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ABSTRACT: In recent years, audio pattern recognition has emerged as a key area of research, driven by its applications
in human-computer interaction, robotics, and healthcare. Traditional methods, which rely heavily on handcrafted
features such as Mel filters, often suffer from information loss and limited feature representation capabilities. To address
these limitations, this study proposes an innovative end-to-end audio pattern recognition framework that directly pro-
cesses raw audio signals, preserving original information and extracting effective classification features. The proposed
framework utilizes a dual-branch architecture: a global refinement module that retains channel and temporal details
and a multi-scale embedding module that captures high-level semantic information. Additionally, a guided fusion
module integrates complementary features from both branches, ensuring a comprehensive representation of audio
data. Specifically, the multi-scale audio context embedding module is designed to effectively extract spatiotemporal
dependencies, while the global refinement module aggregates multi-scale channel and temporal cues for enhanced
modeling. The guided fusion module leverages these features to achieve efficient integration of complementary
information, resulting in improved classification accuracy. Experimental results demonstrate the model’s superior
performance on multiple datasets, including ESC-50, UrbanSound8K, RAVDESS, and CREMA-D, with classification
accuracies of 93.25%, 90.91%, 92.36%, and 70.50%, respectively. These results highlight the robustness and effectiveness
of the proposed framework, which significantly outperforms existing approaches. By addressing critical challenges such
as information loss and limited feature representation, this work provides new insights and methodologies for advancing
audio classification and multimodal interaction systems.
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1 Introduction
In recent years, Audio Pattern Recognition (APR) has drawn growing attention from researchers,

finding widespread applications in areas such as Environmental Sound Classification (ESC) [1–3], sound
event detection [4,5], and Speech Emotion Recognition (SER) [6,7]. These applications span diverse
scenarios including human-computer interaction, robotics, autonomous driving, and healthcare, among
others. Depending on the specific task requirements, audio recognition is often formulated as a classification
problem that may adopt either single-label or multi-label classification strategies. Despite the significant
progress achieved in previous research on ESC and emotion analysis, several key challenges remain in
practical applications. First, handcrafted features frequently fail to capture complex emotional cues. Second,
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raw audio waveforms inherently involve long sequential data and noise interference, making spatiotemporal
information challenging to model effectively. Finally, it remains unclear how to achieve efficient fusion of
dual-branch information.

In the field of ESC, researchers commonly rely on handcrafted features (e.g., MFCC, Log-Mel) combined
with convolutional neural networks to identify short-time audio segments [8,9]. Beyond its importance to
ESC, SER has also emerged as a research hotspot in human-computer interaction. Compared with methods
that utilize invasive sensors to capture emotional signals, noninvasive, voice-based approaches are more
readily applicable in real-world settings [10–12]. Furthermore, emotion recognition based on facial recog-
nition typically requires considerable computational resources and is vulnerable to environmental factors
such as lighting conditions, making real-time applications challenging. Consequently, SER has become
increasingly crucial in multimodal human-computer interaction [13]. Currently, most commonly adopted
solutions for ESC and SER still rely on handcrafted features such as Log-Mel [14,15]. Originally designed
for automatic speech recognition (ASR), these features capture only the frequency-domain information
pertinent to human auditory perception [16], and thus lack flexibility in adapting to the varying durations
and spectral characteristics of different audio samples. As a result, they often struggle to fully capture the
intricate semantic clues present in audio data, particularly for tasks like SER.

To address this limitation, some studies have attempted to directly utilize raw audio waveforms as model
inputs and adopt multilayer network structures to learn features automatically within the model [2,17,18].
Compared to approaches based on Log-Mel or other handcrafted features, this strategy allows the feature
extraction and classification steps to be jointly optimized, thereby enabling the model to learn more discrim-
inative high-level representations. However, the relatively long duration and complex noise environments
inherent to raw audio data still pose challenges such as difficulty in spatiotemporal information extraction
and high computational cost [2,17,18]. Consequently, there is an urgent need to explore how techniques
such as multiscale information fusion, channel attention, and aggregation strategies can be effectively
integrated into end-to-end models to improve their representation and generalization capabilities in audio
pattern recognition.

To tackle the aforementioned issues, we propose an end-to-end audio pattern recognition framework
that emphasizes the following innovations. First, to overcome the inability of handcrafted features to capture
comprehensive emotional cues in speech, we directly employ raw audio waveforms as input, seeking to enable
the model to learn high-level representations that go beyond the scope of handcrafted features. Second,
in light of the challenges associated with modeling raw audio waveforms, our framework adopts a dual-
branch structure. On one hand, we introduce a multiscale audio context embedding module designed to
more effectively extract spatiotemporal information from audio signals; on the other, we propose a global
audio refinement module to capture multiscale channel and temporal cues. Lastly, we incorporate a guided
aggregation module to facilitate efficient fusion of the two branches. We conduct a series of systematic
experiments on multiple audio benchmarks (e.g., ESC-50, UrbanSound8K, RAVDESS and CREMA-D) to
demonstrate the potential of our end-to-end approach and its performance advantages in audio pattern
recognition tasks.

2 Related Work
The audio mode recognition system primarily relies on converting the raw audio signal into time-

frequency representations, such as log-mel spectrograms [18] or Mel-frequency cepstral coefficients
(MFCCs) [15], as input, and feeding them into deep neural networks for category prediction. This approach
has been widely applied in sound event detection tasks [19]. Currently, CNN-based systems have been widely
used in the APR task.
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CNN-based systems typically adopt three methods. The first method uses a model with 2D convolu-
tional layers and time-frequency representations, such as log-mel spectrograms, as the input to the first 2D
convolutional layer, treating it as an image and using CNNs to achieve accurate classification. Reference [20]
proposed an efficient network structure that extracts NGCC [21], MFCC, GFCC [22], LFCC [23], and
BFCC [24] features from the input tensor. Reference [25] proposed an effective method for classifying
environmental sound spectrograms based on CNN, using Mel spectrograms as the feature. Reference [26]
proposed an environmental sound classification algorithm based on adaptive data padding by filling short
raw audio data with random padding and converting the raw audio data into log-mel spectrograms.

The second method defines an end-to-end system, typically extracting Mel spectrograms as input
from the raw audio or using one-dimensional convolutional layers to extract two-dimensional features
instead of time-frequency representations. Reference [27] proposed a CNN system called “efficient residual
audio neural network,” which improves the inference speed of APR tasks. Reference [28] integrated high-
level components, including multi-head attention, residual modules, and capsule modules, which together
enhance the model’s ability to capture global and local features necessary for accurate sentiment classification.
Reference [2] used transfer learning strategies to design a general-purpose end-to-end audio embedding
generator that can quickly adapt to various acoustic scenarios and event classification applications. Refer-
ence [29] proposed a novel end-to-end ESC system by combining the end-to-end system and log-mel CNN,
which uses a CNN for classification. Both of these approaches share the following limitations: they first
convert the audio signal into a time-frequency representation, which can lead to the loss of subtle temporal
information present in the raw waveform. Moreover, the feature extraction process relies on empirical
knowledge, requiring manual design or parameter tuning, and thus cannot fully achieve automated optimal
feature learning.

To overcome the above issues, the third approach directly uses the raw audio waveform as input. Refer-
ence [2] proposes a general end-to-end audio embedding generator that operates directly on raw waveforms.
Meanwhile, Reference [3] introduces an end-to-end approach based on 1D CNNs for environmental sound
classification, enabling the model to learn representations directly from the audio signal. Overall, these three
CNN-based methods struggle to model global features due to the constraints of local receptive fields-an issue
that becomes especially pronounced when handling raw audio waveforms, where global features play a vital
role in time-dependent audio classification tasks.

Transformer-based audio processing systems, which excel at learning global features, have gained
popularity in APR tasks. Their outstanding performance has already permeated much of the audio processing
field. For instance, Reference [30] applied a transformer to mel-spectrogram patches, achieving significant
results across multiple datasets. Reference [1] designed a hierarchical audio Transformer model that reduces
model size and training time while maintaining excellent performance. Considering the performance and
computational trade-offs between transformers and CNNs, researchers have explored hybrid architectures
that combine both. For example, Reference [17] proposed an end-to-end model using raw audio signals
and employed lightweight audio data alongside novel audio augmentation strategies, exhibiting strong
generalization capabilities. In References [31–33], CNNs are used to extract low-level, local features from mel-
spectrograms, which are then processed by a transformer for global semantic modeling. This approach shows
excellent performance in audio classification tasks and effectively addresses the shortcoming of traditional
CNNs in modeling global features.

In further developments, researchers have proposed multi-branch hybrid architectures to fully exploit
feature representations. These architectures process different types of features through multiple branches
and employ appropriate fusion strategies to achieve performance enhancement. For instance, Reference [34]
introduced a multi-branch architecture combining parallel CNN and Transformer for speech emotion
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recognition. This approach processes Mel spectrograms and other features separately, extracting diverse
feature representations through parallel branches, which are then fused in the fully connected layer to enable
efficient emotion classification. Similarly, References [35,36] designed a dual-stream CNN-Transformer
network, where two branches are used to extract spatial and temporal features respectively, and the fusion
module is employed to integrate the branch-specific information, further improving model performance.

In addition, multi-scale processing has shown significant progress in audio feature extraction in recent
years. For example, Reference [18] dynamically adjusted the stride and kernel size of convolutions to
capture both short-term and long-term dependencies in audio signals, thereby improving computational
efficiency. Reference [37] utilized filters of varying sizes to process audio inputs, enabling the extraction of
multi-scale features. Furthermore, Reference [38] proposed an asymmetric multi-scale convolutional kernel
design, which effectively enhanced the correlation between temporal and pseudo-frequency domains while
significantly reducing computational demands. However, these methods exhibit limitations in their branch
designs regarding multi-scale extraction of spatiotemporal information, particularly in their inability to fully
consider the differences and complementary information between branches during the fusion process.

To address these issues, we propose a bilateral CNN-transformer hybrid architecture that directly takes
raw audio waveforms as input, comprising three components: a semantic branch, a detail branch, and a
guided fusion module. Specifically, the semantic branch—with a narrow channel width and deep hierarchical
structure—captures broad semantic information, whereas the detail branch—with a wide channel width
and shallow hierarchical structure—focuses on fine-grained temporal details. The guided fusion module
integrates complementary information from both branches by leveraging the contextual information in the
semantic branch to guide feature responses in the detail branch, enabling more efficient communication
between the two branches.

3 Methodology
This section provides a detailed exposition of our proposed bilateral end-to-end audio classification

network with semantic and detail branches. The network comprises three parts: the semantic branch,
the detail branch, and the guidance fusion module. We focus on introducing three key concepts: (1) The
semantic branch with narrow channel sizes and deep hierarchies, capable of processing semantically broad
information (2) The detail branch with wide channel sizes and shallow hierarchies capable of processing
temporally detailed information (3) An effective aggregation layer is designed to fuse these two different
types of representations. We demonstrate the overall architecture and specific design concepts, as illustrated
in Fig. 1.
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Figure 1: Overall structure of the model

3.1 Semantic Branching
Considering the balance of large receptive fields and efficient computation, this paper proposes semantic

branches with multi-scale feature extraction capabilities to meet the context dependence and large receptive
fields required for high-level semantics. The semantic branch mainly includes the Fast Downsampling
module (FD) and the Multi-Scale Audio Context Embedding Module (MACEM). MACEM has two variants,
MACEM-A and MACEM-B. For the details of these two variants, see 3.1.1.

Specifically, we design three different modules, FD-A, FD-B, and FD-R, to capture dependencies at
different time scales, whose structures are shown in Fig. 1. The difference between FD-A and FD-B lies in
the fact that the former uses MACEM-A and MACEM-B, while the latter uses two MACEM-Bs, and FD-
R EMbeds only MACEM-A. The FD module firstly uses a one-dimensional convolution to aggregate the
information, and then uses a one-dimensional convolution with a step size of 2 to reduce the size of the
features and feeds them into MACEM-A and MACEM-B for a larger receptive domain to encode high-level
semantic contextual information.
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The original audio feature As (As ∈ R1×L , where 1 denotes the dimensionality of the feature channel
and L corresponds to the feature length.) is passed through a one-dimensional convolution to increase the
number of channels and improve the feature expression, and then it is passed through five consecutive FD
modules to rapidly downsample the input features to obtain a larger receptive domain and encode high-level
semantic context information to get the feature Asd (Asd ∈ R256× L

32 ), and a one-dimensional convolution is
used again to decrease the number of channels in order to reduce the amount of computation, and then it is
inputted into the Transformer to perform the encoding, the reason for not inputting the features directly into
the Transformer at the beginning is to consider that the feature size is too large and inputting it at this point
would result in a huge amount of computation. The MACEM-A and MACEM-B modules of the FD module,
which expand the receptive field and increase the level of feature characterization, where adaptive global
average pooling and adaptive global maximum pooling are embedded into the global contextual response to
further improve its performance.

3.1.1 Multi-Scale Audio Context Embedding Module
In order to reduce the loss of context information in different sub-domains, we design a plug-and-play

multi-scale audio context embedding module, which contains information between different scales and sub-
domains, and aggregates the speech from different regions, so that the model has the ability to understand
the global context information. Its concrete implementation is described in detail below.

Combining the advantages of pyramid, we propose the multi-scale audio context embedding module
(MACEM) has the form of MACEM-A and MACEM-B, as shown in Fig. 2, “⊕” represents summation
operations, while “⊗” denotes element-wise multiplication. MACEM-A: Firstly, the input feature H is
convolved by three one-dimensional convolutions ( f1 , f7, f15), whose convolution kernel sizes are 1, 7, 15,
respectively, and the extracted features are concatenated from the channel dimensions in order to obtain
multiple scale aggregation information, and then the number of channels is reduced to 1/3 of the original by
a one-dimensional convolution f7 to obtain the feature M as shown in Eq. (1).

M = δ1( f7[δ2( f1(H)); δ2( f7(H)); δ2( f15(H))]) (1)

Mavg

Mmax

M

Input feature

H M’ Q

Multi-scale Audio Context Embedding Module

Figure 2: The structure of the multi-scale audio context embedding module

Here, we use ReLU(δ1) and LeakyReLU(δ2) activation functions to process features. H, M ∈ RC×L where
C denotes the dimensionality of the feature channel and L corresponds to the feature length. The feature M
is obtained by adaptive global average pooling and adaptive global maximum pooling respectively after the
features Mav g and Mmax are input into two consecutive convolutional layers f , which have convolutional
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kernel size of 1, for compression and then the output features are summed up, and the scores for the different
time and magnitude dimensions for the channels are obtained by sigmoid(σ), and M′ as shown in Eq. (2).

M′ = σ( f (δ1( f (Mav g))) + f (δ1( f (Mmax)))) (2)

Here M′, Mav g , Mmax ∈ RC×1 where C denotes the dimensionality of the feature channel and 1
corresponds to the feature length.

Finally M′ is multiplied with the feature M and added with the input feature H obtained by a one
dimensional convolution f7 with a convolution kernel of 7 to obtain the output feature Q as shown in Eq. (3).

Q = δ2(M⊗M′ + f7(H)) (3)

Here Q ∈ RC×L where C denotes the dimensionality of the feature channel and L corresponds to the
feature length. “⊕” denotes element-wise multiplication.

MACEM-B is to change the splicing of three one-dimensional convoluted features in MACEM-A to
addition, and remove the spliced one-dimensional convolution to obtain feature M, in addition to the rest of
the operation is the same as MACEM-A, MACEM-B to obtain feature M as shown in Eq. (4).

M = δ1(δ2( f1(H)) + δ2( f7(H)) + δ2( f15(H))) (4)

3.2 Detail Branching
The detail information and the receiving domain are key to achieving high accuracy. However, it is

difficult to fulfill these two requirements simultaneously. Based on this, we propose a detail branch to preserve
the detail size of the original input audio and encode the rich temporal information. The detail branch
achieves 8-fold fast downsampling of the input raw audio feature As (As ∈ R1×L) by three successive layers of
downsampling, each layer including a one-dimensional convolution with stride = 2, convolution kernel size
3, batch normalization [39] and LeakyReLU [40]. Then after two FD-Cs, each including a one-dimensional
convolution with stride = 2, the contextual encoding of local information is performed to achieve 32-fold fast
downsampling of the input raw audio features As . The final 32-fold downsampled feature Ad (Ad ∈ R256× L

32 )
contains a large amount of detailed information, which is sequentially passed into BiLSTM (Bi-directional
Long Short-Term Memory) [41] to extract the temporal information and Transfomer [42] for encoding to
extract the global information. The details of the structure are given in Fig. 1. FD-C uses a Global Audio
Refinement Module (GARM) to aggregate channel and temporal information at multiple scales.

3.2.1 Global Audio Refinement Module
We propose Global Audio Refinement Module (GARM) to obtain multiple scale aggregated channel and

temporal information as shown in Fig. 3, “⊕” represents summation operations, while “⊗” denotes element-
wise multiplication. GARM: The input feature H is convolved by three one-dimensional convolutions
( f1 , f3, f9), whose convolution kernel sizes are 1, 15, 15, and nulling rates are 1, 3, and 9, respectively, which
are then summed up to obtain the feature K as shown in Eq. (5).

K = δ1( f (δ2( f1(H)) + δ2( f3(H)) + δ2( f9(H)))) (5)
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Figure 3: The structure of the global audio refinement module

The feature K is obtained by adaptive global mean pooling and adaptive global maximum pooling
respectively after the features Kav g and Kmax are input into two consecutive convolutional layers f , which
have convolutional kernel size of 1. Compression is performed while the output features are summed up, and
the scores K′ for the different temporal and magnitude dimensions for the channel are obtained by sigmoid,
as shown in Eq. (6). Finally K′ is multiplied with the feature K to obtain the feature N, as shown in Eq. (7).

K′ = σ( f (δ1( f (Kav g))) + f (δ1( f (Kmax)))) (6)
N = K ⋅ K′ (7)

Feature N again through adaptive global average pooling and adaptive global maximum pooling
respectively after obtaining features Nav g and Nmax after inputting two consecutive convolutional layers
f , which convolutional kernel size are 1, for compression and then the output features from the channel
dimension after concat after a one-dimensional convolution f7 will be reduced to the number of channels to
the original 1/2 to obtain the feature N′, feature N′ through sigmoid as shown in Eq. (5) to obtain the scores
for the channels at different times and channel dimensions are multiplied with N, as shown in Eq. (8).

N ′ = σ( f7[ f (δ1( f (Nav g))); f (δ1( f (Nmax)))]) (8)

Finally N′ is multiplied with N and summed with the input features H after a convolution kernel of 7
one dimensional convolution f7 output features to get the final output Q as shown in Eq. (9).

Q = δ2(N ⋅ N ′ + f7(H)) (9)

3.3 Guided Aggregation Module
In audio classification networks, the different downsampling strategies of semantic and detail branches

lead to different vector lengths and semantic gaps in the feature representations they extract. To eliminate
this disparity and fuse the two types of feature representations, traditional fusion methods, such as element
summation and concat, ignore the disparity between the two types of information, and thus the performance
is poor and difficult to optimize. Therefore, this paper proposes a guided aggregation module to fuse
complementary information from two branches to capture feature representations at different scales and to
intrinsically encode multi-scale information. In addition, the guided aggregation module uses the contextual
information of the semantic branch to guide the feature response of the detail branch, thus making the
communication between the two branches more efficient. The experimental results in this paper show that
this approach can significantly improve the performance of audio classification networks. The detail branch
output feature D is adjusted by two one-dimensional convolution f to adjust the feature size to be consistent
with the size of the semantic branch output feature S, and then the sigmoid function is used to obtain the score
D′ for the semantic branch as shown in Eq. (10). Referring to the residual structure semantic branch output
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feature S is multiplied with D′ and then added with S to get the final output feature O as shown in Eq. (11).
The detailed implementation and design concept is shown in Fig. 4.

D′ = σ(δ2( f (δ2( f (D))))) (10)
O = S ⋅ D′ + S (11)

Here D ∈ RC×L1 , S ∈ RC×L2 , D′ ∈ RC×1, O ∈ RC×L2 where C denotes the dimensionality of the feature
channel and 1 corresponds to the feature length.
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Figure 4: Guided aggregation module

4 Experiment
In this section, we evaluate the effectiveness of the proposed method through experiments and compare

it with existing state-of-the-art approaches. The experiments include performance evaluation on four public
datasets, ablation studies on key modules of the model, and visualization analysis of the results.

4.1 Dataset Description and Implementation Details
4.1.1 Dataset Description

This section evaluates our method on public classification datasets such as ESC-50 [43] and Urban-
Sound8K [44]. In addition to the ESC scenario, the system was examined on the speech emotion recognition
RAVDESS [45] and CREMA-D [46] dataset to show robustness to audio signal types.

The ESC-50 dataset consists of 2000 samples of ambient sounds from 50 categories. The 50 categories
are animals (dogs, chickens, pigs, cows, frogs, cats, hens, flying insects, sheep, and crows), nature sounds,
and water sounds (rain, waves, fire crackling, crickets, bird calls, water drops, wind, water pouring, toilet
flushing, and thunderstorms). Human non-language (baby crying, sneezing, clapping, breathing, coughing,
footsteps, laughter, brushing teeth, snoring, and drinking/drinking), indoor and domestic sounds (knocking,
mouse clicking, keyboard typing, door, wood creaking, opening a can, washing machine, vacuum cleaner,
alarm clock, clock ticking, glass breaking), and outside and urban noise (helicopters, chainsaws, sirens, car
horns, engines, trains, church bells, airplanes, fireworks, and handsaws). Each sample has a length of 5 s and
a sampling frequency of 44,100 Hz.
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The UrbanSound8k dataset consists of 8732 audio clips, totaling 7.3 h of audio recordings. The maximum
duration of the audio segment is 4 s. The raw audio sampling rate is between 16 and 48 KHz. The dataset
contains 10 categories: air conditioning, car horn, kids playing, dog barking, drilling, engine idling, gunshots,
jackhammers, sirens, and street music.

The RAVDESS dataset contains speech and song recordings of 247 untrained Americans categorized
into 8 different levels:relaxed, happy, sad, angry, scared, disgusted, and surprised, with a neutral base for each
performer. Contains 1440 files: 60 trials of 24 actors per actor, for a total of 1440 voice files.

CREMA-D is an audiovisual dataset featuring 7442 video clips from 91 actors of diverse racial and ethnic
backgrounds (Asian, African American, Caucasian, and Hispanic). The actors were instructed to utter 12
sentences across six different emotions (anger, disgust, fear, happiness, neutral, and sadness) and four levels
of intensity (low, medium, high, and unspecified). The average length of video clips in CREMA-D is 2.63 ±
0.53 s. We considered six emotion categories.

The dataset is divided into a training set and a test set to ensure a training and test ratio of 80:20,
respectively. The sampling rate was downsampled to 22,050 Hz and short samples were zero-padded to 4 s.

In Fig. 5, we show the visualization of audio data where we selected eight audio clips from the RAVDESS
dataset for processing. In this figure, eight different emotional states are represented in order from left to
right, including neutral, relaxed, happy, sad, angry, scared, disgusted and surprised. And from top to bottom,
different representation layers of the audio data are presented, including the original audio waveform graph,
STFT-spectrogram (Short Time Fourier Transform Spectrogram), FBSP-spectrogram (Frequency Bandsplit
Excitation Features), Mel-spectrogram, and MFCC (Mel Frequency Cepstrum Coefficient).

Figure 5: Audio visualization

4.1.2 Implementation Details
Our experiments are carried out on a computer equipped with Windows 11 operating system with Intel

Core i9-12900KF CPU and NVIDIA RTX 3090 Ti GPU hardware configuration. The software environment
is PyTorch 1.13.0 and torchaudio 0.13.0 and their dependency libraries.

For the training process, we used the AdamW [47] optimizer with a maximum learning rate of 3 × 10−4

and a one-cycle strategy [48]. In addition, we trained batches of 64 using a 10−5 decay of weights with an
EMA [49,50] decay rate of 0.995, SKD of [51], and default values for all other parameters. Each of the three
datasets used has an iteration of 1500. to handle the different sample lengths across the datasets, we adjusted
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the parameters of the samples under the control network. One noise type and one mixing strategy were
randomly selected in each iteration.

As illustrated in the Fig. 6, the workflow can be divided into two primary stages: Data Processing and
Training and Testing. In the data processing stage, the raw audio data is first downsampled to a sampling
rate of 22 kHz, and the duration of each audio clip is standardized to 4 s to ensure compatibility with the
model’s input requirements. After preprocessing, the data is split into training and testing sets. In the training
and testing stage, the training data is loaded into the model for training, during which the loss function is
optimized iteratively to update the model parameters and generate prediction results. The trained model
is subsequently saved (as indicated by “SaveModel”) for use in the testing phase. In the testing phase, the
saved model is loaded to make predictions on the testing data, yielding the final prediction results. This
workflow comprehensively and systematically outlines the entire pipeline from raw data preprocessing to
model training and testing, providing a clear depiction of the logical structure of our research methodology.
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Figure 6: Schematic diagram of the overall pipeline

4.2 Results and Discussion
4.2.1 Comparison With Other Algorithms on the ESC-50

In this study, we comprehensively compare and analyze the experimental results from three different
perspectives (nature of end-to-end models, form of input data, and use of pre-trained models). The
experimental results are shown in Table 1. We found that the end-to-end models generally exhibit excellent
performance in these aspects of the study, which is mainly attributed to their strong learning ability and
robustness. Compared to non-end-to-end models, end-to-end models [2,17] show better performance in
audio classification tasks.

Introducing the use of a pre-trained model significantly improves the robustness of the model [2],
whereas the model performance is more limited without the introduction of a pre-trained model. For the
analysis of the form of input data, we observe that models using STFT-spec (short-time Fourier transform
spectrum) as input data [18,27,52] outperform models using raw audio data [2,53,54] overall. STFT-spec
is able to more accurately capture audio features perceived by the human ear with a certain degree of
translational invariance. However, it is worth noting that the process of transforming audio into STFT-spec
loses some of the detailed information of the original audio signal as well as the fact that generating STFT-
spec involves the selection of some hyperparameters. This may lead to difficulties for the model to accurately
distinguish different audio categories in a complex context such as human-computer interaction. To address
this issue, our proposed model successfully solves this challenge. In addition, previous research [43]
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confirmed that using raw audio as input has great potential in audio categorization tasks. In this study,
our approach not only achieves a 1.1% performance improvement compared to [43], but also outperforms
the non-end-to-end approach using STFT-spec as input in the dataset, obtaining up to 1.95% performance
improvement. These results fully validate the effectiveness and practicality of our proposed method.

Table 1: ESC-50, accuracy measured on 3090Ti machine

Model E2E Representation Pretrained Accuracy (%)
AemNet-DW WM1.0 [2] ✓ Raw ✓ 92.32

ESResNet-Att [52] ✗ STFT-spec ✗ 83.15
ERANN-1-3 [18] ✗ STFT-spec ✗ 89.20

ESResNeXt-fbsp [27] ✗ fbsp-spec ✗ 91.30
SimPF [55] ✗ Mel-spec ✗ 85.30

HalluAudio [56] ✗ Mel-spec ✗ 86.46
ViT [57] ✓ Mel-spec ✓ 87.25

ResNet [58] ✓ Mel-spec ✗ 81.90
CNN-Attention [59] ✓ MFCC ✗ 88.76

DBRNet [60] ✗ Mel-spec ✗ 86.30
Multiresolution 1D-CNN [53] ✓ Raw ✗ 75.10

EnvNet-v2 [54] ✓ Raw ✗ 84.90
AemNet WM1.0 [2] ✓ Raw ✗ 81.50

EAT-S [17] ✓ Raw ✗ 92.15
ACDNet [61] ✓ Raw ✗ 87.10

MCT [62] ✓ Raw ✗ 91.00
EAT-S-GMME [38] ✓ Raw ✗ 91.30

Ours ✓ Raw ✗ 93.25

4.2.2 Comparison With Other Algorithms on the UrbanSound8K
The UrbanSound8K dataset covers a wide range of audio categories, encompassing the richness of

sound in urban environments. It is important to consider that in urban environments, sound characteristics
are affected by factors such as background noise, environmental changes, and reverberation, resulting in
more significant domain differences. The model should have a high generalization ability to adapt to diverse
sound environments.

The experimental results, shown in Table 2, indicate that although [2] used an end-to-end model and
combined it with a pre-trained model, the accuracy did not exceed that of a model based on Mel-spec (Mel
spectrogram) as input [63]. Overall, the accuracy of the models based on raw audio as input [2,17] is still
not as good as the models using Mel-spec as input [18,27,63], but it is slightly better compared to STFT-spec
(Short Time Fourier Transform Spectrum) and FBSP-spec (Frequency Bandsplit Excitation Features). This
is because Mel-spec transforms audio signals into frequency and time representations, which is closer to the
way the human ear perceives audio. Our approach overcomes the problems of Mel-spec in terms of partial
information loss during the conversion process and degradation of classification performance in human-
computer interaction and noisy environments, and achieves significant performance improvement. Relative
to the end-to-end model [17], our method achieves an even greater performance improvement of 5.28%.
These results fully demonstrate the effectiveness of our method.



Comput Mater Contin. 2025;83(2) 3199

Table 2: UrbanSound8K, accuracy measured on 3090Ti machine

Model E2E Representation Pretrained Accuracy (%)
ESResNet-Att [52] ✗ STFT-spec ✗ 82.76
ERANN-1-3 [18] ✗ STFT-spec ✗ 83.50

ESResNeXt-fbsp [27] ✗ FBSP-spec ✗ 85.47
CNN10 [63] ✗ Mel-spec ✓ 86.10

DenseNet-201 [64] ✗ Mel-spec ✗ 76.32
DenseNet-201 [64] ✗ Mel-spec ✓ 85.14

Enhanced LSTM [65] ✗ Mel-spec ✗ 86.00
NeuProNet+Transformer [66] ✗ Mel-spec ✗ 83.34

DBRNet [60] ✗ Mel-spec ✗ 82.60
AemNet WM1.0 [2] ✓ Raw ✗ 81.05

AemNet-DWWM1.0 [2] ✓ Raw ✓ 83.50
EAT-S [17] ✓ Raw ✗ 85.50
MCT [62] ✓ Raw ✗ 79.00

EAT-S-GMME [38] ✓ Raw ✗ 83.64
Ours ✓ Raw ✗ 90.91

4.2.3 Comparison with Other Algorithms on the RAVDESS
Considering the need for human-computer interaction for human emotion recognition scenarios, we

chose the RAVDESS dataset for our study. In this experiment, we compared the performance of the end-to-
end model and the model using raw data as input. The experimental results shown in Table 3.

Table 3: RAVDESS, accuracy measured on 3090Ti machine

Model E2E Representation Pretrained Accuracy (%)
ULFA [67] ✓ Mel-spec ✗ 83.35

ERANN-1-3 [18] ✗ STFT-spec ✗ 82.00
LSTM-DNN [68] ✓ FBSP-spec ✗ 85.47

COMP-CapsNet [69] ✗ MFCCs ✗ 82.10
CNN-14 [15] ✗ Mel-spec ✓ 85.14

GM-TCN [70] ✗ MFCC ✗ 87.64
CPAC [71] ✗ MFCC ✗ 88.41

TIM-NET [72] ✗ MFCC ✗ 91.93
MLPs [73] ✗ MFCC ✗ 86.40
MLPC [74] ✗ Mel-spec ✗ 89.31
DRS [75] ✗ MFCC ✗ 86.13

CNN+DNN [76] ✗ MFCC ✗ 80.42
ATAAU [77] ✗ Raw ✓ 76.58

Ours ✓ Raw ✗ 92.36
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As we can seend in Table 3, the results indicate that the end-to-end model [67,68], and the model
with raw data [77] as input are overall worse, which may be due to the difficulty of the RAVDESS dataset.
This dataset contains rich expressions of human emotions, and emotion recognition itself is a complex task
involving multiple aspects of speech such as tone, pitch, speech rate, and rhythm.

To address this situation, we compared the effectiveness of models using different vocal features as inputs
and found that MFCC (Mel-Frequency Cepstral Coefficients) based models [70–72] generally outperformed
other types of [18,67,68] inputs in terms of performance. This can be attributed to the properties of the
MFCC, which utilizes the DCT (Discrete Cosine Transform) to compress the energy distribution of the Mel
filter bank, thereby extracting key features and reducing the data dimensionality. In addition, by applying
Mel filters in the frequency domain, MFCC is also able to reduce noise and redundant information, thus
extracting more discriminative features. However, it should be noted that MFCC focuses only on frequency
information, which may lose some time-domain features, as well as performs slightly less well when dealing
with pitch variations.

To compensate for the shortcomings of MFCC, our model takes the above issues into account
and improves the performance by 0.43% compared to previous studies [72]. Moreover, for the end-to-
end model [68], we achieved a significant 6.89% improvement. All these results clearly demonstrate the
effectiveness of our proposed approach.

4.2.4 Comparison with Other Algorithms on the CREMA-D
To further analyze the generalization capability of the proposed algorithm, we evaluated its performance

on the more challenging multimodal emotion recognition dataset, CREMA-D. This experiment compared
various model architectures and input data types, with the results presented in Table 4.

Table 4: CREMA-D, accuracy measured on 3090Ti machine

Model E2E Representation Pretrained Accuracy (%)
ResNet-18 ensemble [78] ✗ Mel-spec ✓ 68.12

ViT-P [30] ✓ Mel-spec ✓ 64.12
ViT-S [30] ✓ Mel-spec ✓ 67.47
CNN [79] ✗ MFCC ✗ 40.00

NERCNN [80] ✗ MFCC ✗ 65.77
SAHNet [81] ✗ MFCC ✗ 63.76

MLP [82] ✗ MFCC ✗ 61.00
Light-GBM [83] ✗ MFCC ✗ 61.00

STPNet [84] ✗ MFCC ✗ 60.00
EAT-S [17] ✓ Raw ✗ 67.37

Ours ✓ Raw ✗ 70.50

Models such as ResNet-18 ensemble [78] and ViT-P [30], which rely on Mel-spectrograms and pre-
trained backbones, demonstrate limitations in leveraging audio information effectively, regardless of whether
they use CNN or Transformer architectures. Similarly, MFCC-based models (e.g., NERCNN [80] and
SAHNet [81]) show limited adaptability to diverse audio environments due to their restricted feature scope.
It is noteworthy that MFCC primarily focuses on frequency information, which may result in the loss of
some temporal features and suboptimal performance when handling pitch variations. Unlike traditional
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methods that depend on handcrafted features like MFCC or Mel-spectrograms, our model directly processes
raw audio signals. The semantic branch and detail branch effectively handle complementary aspects of
audio features, while the integration of the guided aggregation module ensures efficient fusion of multi-scale
information from the two branches. Compared to previous studies, our model achieves a 2.38% improvement
over ResNet-18 ensemble [78]. Additionally, it outperforms EAT-S [17], another end-to-end approach using
raw audio, by 3.13%. These results clearly demonstrate the effectiveness of the proposed method and its
robustness in tackling complex emotion recognition tasks.

4.2.5 Overall Performance and Discussion
To comprehensively evaluate the performance and stability of our model across different tasks, Table 5

presents the evaluation metrics for the four datasets. First, the model achieved its best performance on the
ESC-50 dataset, with an Accuracy of 93.25% and an F1-Score of 93.02%. This demonstrates the model’s strong
feature extraction capability and classification performance in environmental sound classification tasks.
These results highlight the model’s ability to retain fine-grained information from raw audio and effectively
leverage spatiotemporal features for precise classification. Similarly, the model also performed exceptionally
well on the UrbanSound8K dataset, with all metrics exceeding 90%, including an F1-Score of 90.78%. This
indicates the model’s robustness and generalization ability in urban noise scenarios, where it can adapt to
complex background noise and diverse audio features.

Table 5: Model performance evaluation on ESC-50, UrbanSound8K, RAVDESS and CREMA-D

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ESC-50 93.25 94.08 93.25 93.02

UrbanSound8K 90.91 90.66 90.91 90.78
RAVDESS 92.36 92.29 92.01 92.05
CREMA-D 70.50 70.61 71.20 70.80

For speech emotion recognition, the model exhibited excellent performance on the multimodal
RAVDESS dataset, achieving an Accuracy of 92.36% and an F1-Score of 92.05%. This demonstrates the
model’s ability to effectively capture emotional features in speech. However, its performance on the more
challenging CREMA-D dataset was relatively lower, with an Accuracy of 70.50%. The relatively lower per-
formance on the CREMA-D dataset highlights the inherent challenges associated with emotion recognition
tasks in this dataset. Compared to other datasets, CREMA-D features more complex emotion categories,
diverse intensity levels of emotional expression, and significant variability among actors, which pose greater
demands on the model’s generalization capabilities. Additionally, the short duration of audio clips in
CREMA-D may lack sufficient contextual information, further complicating the modeling of temporal
dependencies critical for accurate emotion recognition.

Further analysis reveals that the model demonstrates consistency in Precision, Recall, and F1-Score
across all datasets, indicating high classification stability with no significant bias. This stability is particularly
evident in environmental sound classification tasks (ESC-50 and UrbanSound8K), where the model’s
robustness ensures reliable performance even in noisy environments. Moreover, the end-to-end dual-branch
design allows the model to fully exploit the detailed information in raw audio signals, exhibiting strong
generalization capabilities and adaptability across multiple tasks. To address the unique challenges posed
by the CREMA-D dataset, future research can be directed toward the following aspects: First, the emotion
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feature extraction module can be optimized by incorporating dynamic modeling strategies to enhance
the capture of complex temporal dependencies. Second, integrating visual modality information through
multimodal fusion approaches could improve the understanding of emotional expressions by leveraging
complementary cues from multiple sources. Finally, employing generative adversarial networks (GANs)
to produce diverse training samples could help mitigate data imbalance issues and enhance the model’s
robustness in handling the variability and complexity of the dataset.

The model’s computational efficiency was also evaluated. On a 3090Ti GPU, the memory usage for
processing a single test sample was 2.3 GB, with an average inference time of 0.026 s. The low memory usage
demonstrates the model’s efficiency in an end-to-end framework, making it well-suited for deployment on
modern GPU hardware with sufficient memory capacity. Furthermore, the short inference time highlights
the model’s potential applicability in real-time tasks. This efficiency can be attributed to the design of the Fast
Downsampling Module (FDM) and the Multi-Scale Audio Context Embedding Module (MACEM), which
effectively reduce computational complexity while maintaining classification performance. Additionally, the
model eliminates the need for complex preprocessing steps, such as generating Mel-spectrograms or STFT-
spectrograms, further reducing the computational overhead.

Although the proposed model demonstrates strong scalability and compatibility with various tasks, it
has certain limitations that should be noted. First, the reliance on publicly available datasets such as ESC-
50, UrbanSound8K, RAVDESS, and CREMA-D may not fully represent real-world scenarios, especially in
terms of noise complexity and category diversity. Additionally, the model’s performance on tasks requiring
highly detailed temporal context, such as speech generation or long-sequence modeling, may be limited by
its architecture.

Furthermore, while the model is efficient on high-performance GPUs, its deployment on resource-
constrained devices remains a challenge due to memory usage and inference speed. Although techniques
such as quantization and pruning may address these issues, they were not explored in this study. Finally,
the experiments primarily focus on controlled datasets, and the model’s generalization to real-world data or
unseen audio domains has not been extensively verified.

4.3 Ablation Study on UrbanSound8K
To further investigate the effect of different sites on the classification results, we conducted an ablation

study on the UrbanSound8K dataset. To demonstrate the effect of MACEM, and GARM, we conducted 10
experiments on it. First, we test the effect of not using any of the modules. Second, we test the effect of using
only a single module separately. Again, we tested the effect of combining two and two, and finally, we tested
the effect of using all three modules together. The results of the ablation study are shown in Table 6. We have
the following observations.

Table 6: Ablation experiments measured on 3090Ti machine

Semantic branch Detail branch MACEM-A MACEM-B GARM Accuracy (%)
✓ 86.80

✓ 86.55
✓ ✓ 87.55
✓ ✓ ✓ 88.67
✓ ✓ ✓ 89.04
✓ ✓ ✓ 89.17
✓ ✓ ✓ ✓ 89.29

(Continued)
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Table 6 (continued)

Semantic branch Detail branch MACEM-A MACEM-B GARM Accuracy (%)
✓ ✓ ✓ ✓ 89.29
✓ ✓ ✓ ✓ 88.54
✓ ✓ ✓ ✓ ✓ 90.91

First, Table 6 shows that the three modules proposed in this paper have improved the model perfor-
mance individually and in combination, achieving a +3.36% improvement when all modules are used.

The reason is that GARM not only focuses on the channel dimension but also on the time dimension,
which can capture the internal and interconnection of different time scales and better aggregate the
relationship between different time scales and internal contexts, compared with MACEM-A, which adopts
the summation method for the captured multiscale temporal features. Compared to MACEM-A, which uses
the summation of captured multiscale temporal features, the fusion of features by channel concat allows
more helpful information, which is essential for network models with raw audio input. Both MACEM-A and
MACEM-B alone have improved and proved that the multiscale feature extraction strategy is effective, and
it needs to focus on the channel dimension after the fusion of multiscale features to extract the acquired rich
in time and filter out a large amount of invalid information. At the same time, the residual structure is also
effective in enhancing its robustness.

When combining two and two, MACEM-B and C combination works best at +1.74%, mainly because
it extracts features containing rich detail information from the shallow and middle layers of the network
containing rich information at multiple scales, thus allowing the network to obtain more information for
classification later. Finally, using multiple scales to extract different temporal features can better solve the
problem of the need for more connection between the contexts of long sequences of raw audio input.

In the final stage of the double branching, we need to fuse the output features of these two paths, and
considering the different levels of features, in terms of semantics and size, we propose the guided aggregation
modulee(GAM) to fuse the features of these two paths effectively. First, we evaluate the effect of simple
summing and concation of these features and our proposed feature fusion module, as shown in Table 7. The
difference in comparative performance illustrates that the features of the two paths belong to different levels
and the effectiveness of our designed fusion module.

Table 7: Ablation experiment of fusion module

Semantic branch Detail branch Integration Strategy Accuracy (%)

Sum Concat GAM
✓ ✓ ✓ 88.79
✓ ✓ ✓ 89.66
✓ ✓ ✓ 90.91
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4.4 Visualization
In the previous section, quantitative analysis demonstrated the performance of our model. In this sec-

tion, we further qualitatively evaluate the model through visualization. Fig. 7 presents the two-dimensional
distribution of features from the UrbanSound8K test set after dimensionality reduction using t-SNE.

(a) raw audio features (b) detail branch features

(c) semantic branch features (d) final-layer features

Figure 7: Different colors represent the 10 categories of sound samples in the dataset, namely air_conditioner, car_horn,
children_playing, dog_bark, drilling, engine_idling, gun_shot, jackhammer, siren, street_music

Regarding inter-class separability, the distribution of raw audio features (Fig. 7a) shows significant
overlap between classes, with many categories, such as car_horn and siren, exhibiting severe mixing. This
is because raw audio contains substantial redundancy and noise, making it challenging for the model
to distinguish between categories. In contrast, the features extracted by the detail branch (Fig. 7b) show
noticeable improvement compared to Fig. 7a. Certain categories, such as engine_idling and jackhammer,
begin to separate, though some overlap remains. This indicates that the detail branch effectively captures
temporal details but has limited ability to model global semantic information. The features extracted by the
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semantic branch (Fig. 7c) exhibit better inter-class separation than those from the detail branch, with some
categories, such as dog_bark and children_playing, forming relatively distinct clusters. This demonstrates
that the semantic branch can model high-level semantic information effectively, albeit potentially at the
cost of finer details. The final-layer features (Fig. 7d) combine the strengths of both branches, achieving
the best inter-class separability. Most categories form compact clusters and are clearly separated in the
two-dimensional space, with only minor overlaps in a few categories, such as street_music and siren. This
highlights the effectiveness of the fusion strategy in significantly improving the overall feature extraction
capability, addressing the limitations of single-branch approaches.

After analyzing inter-class separability, we further examine the model’s performance in terms of intra-
class compactness. The intra-class distribution of raw audio features (Fig. 7a) is sparse, with significant
distances between data points, indicating that the model struggles to capture common characteristics among
samples of the same class. The intermediate features extracted by the two branches (Fig. 7b and c) show
improvement, with Fig. 7b demonstrating modest intra-class compactness, though not as strong as Fig. 7c.
The semantic branch is more effective in compressing the distribution of samples within the same class.
The final-layer features (Fig. 7d) achieve the best intra-class compactness, with samples from the same class
forming high-density clusters in the two-dimensional space. This demonstrates that the fusion strategy not
only enhances inter-class separability but also significantly improves intra-class consistency.

Through the comparative analysis of the four t-SNE visualizations, we observe that raw audio features
(Fig. 7a) contain substantial redundancy and make class distinction difficult. The detail branch (Fig. 7b)
focuses on capturing temporal details, enabling initial separation of some categories. The semantic branch
(Fig. 7c) emphasizes semantic information, significantly improving inter-class separation. Finally, the dual-
branch fusion strategy successfully combines the strengths of both branches in the final-layer features
(Fig. 7d), achieving optimal inter-class separability and intra-class compactness.

The t-SNE visualizations intuitively demonstrate the classification performance of our model on the
UrbanSound8K dataset. Overall, the model achieves excellent clustering and separation for most categories,
indicating that the feature extraction module effectively captures inter-class differences. However, for
overlapping categories, such as street_music and **siren**, future research could explore more advanced
feature extraction techniques, such as multimodal feature fusion or contextual information modeling, to
further improve classification performance.

5 Conclusion
This study proposes a novel end-to-end audio classification framework, which demonstrates outstand-

ing performance on raw audio signals. Specifically, the Multi-Scale Audio Context Embedding Module
aggregates temporal and spatial information across multiple scales, significantly enhancing the model’s
adaptability to diverse audio signals. The Global Audio Refinement Module further improves global
modeling capabilities by effectively integrating multi-scale channel and temporal information. Finally, the
Guided Aggregation Module efficiently fuses complementary information from the semantic and detail
branches. Experimental results show that our method outperforms state-of-the-art approaches on the ESC-
50, UrbanSound8K, RAVDESS, and CREMA-D datasets. Furthermore, visualization analysis of the results
reveals that the model excels in capturing intra-class compactness and inter-class separability, providing
additional validation for its effectiveness.

Nevertheless, the model leaves room for improvement in handling emotion recognition tasks, particu-
larly when dealing with complex emotional categories or integrating multimodal data. Future research will
focus on optimizing the emotion feature extraction module and exploring joint modeling of multimodal
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information. Additionally, leveraging model lightweighting techniques such as quantization, pruning, or
knowledge distillation could further enhance the framework’s applicability on resource-constrained devices.
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