712 0.9432 0.9102 0.8962 0.9387 0.9475 0.9379
10 0.9417 0.9601 0.9339 0.9162 0.8919 0.9279 0.9352 0.9296

Proposed

Precision
2 0.9750 0.9750 0.9700 0.9250 0.9450 0.9650 0.9650 0.9600
5 0.9640 0.9640 0.9640 0.9400 0.9240 0.9380 0.9540 0.9497
10 0.9500 0.9610 0.9500 0.9460 0.9270 0.9230 0.9510 0.9440

Recall
2 0.9800 0.9800 0.9800 0.9600 0.9700 0.9900 0.9800 0.9771
5 0.9900 0.9800 0.9900 0.9900 0.9900 0.9900 0.9800 0.9871
10 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9800 0.9886

F1-Score
2 0.9767 0.9767 0.9733 0.9367 0.9533 0.9733 0.9700 0.9657
5 0.9706 0.9679 0.9706 0.9574 0.9446 0.9534 0.9606 0.9607
10 0.9584 0.9652 0.9579 0.9629 0.9477 0.9426 0.9573 0.9560

Figs. 3a and 4a illustrate the precision and recall for retrieval tasks across different models. The proposed
method consistently outperforms others, particularly for melanoma (MEL) and actinic keratosis (AKIEC),
which are crucial for accurate diagnosis.
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5.2.2 ChestX-ray14 Dataset
The retrieval results on the ChestX-ray14 dataset are shown in Table 5. Our method achieves superior

retrieval precision and recall at various top-K levels, highlighting its ability to retrieve clinically relevant
images across multiple pathologies.

Table 5: Retrieval performance analysis across different techniques on the ChestX-ray14 dataset. Precision at top-K
retrieval levels (K = 2, 5, 10) for each chest pathology is shown. The best results in each category are highlighted in bold

Method Metric @K ATL CONS INF PNEU EDE EMP FIB EFF PNE PLT CARD NOD MAS HER Overall

vgg16

Precision
2 0.435 0.875 0.565 0.965 0.705 0.710 0.730 0.625 0.845 0.735 0.815 0.830 0.580 0.635 0.718
5 0.432 0.858 0.576 0.964 0.714 0.674 0.720 0.608 0.844 0.746 0.818 0.800 0.582 0.632 0.712
10 0.426 0.865 0.565 0.951 0.689 0.651 0.671 0.562 0.848 0.723 0.808 0.775 0.542 0.618 0.692

Recall
2 0.580 0.970 0.680 0.970 0.770 0.800 0.820 0.790 0.890 0.810 0.870 0.870 0.700 0.730 0.804
5 0.710 0.980 0.810 0.970 0.860 0.890 0.920 0.890 0.910 0.870 0.900 0.910 0.830 0.880 0.881
10 0.820 0.980 0.850 0.970 0.880 0.930 0.940 0.960 0.920 0.900 0.920 0.950 0.870 0.930 0.916

F1-Score
2 0.483 0.907 0.603 0.967 0.727 0.740 0.760 0.680 0.860 0.760 0.833 0.843 0.620 0.667 0.746
5 0.506 0.899 0.640 0.967 0.751 0.729 0.779 0.685 0.866 0.784 0.842 0.835 0.647 0.705 0.759
10 0.514 0.902 0.635 0.959 0.735 0.712 0.749 0.651 0.871 0.767 0.836 0.823 0.618 0.707 0.749

mobilenet

Precision
2 0.470 0.915 0.580 0.930 0.640 0.730 0.735 0.580 0.770 0.760 0.775 0.805 0.575 0.555 0.701
5 0.456 0.880 0.588 0.936 0.626 0.710 0.646 0.546 0.758 0.756 0.758 0.796 0.556 0.594 0.686
10 0.431 0.874 0.574 0.930 0.597 0.677 0.589 0.516 0.739 0.728 0.742 0.772 0.519 0.584 0.662

Recall
2 0.650 0.960 0.720 0.950 0.760 0.830 0.860 0.720 0.810 0.810 0.860 0.860 0.660 0.710 0.797
5 0.820 0.970 0.800 0.980 0.910 0.870 0.910 0.900 0.860 0.860 0.910 0.900 0.810 0.860 0.883
10 0.860 0.970 0.870 0.980 0.930 0.920 0.940 0.950 0.890 0.910 0.940 0.910 0.840 0.950 0.919

F1-Score
2 0.530 0.930 0.627 0.937 0.680 0.763 0.777 0.627 0.783 0.777 0.803 0.823 0.603 0.607 0.733
5 0.551 0.912 0.652 0.946 0.707 0.760 0.725 0.638 0.784 0.788 0.799 0.829 0.617 0.671 0.741
10 0.532 0.908 0.647 0.942 0.690 0.742 0.695 0.616 0.772 0.774 0.787 0.815 0.588 0.684 0.728

resnet50

Precision
2 0.555 0.875 0.735 0.965 0.730 0.805 0.765 0.675 0.830 0.835 0.845 0.855 0.650 0.675 0.771
5 0.498 0.864 0.678 0.948 0.668 0.796 0.702 0.662 0.800 0.810 0.834 0.844 0.640 0.688 0.745
10 0.463 0.850 0.666 0.946 0.600 0.745 0.615 0.645 0.784 0.787 0.807 0.817 0.616 0.693 0.717

Recall
2 0.700 0.920 0.840 0.980 0.840 0.860 0.870 0.790 0.880 0.880 0.900 0.900 0.770 0.810 0.853
5 0.840 0.950 0.890 0.980 0.910 0.910 0.910 0.840 0.900 0.900 0.950 0.940 0.830 0.960 0.908
10 0.870 0.970 0.930 0.990 0.930 0.930 0.950 0.890 0.930 0.920 0.960 0.970 0.880 0.990 0.936

F1-Score
2 0.603 0.890 0.770 0.970 0.767 0.823 0.800 0.713 0.847 0.850 0.863 0.870 0.690 0.720 0.798
5 0.588 0.891 0.740 0.957 0.744 0.829 0.764 0.715 0.827 0.840 0.865 0.871 0.695 0.767 0.792
10 0.565 0.886 0.743 0.956 0.702 0.799 0.710 0.706 0.818 0.826 0.839 0.858 0.682 0.784 0.777

resnet101

Precision
2 0.615 0.885 0.730 0.950 0.765 0.825 0.755 0.720 0.835 0.795 0.870 0.900 0.745 0.790 0.799
5 0.586 0.882 0.694 0.930 0.708 0.778 0.748 0.708 0.826 0.798 0.868 0.860 0.680 0.760 0.773
10 0.566 0.874 0.684 0.906 0.658 0.738 0.725 0.687 0.811 0.791 0.850 0.841 0.641 0.755 0.752

Recall
2 0.750 0.930 0.840 0.970 0.840 0.910 0.830 0.800 0.870 0.840 0.900 0.930 0.860 0.910 0.870
5 0.870 0.940 0.890 0.990 0.910 0.940 0.940 0.870 0.920 0.880 0.950 0.940 0.880 0.940 0.918
10 0.910 0.940 0.890 0.990 0.930 0.940 0.970 0.890 0.930 0.910 0.970 0.950 0.910 0.970 0.936

F1-Score
2 0.660 0.900 0.767 0.957 0.790 0.853 0.780 0.747 0.847 0.810 0.880 0.910 0.783 0.830 0.822
5 0.660 0.901 0.743 0.947 0.767 0.827 0.801 0.757 0.848 0.825 0.890 0.882 0.731 0.815 0.814
10 0.653 0.897 0.739 0.926 0.733 0.798 0.794 0.746 0.838 0.824 0.877 0.868 0.708 0.826 0.802

googlenet

Precision
2 0.655 0.880 0.740 0.965 0.735 0.850 0.770 0.730 0.820 0.835 0.865 0.890 0.750 0.755 0.803
5 0.644 0.894 0.738 0.960 0.730 0.826 0.732 0.728 0.828 0.822 0.870 0.874 0.744 0.740 0.795
10 0.618 0.880 0.730 0.956 0.706 0.807 0.688 0.697 0.831 0.818 0.865 0.854 0.729 0.737 0.780

Recall
2 0.770 0.910 0.840 0.980 0.830 0.890 0.850 0.810 0.860 0.870 0.900 0.910 0.800 0.850 0.862
5 0.840 0.960 0.910 0.980 0.860 0.920 0.940 0.900 0.920 0.890 0.940 0.940 0.870 0.950 0.916
10 0.880 0.960 0.940 0.980 0.890 0.940 0.960 0.960 0.940 0.900 0.960 0.960 0.880 0.980 0.938

F1-Score
2 0.693 0.890 0.773 0.970 0.767 0.863 0.797 0.757 0.833 0.847 0.877 0.897 0.767 0.787 0.823
5 0.705 0.910 0.790 0.965 0.772 0.850 0.791 0.771 0.850 0.842 0.888 0.893 0.778 0.801 0.829
10 0.690 0.900 0.790 0.961 0.759 0.840 0.763 0.758 0.855 0.841 0.887 0.879 0.764 0.804 0.821

densenet121

Precision
2 0.620 0.890 0.730 0.945 0.805 0.900 0.780 0.770 0.830 0.780 0.890 0.890 0.755 0.715 0.807
5 0.592 0.896 0.694 0.940 0.778 0.880 0.774 0.736 0.832 0.804 0.896 0.872 0.746 0.736 0.798
10 0.594 0.901 0.686 0.940 0.762 0.854 0.753 0.732 0.828 0.810 0.891 0.847 0.720 0.748 0.790

Recall
2 0.730 0.960 0.790 0.960 0.900 0.940 0.850 0.850 0.870 0.840 0.930 0.940 0.820 0.830 0.872
5 0.830 0.980 0.880 0.960 0.950 0.950 0.910 0.880 0.920 0.920 0.960 0.950 0.890 0.940 0.923
10 0.890 0.980 0.910 0.970 0.960 0.960 0.940 0.930 0.930 0.930 0.970 0.960 0.900 0.980 0.944

F1-Score
2 0.657 0.913 0.750 0.950 0.837 0.913 0.803 0.797 0.843 0.800 0.903 0.907 0.777 0.753 0.829
5 0.661 0.925 0.750 0.945 0.828 0.900 0.817 0.771 0.855 0.836 0.915 0.890 0.783 0.799 0.834
10 0.667 0.929 0.748 0.947 0.815 0.879 0.808 0.773 0.852 0.844 0.910 0.872 0.765 0.820 0.831

(Continued)
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Table 5 (continued)

Method Metric @K ATL CONS INF PNEU EDE EMP FIB EFF PNE PLT CARD NOD MAS HER Overall

ViT

Precision
2 0.620 0.900 0.745 0.970 0.810 0.910 0.840 0.780 0.830 0.830 0.910 0.910 0.760 0.800 0.830
5 0.618 0.902 0.738 0.954 0.782 0.862 0.798 0.754 0.832 0.818 0.894 0.900 0.728 0.778 0.811
10 0.600 0.905 0.725 0.947 0.727 0.818 0.730 0.727 0.825 0.809 0.875 0.863 0.705 0.776 0.788

Recall
2 0.730 0.950 0.860 0.980 0.870 0.930 0.910 0.890 0.870 0.870 0.940 0.920 0.810 0.910 0.889
5 0.880 0.960 0.900 0.990 0.890 0.960 0.930 0.910 0.920 0.870 0.970 0.930 0.870 0.960 0.924
10 0.950 0.960 0.910 0.990 0.950 0.970 0.960 0.930 0.940 0.900 0.970 0.950 0.910 0.980 0.948

F1-Score
2 0.657 0.917 0.783 0.973 0.830 0.917 0.863 0.817 0.843 0.843 0.920 0.913 0.777 0.837 0.849
5 0.690 0.923 0.790 0.963 0.817 0.893 0.843 0.800 0.854 0.838 0.916 0.908 0.771 0.835 0.846
10 0.684 0.926 0.780 0.957 0.784 0.862 0.797 0.783 0.851 0.835 0.898 0.885 0.754 0.839 0.831

ViT-Swin

Precision
2 0.630 0.900 0.750 0.970 0.815 0.905 0.835 0.765 0.830 0.835 0.910 0.910 0.765 0.805 0.830
5 0.612 0.900 0.742 0.954 0.788 0.864 0.804 0.748 0.832 0.816 0.898 0.902 0.732 0.782 0.812
10 0.602 0.906 0.732 0.945 0.736 0.814 0.728 0.721 0.827 0.804 0.876 0.864 0.706 0.779 0.789

Recall
2 0.740 0.950 0.860 0.980 0.870 0.940 0.900 0.860 0.860 0.870 0.950 0.920 0.820 0.910 0.888
5 0.880 0.960 0.900 0.990 0.910 0.950 0.940 0.910 0.920 0.870 0.980 0.930 0.860 0.960 0.926
10 0.940 0.960 0.910 0.990 0.960 0.970 0.950 0.940 0.940 0.900 0.980 0.950 0.900 0.990 0.949

F1-Score
2 0.667 0.917 0.787 0.973 0.833 0.917 0.857 0.797 0.840 0.847 0.923 0.913 0.783 0.840 0.850
5 0.683 0.921 0.795 0.963 0.825 0.892 0.849 0.795 0.854 0.836 0.922 0.909 0.773 0.836 0.847
10 0.686 0.927 0.785 0.955 0.794 0.858 0.795 0.778 0.852 0.832 0.900 0.885 0.754 0.842 0.832

Proposed

Precision
2 0.775 0.925 0.810 0.975 0.865 0.925 0.880 0.830 0.870 0.870 0.950 0.915 0.800 0.870 0.876
5 0.758 0.926 0.804 0.968 0.854 0.904 0.842 0.798 0.858 0.854 0.940 0.902 0.792 0.864 0.862
10 0.723 0.925 0.796 0.967 0.820 0.857 0.794 0.788 0.855 0.846 0.919 0.867 0.777 0.829 0.840

Recall
2 0.850 0.950 0.870 0.980 0.890 0.940 0.930 0.890 0.910 0.880 0.970 0.920 0.870 0.920 0.912
5 0.950 0.980 0.920 0.990 0.940 0.960 0.940 0.920 0.930 0.880 0.970 0.940 0.920 0.960 0.943
10 0.990 0.980 0.950 0.990 0.950 0.970 0.960 0.970 0.940 0.900 0.970 0.950 0.940 0.970 0.959

F1-Score
2 0.800 0.933 0.830 0.977 0.873 0.930 0.897 0.850 0.883 0.873 0.957 0.917 0.823 0.887 0.888
5 0.813 0.943 0.840 0.973 0.879 0.919 0.876 0.835 0.877 0.865 0.951 0.914 0.825 0.897 0.886
10 0.789 0.943 0.840 0.973 0.860 0.892 0.844 0.836 0.873 0.862 0.934 0.892 0.815 0.873 0.873

As depicted in Figs. 3b and 4b, the proposed method shows enhanced retrieval performance for diseases
such as pneumothorax (PNEU) and cardiomegaly (CARD), which are critical for patient care.

5.3 Ablation Studies
To evaluate the contribution of each component of our proposed method, we conducted ablation studies

by comparing the performance of the baseline ViT model, ViT with multi-scale encoding (ViT MultiScale),
ViT with the dynamic multi-loss function (ViT MultiLoss), and the full proposed method.

5.3.1 Impact of Multi-Scale Encoding
Tables 6 and 7 show that incorporating multi-scale encoding into the ViT architecture (ViT MultiScale)

leads to improved classification and retrieval performance compared to the baseline ViT model. This
enhancement is attributed to the model’s ability to capture fine-grained details and global context by
processing images at multiple scales.
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Table 6: Ablation study of the proposed method over the ISIC-2018 dataset for medical image classification and retrieval
tasks. The table examines the impact of multi-scale encoding and multi-loss adjustments on classification and retrieval
performance. Metrics include Precision, Recall, and F1-Score, evaluated across all lesion categories. The best results in
each category are highlighted in bold

Medical Image Classification Task
Metric Method MEL NV BCC AKIEC BKL DF VASC Overall

Precision

ViT 0.8396 0.9691 1.0000 0.8393 0.8544 0.9286 0.8491 0.8971
ViT MultiLoss 0.8598 1.0000 0.9896 0.8879 0.8846 0.9651 0.8857 0.9247
ViT MultiScale 0.8857 1.0000 0.9896 0.8981 0.9020 0.9663 0.8952 0.9338

Proposed 0.8942 1.0000 0.9896 0.9074 0.9208 0.9663 0.8962 0.9392

Recall

ViT 0.8900 0.9400 0.9200 0.9400 0.8800 0.7800 0.9000 0.8929
ViT MultiLoss 0.9200 0.9500 0.9500 0.9500 0.9200 0.8300 0.9300 0.9214
ViT MultiScale 0.9300 0.9500 0.9500 0.9700 0.9200 0.8600 0.9400 0.9314

Proposed 0.9300 0.9600 0.9500 0.9800 0.9300 0.8600 0.9500 0.9371

F1-Score

ViT 0.8641 0.9543 0.9583 0.8868 0.8670 0.8478 0.8738 0.8932
ViT MultiLoss 0.8889 0.9744 0.9694 0.9179 0.9020 0.8925 0.9073 0.9218
ViT MultiScale 0.9073 0.9744 0.9694 0.9327 0.9109 0.9101 0.9171 0.9317

Proposed 0.9118 0.9796 0.9694 0.9423 0.9254 0.9101 0.9223 0.9373
Medical Image Retrieval Task

Metric @K Method MEL NV BCC AKIEC BKL DF VASC Overall

Precision

2

ViT 0.9700 0.9700 0.9450 0.8700 0.8500 0.9500 0.9450 0.9286
ViT MultiLoss 0.9650 0.9700 0.9700 0.9000 0.8850 0.9550 0.9800 0.9464
ViT MultiScale 0.9650 0.9750 0.9700 0.9150 0.9350 0.9650 0.9750 0.9571

Proposed 0.9750 0.9750 0.9700 0.9250 0.9450 0.9650 0.9650 0.9600

5

ViT 0.9440 0.9620 0.9320 0.8720 0.8620 0.9220 0.9300 0.9177
ViT MultiLoss 0.9500 0.9600 0.9540 0.9020 0.8960 0.9260 0.9560 0.9349
ViT MultiScale 0.9640 0.9600 0.9620 0.9320 0.9200 0.9400 0.9540 0.9474

Proposed 0.9640 0.9640 0.9640 0.9400 0.9240 0.9380 0.9540 0.9497

10

ViT 0.9290 0.9500 0.9290 0.8740 0.8550 0.9050 0.9120 0.9077
ViT MultiLoss 0.9380 0.9560 0.9440 0.9060 0.8920 0.9080 0.9440 0.9269
ViT MultiScale 0.9460 0.9570 0.9490 0.9350 0.9180 0.9210 0.9460 0.9389

Proposed 0.9500 0.9610 0.9500 0.9460 0.9270 0.9230 0.9510 0.9440

Recall

2

ViT 0.9800 0.9800 0.9700 0.9600 0.9300 0.9600 0.9600 0.9629
ViT MultiLoss 0.9800 0.9800 0.9900 0.9600 0.9400 0.9800 0.9800 0.9729
ViT MultiScale 0.9800 0.9800 0.9800 0.9600 0.9600 0.9900 0.9800 0.9757

Proposed 0.9800 0.9800 0.9800 0.9600 0.9700 0.9900 0.9800 0.9771

5

ViT 0.9800 0.9900 0.9800 0.9900 0.9800 0.9900 0.9700 0.9829
ViT MultiLoss 0.9800 0.9800 0.9900 0.9800 0.9800 0.9900 0.9800 0.9829
ViT MultiScale 0.9900 0.9800 0.9900 0.9900 0.9800 0.9900 0.9800 0.9857

Proposed 0.9900 0.9800 0.9900 0.9900 0.9900 0.9900 0.9800 0.9871

(Continued)
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Table 6 (continued)

Medical Image Retrieval Task
Metric @K Method MEL NV BCC AKIEC BKL DF VASC Overall

10

ViT 0.9900 0.9900 0.9900 1.0000 0.9900 0.9900 0.9700 0.9886
ViT MultiLoss 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9800 0.9886
ViT MultiScale 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9800 0.9886

Proposed 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9800 0.9886

F1-Score

2

ViT 0.9733 0.9733 0.9533 0.9000 0.8767 0.9533 0.9500 0.9400
ViT MultiLoss 0.9700 0.9733 0.9767 0.9200 0.9033 0.9633 0.9800 0.9552
ViT MultiScale 0.9700 0.9767 0.9733 0.9300 0.9433 0.9733 0.9767 0.9633

Proposed 0.9767 0.9767 0.9733 0.9367 0.9533 0.9733 0.9700 0.9657

5

ViT 0.9556 0.9694 0.9422 0.9098 0.8976 0.9412 0.9415 0.9368
ViT MultiLoss 0.9596 0.9654 0.9634 0.9271 0.9227 0.9438 0.9646 0.9495
ViT MultiScale 0.9706 0.9648 0.9694 0.9509 0.9399 0.9548 0.9612 0.9588

Proposed 0.9706 0.9679 0.9706 0.9574 0.9446 0.9534 0.9606 0.9607

10

ViT 0.9454 0.9578 0.9394 0.9160 0.8984 0.9291 0.9272 0.9305
ViT MultiLoss 0.9506 0.9620 0.9527 0.9364 0.9239 0.9313 0.9531 0.9443
ViT MultiScale 0.9551 0.9616 0.9572 0.9554 0.9415 0.9413 0.9536 0.9522

Proposed 0.9584 0.9652 0.9579 0.9629 0.9477 0.9426 0.9573 0.9560

5.3.2 Impact of Dynamic Multi-Loss Function
The results also indicate that applying the dynamic multi-loss function (ViT MultiLoss) improves

performance over the baseline by better balancing the learning objectives of classification and retrieval tasks.
The adaptive weighting of loss components allows the model to focus on different aspects during training,
enhancing overall robustness.

5.3.3 Combined Effect
The full proposed method, which integrates both multi-scale encoding and the dynamic multi-loss

function, achieves the highest performance in both datasets. This demonstrates the synergistic effect of
combining these two components, leading to significant improvements over individual enhancements.
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5.4 Discussion
The experimental results validate the effectiveness of our proposed method in medical image classifi-

cation and retrieval tasks. The integration of multi-scale encoding enables the model to capture important
features at different resolutions, which is particularly beneficial for medical images where lesions and
pathologies may vary greatly in size and appearance.

The dynamic multi-loss function allows the model to balance multiple learning objectives, optimizing
for both classification accuracy and retrieval effectiveness. By adjusting the loss weights during training, the
model can adapt to the complexities of the data, improving generalization and robustness.

The superior performance of our method over traditional CNNs and existing transformer-based models
underscores the potential of combining multi-scale processing with advanced training strategies. This
approach addresses the challenges posed by complex medical datasets, such as class imbalance and high
inter-class similarity.

Overall, the proposed method demonstrates significant advancements in medical image analysis,
offering improved tools for clinicians in diagnosis and decision-making processes.

6 Conclusion and Future Work
This paper presents a novel multi-scale Vision Transformer (ViT) architecture with a dynamic multi-loss

function for medical image classification and retrieval. By integrating multi-scale encoding, our approach
effectively captures both fine-grained and global features, while the dynamic loss function adaptively
balances multiple learning objectives.

Extensive experiments on the ISIC-2018 and ChestX-ray14 datasets demonstrate that our method
consistently outperforms existing CNN-based and transformer-based models. The results confirm improved
classification accuracy, precision, and retrieval performance, making our approach a valuable tool for
medical image analysis.

Despite its effectiveness, the model’s performance is influenced by dataset diversity and computational
complexity. Future research could focus on extending the approach to other imaging modalities, improving
optimization strategies, and enhancing model interpretability for real-world clinical adoption.

Our work contributes to advancing deep learning techniques in medical imaging, with the potential to
assist healthcare professionals in more accurate diagnoses and improved patient care.
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