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ABSTRACT: In this study, we present a deterministic convergence analysis of Gated Recurrent Unit (GRU) net-
works enhanced by a smoothing L1 regularization technique. While GRU architectures effectively mitigate gradient
vanishing/exploding issues in sequential modeling, they remain prone to overfitting, particularly under noisy or
limited training data. Traditional L1 regularization, despite enforcing sparsity and accelerating optimization, introduces
non-differentiable points in the error function, leading to oscillations during training. To address this, we propose a
novel smoothing L1 regularization framework that replaces the non-differentiable absolute function with a quadratic
approximation, ensuring gradient continuity and stabilizing the optimization landscape. Theoretically, we rigorously
establish three key properties of the resulting smoothing L1-regularizedGRU (SL1-GRU)model: (1)monotonic decrease
of the error function across iterations, (2) weak convergence characterized by vanishing gradients as iterations approach
infinity, and (3) strong convergence of network weights to fixed points under finite conditions. Comprehensive
experiments on benchmark datasets-spanning function approximation, classification (KDD Cup 1999 Data, MNIST),
and regression tasks (Boston Housing, Energy Efficiency)-demonstrate SL1-GRUs superiority over baseline models
(RNN, LSTM, GRU, L1-GRU, L2-GRU). Empirical results reveal that SL1-GRU achieves 1.0%–2.4% higher test accuracy
in classification, 7.8%–15.4% lower mean squared error in regression compared to unregularized GRU, while reducing
training time by 8.7%–20.1%. These outcomes validate the method’s efficacy in balancing computational efficiency
and generalization capability, and they strongly corroborate the theoretical calculations. The proposed framework not
only resolves the non-differentiability challenge of L1 regularization but also provides a theoretical foundation for
convergence guarantees in recurrent neural network training.
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1 Introduction
Recurrent Neural Networks (RNN) have emerged as a powerful class of neural networks, particularly

adept at modeling sequential data due to their ability to retain and utilize temporal dependencies [1].
These networks have demonstrated remarkable success across various domains, including natural language
processing, speech recognition, and time-series forecasting [2]. However, the application of RNN is not
without challenges. One of the primary issues is the vanishing and exploding gradient problem, which can
significantly hinder the training of deep RNN [3,4]. To address this, several variants of RNN have been
proposed, such as Long Short-Term Memory Networks (LSTM) and Gated Recurrent Units (GRU) [5,6].
These architectures incorporate gating mechanisms to selectively retain or forget information, effectively
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mitigating gradient-related issues and improving performance [7]. LSTM, for instance, uses a combination
of input, forget, and output gates to control the flow of information, allowing the network to retain relevant
information over extended sequences [8]. Similarly, GRU simplifies the gatingmechanismwhilemaintaining
comparable performance, making them computationally more efficient [9].

Despite the advancements in RNN architectures, the issue of overfitting remains a significant challenge,
particularly when dealing with limited or noisy data [10]. Overfitting occurs when a model learns to
memorize the training data instead of generalizing to unseen samples, leading to poor performance on
test data [11,12]. Regularization techniques have been introduced to address this, aiming to improve the
generalization ability of neural networks by controlling their complexity. Common regularization methods,
such as L2 regularization and dropout, have shown efficacy in various settings [13–15].

L2 regularization penalizes largeweights by adding their squaredmagnitude to the loss function, thereby
encouraging simpler models [16,17]. Dropout, on the other hand, randomly deactivates neurons during
training, preventing the network from relying too heavily on specific features [18–20]. L1 regularization
can suppress weight growth to enhance model performance and increase parameter sparsity to improve
computational efficiency [21–23]. Building on these methods, researchers have analyzed the theoretical
properties of regularized networks. Zhang et al. [24] investigate a penalized batch backpropagation algorithm
for training feedforward neural networks. They establish the boundedness, as well as the weak and strong
convergence properties of the algorithm, using mathematical methods. Similarly, Wang et al. [25] prove the
boundedness of backpropagation neural networks (BPNN) with L2 regularization and provide convergence
results based on this. Kang et al. [26] incorporate an adaptive momentum term into the iterative error
function when training the group lasso-regularized Sigma Pi Sigma neural network, thus boosting the
algorithm’s convergence speed and reducing the model’s training time. Yu et al. [27] optimize a generalized
learning system using L1/2 regularization, further examining its theoretical properties and performance.
However, there are significant difficulties in the theoretical analysis of L1 regularization [28]. The L1
regularization term is often written as (1):

Ω(w) = ∥w∥1 = ∑
i
∣wi ∣ (1)

where ∥ ⋅ ∥1 represents 1-norm. Obviously, the L1 regularization term lacks a derivative at the origin [29,30].
Therefore, it is necessary to introduce smoothing approximation functions to solve the non-differentiability
problem of L1 regularization [31].

In this research, we propose the use of GRU networks with smoothing L1 regularization to address
the aforementioned challenges. Unlike traditional L1 regularization, which can introduce non-differentiable
points, the smoothed variant ensures a more stable optimization process, making it better suited for modern
neural network architectures.

This research primarily focuses on analyzing the monotonicity, weak convergence, and strong conver-
gence properties of GRU networks with smoothing L1 regularization (referred to as SL1-GRU), including
theoretical proofs and simulation experiments. This paper makes the following contributions:

(1)The smoothing L1 regularization is integrated into the network, effectively overcoming the oscillation
phenomenon caused by traditional L1 regularization. At the same time, the redundant weight values in the
network are trimmed, further optimizing the network structure and improving its sparsity.

(2) Under given conditions and assumptions, the monotonicity, weak convergence, and strong con-
vergence of SL1-GRU are theoretically demonstrated. The network’s error function decreases monotonically
with the increasing number of iterations. As iterations approach infinity, weak convergence is demonstrated
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by the error function’s gradient approaching zero. Strong convergence means network weights can converge
to a fixed point under defined conditions.

(3) The theoretical results are validated through experiments on approximation, classification, and
regression tasks.The experimental results show thatGRUnetworkswith smoothing L1 regularization achieve
excellent performance in solving various machine learning problems, with high sparsity generated during
the network weights optimization process, which is conducive to optimizing the network structure, reducing
the possibility of overfitting and improving the generalization ability of the network.

The rest of this paper is structured as follows: Section 2 explores the GRU network structure and the
parameter iteration mechanism after introducing smoothing L1 regularization. Section 3 discusses the prin-
cipal theoretical achievements. Section 4 confirms the theoretical findings and the practical performance of
SL1-GRU through simulation experiments. Lastly, Section 5 encapsulates the research content and discusses
possible directions for future investigations. The detailed proofs of theorems and corollaries are included in
the Appendix A.

2 GRU Based on Regularization Method

2.1 Network Structure of GRU
As a streamlined variant of LSTM, GRU features just two gate mechanisms: an update gate and a reset

gate [32].The internal configuration of GRU, shown in Fig. 1, together with the standard forward propagation
equations, is detailed below:

zt = σ (Wz [ht−1 , xt] + bz) (2)
rt = σ (Wr [ht−1 , xt] + br) (3)
h̃t = tanh (Wh̃ [rt ○ ht−1 , xt] + bh̃) (4)
ht = zt ○ h̃t + (1 − zt) ○ ht−1 (5)

Figure 1: Structure of GRU

The following are the explanations for the related symbols:

• The symbol ○ stands for the Hadamard product, which refers to element-wise multiplication.
• [⋅, ⋅] denotes the concatenation of two vectors into a longer vector.
• xt denotes the input to the network at time t.
• zt and rt correspond to the update outputs and reset gate outputs at time t, respectively.
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• At time t, h̃t denotes the candidate output, while ht represents the output of hidden layer.
• The symbols Wr , Wz , and Wh̃ respectively signify the weight matrices associated with the reset gate, the

update gate, and the candidate output.
• σ represents the sigmoid function, a nonlinear activation mapping real-valued inputs to the range (0, 1).

Similarly, tanh is a nonlinear function that maps inputs to the range (−1, 1).
• br , bz , and bh̃ correspond to the biases for the respective weight matrices.

In (2), Wz denotes the weight matrix associated with the update gate. In fact, Wz is formed by
concatenating two matrices: Wz ,h , which corresponds to the input vector ht−1, Wz ,x , which corresponds to
the input vector. Therefore, Eq. (2) can be written as:

[Wz] [
ht−1
xt

] = [Wz ,h Wz ,x] [
ht−1
xt

]

= Wz ,h ht−1 + Wz ,x xt (6)

Obviously, the weight matrix in other Eqs. (3)–(5) can be also rewritten in the same form as (6). For the
convenience of subsequent analysis, we set the biases br , bz , and bh̃ to 0 and get new expressions as follows:

zt = σ(Wz ,h ⋅ ht−1 + Wz ,x ⋅ xt) (7)
rt = σ(Wr ,h ⋅ ht−1 + Wr ,x ⋅ xt) (8)
h̃t = tanh(Wh̃ ⋅ (rt ○ ht−1) + Wh̃ ⋅ xt) (9)
ht = (1 − zt) ○ ht−1 + zt ○ h̃t (10)

If {xn , T n}N
n=1 ⊂ R

N ×R
N as the given set of the training samples, where the xn represent the n-th input

sample and the T n is the label, respectively. Let yn
t = σ (wout ⋅ hn

t ) ∈ R be the actual output for each input Xn ,
and y0t = wout ⋅ ht . Thereby, the error function is defined by the following formula:

Ẽ(W) = 1
2N

N
∑
n=1

(yn
t − T n)2

= 1
2N

N
∑
n=1

(σ (wout ⋅ hn
t ) − T n)2 (11)

= 1
N

N
∑
n=1

σn (wout ⋅ hn
t )

where σn(r) = 1
2 (σ(r) − T n)2 , r ∈ R, 1 ≤ n ≤ N .

2.2 Gradient Learning Method with Smoothing L1 Regularization for GRU
The standard approach to achieve L1 regularization entails incorporating a penalty termwithin the error

function, expressed as:

E(W) = Ẽ(W) + λ ∥wout ∥1 (12)

This can be written as:

E(W) =
N
∑
n=1

σn (wout ⋅ hn
t ) + λ ∥wout ∥1 (13)
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where λ > 0 is the penalty parameter, while ∣∣ ⋅ ∣∣1 indicates L1-norm.
However, there is no derivative of the L1 regularization term at the origin [33,34]. To tackle the non-

differentiable problem of the L1 regularization term, a smoothing approximation function is introduced.
Smoothing approximation is essentially the use of continuous differentiable functions instead of absolute
value functions. In this paper, a quadratic form smoothing approximation function is used, which means:

h(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣x∣, ∣x∣ ≥ α

∣x∣2
2α

+ α
2
, ∣x∣ < α

(14)

The smoothing coefficient α is a constant greater than zero. Fig. 2 illustrates the effect of α on the degree
of approximation. It is easy to see that when the smoothing coefficient α tends to zero, the approximation
function increasingly resembles the absolute function. Therefore, in practical applications, the smaller the
smoothing coefficient, the closer the actual effect of the regularization term is to the L1 regularizationmethod.

Figure 2: Influence of smoothing coefficient on fitting degree

By incorporating a smooth approximation function into the error propagation mechanism of L1
regularized GRU, the issue of non-differentiability at the origin is overcome, providing a basis for a rigorous
analysis of the error function’s monotonicity. Specifically, the error function expression of the smoothed SL1-
GRU model is derived as follows by replacing the L1 regularization term with the smoothed approximation
function L1(Wout):

E =
N
∑
n=1

σn (Wout ⋅ hn
t ) + λL1 (Wout ) , λ > 0 (15)

The element L1(W i , j
out) is positioned in the i-th row and j-th column of thematrix L1(Wout). Specifically,

L1(W i , j
out) is defined as follows:

L1(W i , j
out) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣W i , j
out∣, if ∣W i , j

out∣ ≥ α

∣W i , j
out∣2
2α

+ α
2
, if ∣W i , j

out∣ < α
(16)

here, α is a given bounded constant.
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The optimization algorithm, Stochastic Gradient Descent (SGD), is frequently used to train GRU. To
achieve the fastest reduction of the error function E, the direction of weight changes should be the same as
the negative gradient of E in the weightmatrix.The learning rate, symbolized by η, is a scalar hyperparameter
that determines the step increment for each iteration in the optimization algorithm. ∇W E represents the
partial derivative of the error function E with respect to the weight W. If W k and W k+1 denote the weight
matrices for the k-th and (k+1)-th iterations, respectively, and ΔW k represents the change in the weight
matrix from W k to W k+1. The weight update rule for the SGD algorithm is defined as:

W k+1 = W k + ΔW k = W k − η∇W E (17)

This equation indicates that during each iteration, SL1-GRU updates the weights by deducting the result
of multiplying the learning rate η by the gradient of the error function with respect to the weights from the
current weight matrix Wk , causing the weights to change in a direction that reduces the error function. By
iteratively applying this rule, the weights are adjusted to minimize the error.

Define δk
h ,t as the partial derivative of E over hk

t , and it is given by:

δk
h ,t =

∂E
∂hk

t
(18)

Similarly, define:

δk
z ,t =

∂E
∂zk

t
○ zk

t ○ (1 − zk
t ) = δk

h ,t ○ (h̃
k
t − hk

t−1) ○ zk
t ○ (1 − zk

t ) (19)

δk
r ,t =

∂E
∂rk

t
○ rk

t ○ (1 − rk
t ) = hk

t−1 ○ [(δk
h ,t ○ zk

t ○ (1 − (h̃
k
t )2t)W k

h] ○ rk
t ○(1 − rk

t ) (20)

δk
h̃ ,t =

∂E

∂h̃
k
t

○ (1 − (h̃
k
t )2) = δk

h ,t ○ zk
t ○ (1 − (h̃

k
t )2) (21)

For each weight matrix, the partial derivatives of E are as follows:

∇k
Wz ,h

E = ∂E
∂W k

z ,h
=

t
∑
i=1

δk
z , i hk

i−1 , (22)

∇k
Wz ,x

E = ∂E
∂W k

z ,x
=

t
∑
i=1

δk
z , i x

k
i , (23)

∇k
Wr ,h

E = ∂E
∂W k

r ,h
=

t
∑
i=1

δk
r , i hk

i−1 , (24)

∇k
Wr ,x

E = ∂E
∂Wrx

=
t
∑
i=1

δk
r , i x

k
i , (25)

∇k
Wh̃ ,r

E = ∂E
∂W k

h
=

t
∑
i=1

δk
i (rk

i ○ hk
i−1) , (26)

∇k
Wh̃ ,x

E = ∂E
∂W k

x
=

t
∑
i=1

δk
i x k

i , (27)
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For the output weight matrix Wout , the partial derivative of E specifically is:

∂E
∂W k

out
=

N
∑
n=1

σ ′n (W k
out ⋅ hk ,n

t )ΔW k
out ⋅ hk ,n

t + λ ∂L1 (Wout)
∂Wout

(28)

where λ > 0.
According to (17) and (22) to (28), the weights are updated iteratively by:

W k+1
z ,h = W k

z ,h + ΔW k
z ,h = W k

z ,h − η ∂E
∂W k

z ,h
(29)

W k+1
z ,x = W k

z ,x + ΔW k
z ,x = W k

z ,x − η ∂E
∂W k

z ,x
(30)

W k+1
r ,h = W k

r ,h + ΔW k
r ,h = W k

r ,h − η ∂E
∂W k

r ,h
(31)

W k+1
r ,x = W k

r ,x + ΔW k
r ,x = W k

r ,x − η ∂E
∂W k

r ,x
(32)

W k+1
h̃ ,r = W k

h̃ ,r + ΔW k
h̃ ,r = W k

h̃ ,r − η ∂E
∂W k

h̃ ,r

(33)

W k+1
h̃ ,x = W k

h̃ ,x + ΔW k
h̃ ,x = W k

h̃ ,x − η ∂E
∂W k

h̃ ,x

(34)

W k+1
out = W k

out + ΔW k
out = W k

out − η ∂E
∂W k

out
(35)

Based on the above analysis, the SL1GRU algorithm flow is presented in Algorithm 1.

Algorithm 1: SL1-GRU algorithm
Input:

A training set of sequences and targets {(x(m), y(m))}M
m=1

GRU parameters: {Wz ,x ,Wz ,h , bz , Wr ,x ,Wz ,h , br , Wh ,Wh̃ , bh}
Output weight matrix Wout
Initial hidden state h0
Learning rate η, smoothed L1 coefficient λ, threshold α
Number of training epochs E

Function: SmoothL{1}Regularization (Wout , α)
Initialize: r ← 0
For each element W i , j

out:
if ∣W i , j

out∣ ≥ α:
r ← r + ∣W i , j

out∣
else:

r ← r + ( ∣W
i , j
out ∣

2

2α + α
2 )

return r
for epoch = 1 to E do

Initialize epoch_loss ← 0
(Continued)
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Algorithm 1 (continued)
for m = 1 to M do

/* Forward Pass for sample m */
h0 ← 0 (if not provided otherwise)
for t = 1 to T do

zt ← σ(Wz ,x x(m)t + Wz ,h ht−1 + bz)
rt ← σ(Wr ,x x(m)t + Wz ,h ht−1 + br)
h̃t ← tanh(Wh x(m)t + Wh̃ (rt ○ ht−1) + bh)
ht ← (1 − zt) ○ ht−1 + zt ○ h̃t

end for
ŷ(m) ← Wout ⋅ hT

�
(m)
data ← Loss( ŷ(m), y(m))
�SL1 ← λ× Smooth L1 Regularization (Wout , α)
L(m) ← �

(m)
data + �SL1

∇θ L(m) ← BackwardPass(L(m))
θ ← θ − η ⋅ ∇θ L(m)
epoch_loss epoch_loss + L(m)

end for
end for
return Trained parameters (Wz ,x ,Wz ,h , bz ,Wr ,x ,Wz ,h , br ,Wh ,Wh̃ , bh ,Wout)

3 Convergence Analysis
This section presents the theoretical findings of GRU networks with smoothing L1 regularization, with

detailed proofs available in Appendix A. To ensure the validity and correctness of the proposed statements
and conclusions, the following mild assumptions are made:

(A1) For r ∈ R, ∣σ(r)∣, ∣σ ′(r)∣ , ∣σ ′′(r)∣ , ∣ tanh(r)∣, ∣tanh′(r)∣, and ∣tan′′(r)∣ are uniformly bounded.

(A2) λ and η are chosen to meet the conditions of 0 < η < 2(1+D4)
λC+4D4+2D5

, where D4 and D5 are constants
defined in below.

(A3) There exists a bounded region Ω ⊂ R
n such that {wk

out }
∞

k=0 ⊂ Ω.

(A4) A compact set ϕ0 exists where W k ∈ ϕ0, and the set ϕ1 = {W ∈ ϕ0 ∶ ∂E
∂W = 0} includes only a finite

number of points.
Our main results are as follows:

Theorem 1. Monotonicity

Assume the error function E(W) is given as in Eq. (15). Consider the sequence of weights W k

produced by the iterative algorithm detailed in Eq. (17), with an arbitrary initial weight W0. Under the
assumptions (A1)−(A3), the following monotonicity property holds:

E (W k+1) ≤ E (W k) , for k = 0, 1, 2, . . . . (36)
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Theorem 2. Weak Convergence

Assuming that conditions (A1)–(A3) hold, then the weight sequence Wk generated by (17) is weak
convergent, as evidenced by the following equation:

lim
k→+∞

∥ ∂E
∂W k ∥ = 0 (37)

Theorem 3. Strong Convergence

Furthermore, if assumption (A4) also holds, the subsequent strong convergence outcome can be
derived:

lim
k→∞

(W k) = W∗ (38)

where W∗ ∈ ϕ0.
For clarity and convenience, certain notations will be introduced for future reference.

D0 = max1≤n≤N {∥xn
t ∥ , ∥hn

t−1∥}

D1 = max{sup
r∈R

∣σ(r)∣, sup
r∈R

∣σ ′(r)∣ , sup
r∈R

∣σ ′′(r)∣ , sup
r∈R,1≤n≤N

∣σ ′n(r)∣ , sup
r∈R

∣ tanh(r)∣, sup
r∈R

∣tanh′(r)∣ ,

sup
r∈R

∣tanh′′(r)∣ , sup
r∈R,1≤n≤N

∣tanh′n(r)∣} ,

D2 = max{∥wk
out∥} .

(39)

4 Experimental Results and Analysis
Theexperiment is divided into three distinct parts.The initial part involves an analysis of theoretical out-

comes through the approximation of function. Subsequently, the generalization capability and sparsity of the
model are evaluated using regression and classification datasets from the UCIMachine Learning Repository.

4.1 Function Approximation
To demonstrate the generalization capabilities of SL1-GRU, we approximate a one-dimensional function

f (x) and a two-dimensional function q(x , y) in this section. The mathematical expressions of these
functions are as follows:

Nonlinear oscillatory function:

f (x) = 8 + 2e1−x2
cos(2πx), x ∈ [−0.5, 3.5] (40)

The peaks function, commonly used in numerical experiments, defined as:

q(x , y) = 3(1 − x)2e−x2−(y+1)2 − 10(x
5
− x3 − y5) e−x2−y2

− 1
3

e−(x+1)
2−y2

, x , y ∈ [−2.5, 2.5] (41)
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For the nonlinear oscillatory function (40), 100 points are uniformly distributed in the interval
[−0.5, 3.5] and denoted as xi for i = 1, 2, . . . , 100, serving as inputs. The corresponding outputs are given
by f (xi) + εi , where εi ∼ N(0, 0.01). For the peaks function (41), a two-dimensional grid is generated with
x , y uniformly sampled within [−2.5, 2.5], resulting in 100 sample points. The outputs are perturbed by
Gaussian noise εi , j ∼ N(0, 0.01), yielding q(xi , y j) + εi , j. The network weights of six models (RNN, LSTM,
GRU, L1-GRU, L2-GRU, SL1-GRU) are initialized randomly in [−0.5, 0.5], with the learning rate η set to
0.001. Regularization coefficients for L1-GRU, L2-GRU and SL1-GRU are λ = 0.0005, while the smoothing
parameter for SL1-GRU is α = 0.01.

Fig. 3a shows the approximation performance of RNN, LSTM,GRU, L1-GRU, L2-GRU, and SL1-GRU for
the nonlinear target function f (x) in [0.5, 3.5]. Regularizedmodels (L1-GRU, L2-GRU, SL1-GRU) alignmore
closelywith the actual curve, with SL1-GRUachieving the best accuracy in oscillatory regions, highlighting its
robustness in capturing nonlinear dynamics. Fig. 3b illustrates the sparsity evolution over training iterations.
L1-GRU and SL1-GRU achieve significantly higher sparsity, stabilizing around 0.8 after 2000 iterations, while
GRU and LSTM show lower sparsity, reflecting greater parameter complexity. These results demonstrate the
effectiveness of regularization in promoting model sparsity.

(a) (b)

Figure 3: Approximation perfomance for one-dimensional function (a) results of approximation (b) sparsity of models

Similarly, we approximate the two-dimensional function using the same approaches, with the approxi-
mation results of SL1-GRU presented in Fig. 4. The results highlight SL1-GRU’s ability to effectively capture
global trends and local variations.
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(a) (b)

Figure 4: Approximation result of SL1-GRU for two-dimensional function (a) two-dimensional function (b) approxi-
mation function

4.2 Classification Problem
This part presents an evaluation and comparison of the classification efficacy for RNN, LSTM, GRU,

L1-GRU, L2-GRU, and SL1-GRU. Table 1 is a summary of the dataset utilized in the simulation experiment.
The network weights are randomly initialized in [−0.5, 0.5]. Each network is set up with a hidden layer of 32
nodes.The dataset’s features determine the input layer’s node count, while the number of output layer nodes
equals the count of classes.

Table 1: Details of the classification data sets

Dataset Instances Features Classes Training set Test set
Iris 150 4 3 105 45
Wine 178 13 3 125 53

Breast cancer 286 9 2 200 86
KDD Cup 1999 Data (10%) 494019 22 23 444617 49402

MNIST 70000 784 10 60000 10000

As shown in Fig. 5, we use grid search to explore the hyperparameter space by testing combinations
of learning rate η, regularization factor λ, and smoothing coefficient α within predefined ranges. Each
combination of these hyperparameters is evaluated using k-fold cross-validation to ensure robust and
reliable performance metrics. The evaluation criterion is based on the test accuracy achieved by SL1-
GRU, aiming to identify the parameter set that maximizes accuracy while maintaining generalization. It is
determined that {α = 0.01, λ = 0.00005, η = 0.005} constitutes the optimal parameter combination for the
wine dataset, achieving the highest test accuracy for SL1-GRU. This approach is similarly applied to other
datasets, and the results, summarized in Table 2, highlight the effectiveness of grid search in identifying
optimal hyperparameters.
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Figure 5: Test accuracy of SL1-GRU on the wine dataset under different parameter combinations; α is regularization
coefficient

Table 2: Training parameters for the classification data sets

Dataset η λ α Batch size
Iris 5 × 10−3 5 × 10−4 1 × 10−2 32
Wine 5 × 10−4 1 × 10−5 1 × 10−2 32

Breast cancer 5 × 10−5 5 × 10−4 1 × 10−2 32
KDD Cup 1999 Data (10%) 1 × 10−3 5 × 10−4 1 × 10−2 128

MNIST 1 × 10−3 5 × 10−4 1 × 10−2 32

Table 3 compares the training accuracy, test accuracy, sparsity, and training time of different models on
the same dataset. These experimental results represent the average values obtained over 10 trials. Sparsity,
defined as the ratio of elements in the neural network’s weight matrix that are less than 1 × 10−5 to the total
number of elements in the weight matrix, is used as an indicator of network sparsity. Mathematically, it can
be expressed as:

Sparsity = Num0

Numn
(42)

where the number of elements in the weightmatrix that are less than 1 × 10−5 is denoted by Num0, and Numn
represents the overall element count of the matrix. It can be observed in Table 3 that although the training
accuracy of SL1-GRU may not be the highest, its test accuracy is consistently the best across all datasets,
highlighting its excellent generalization ability. Moreover, both L1-GRU and SL1-GRU exhibit significantly
higher sparsity compared to other models. Except for one dataset, SL1-GRU achieves the highest sparsity,
demonstrating that the proposedmethod effectively enhances network sparsity. Additionally, benefiting from
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its superior sparsity, SL1-GRU requires the shortest training time, indicating that it significantly improves
computational efficiency.

Table 3: Evaluation indicators of classification result (The bold entries indicate the optimal performance)

Dataset Model Training accuracy Test accuracy Sparsity Training time (s)

Iris

RNN 0.9609 0.9420 3.2000 × 10−6 19.42
LSTM 0.9877 0.9510 3.2124 × 10−5 17.33
GRU 0.9896 0.9556 9.7653 × 10−5 16.58

L1-GRU 0.9772 0.9623 0.0676 13.96
L2-GRU 0.9798 0.9633 0.0034 15.96
SL1-GRU 0.9827 0.9656 0.0681 13.24

Wine

RNN 0.9545 0.9202 9.2020 × 10−7 25.35
LSTM 0.9739 0.9487 5.2028 × 10−5 25.63
GRU 0.9739 0.9441 3.9004 × 10−5 21.35

L1-GRU 0.9829 0.9630 0.0220 19.62
L2-GRU 0.9801 0.9599 0.0030 20.84
SL1-GRU 0.9798 0.9677 0.0194 18.09

Breast cancer

RNN 0.9589 0.9265 1.3650 × 10−5 34.02
LSTM 0.9874 0.9559 3.5896 × 10−5 33.25
GRU 0.9896 0.9556 4.2955 × 10−5 29.56

L1-GRU 0.9732 0.9623 0.1177 25.76
L2-GRU 0.9754 0.9633 0.0098 × 10−5 29.03
SL1-GRU 0.9739 0.9634 0.1072 24.89

KDD Cup
1999 Data
(10%)

RNN 0.9689 0.9499 1.9428 × 10−7 2465.62
LSTM 0.9787 0.9687 3.0010 × 10−6 2438.51
GRU 0.9784 0.9659 2.3743 × 10−6 2203.45

L1-GRU 0.9813 0.9716 0.1843 1984.63
L2-GRU 0.9843 0.9772 0.0125 2179.00
SL1-GRU 0.9802 0.9775 0.1895 1907.63

MNIST

RNN 0.9583 0.9230 2.2541 × 10−6 303.60
LSTM 0.9698 0.9532 4.3253 × 10−6 278.94
GRU 0.9781 0.9542 4.3650 × 10−6 243.77

L1-GRU 0.9748 0.9627 0.0458 211.77
L2-GRU 0.9795 0.9598 0.0002 241.40
SL1-GRU 0.9798 0.9689 0.0489 201.50

From Fig. 6, it can be observed that the loss function curve of SL1-GRU monotonically decreases and
gradually stabilizes at zero as the number of iterations increases, which verifies Theorem 1. Meanwhile,
in Fig. 6b, the gradient curve of SL1-GRU decreases the fastest, and as the number of iterations approaches
infinity, its gradient also tends to zero, consistent withTheorem 2. Fig. 6c shows that the weight curves of L1-
GRU and SL1-GRU do not grow indefinitely, indicating that both regularizationmethods effectively suppress
weight growth. Among them, SL1-GRU is more effective in constraining network weights, stabilizing them
around a constant value of approximately 140, aligning withTheorem 3.
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Figure 6: The performance of RNN, LSTM, GRU, L1-GRU, L2-GRU and SL1-GRU onMNIST dataset; the shaded area
presents the mean ± the standard deviation over 10 trials

4.3 Regression Problem
The performance of SL1-GRU in regression tasks is also considered. The dataset utilized in this part is

detailed in Table 4. For RNN, LSTM,GRU, L1-GRU, L2-GRU, and SL1-GRU, the hidden layer is designedwith
32 nodes. The nodes in both the input and output layers are configured based on the dataset’s features and
labels, respectively. The learning rate is established at η = 1 × 10−3, the regularization factor at λ = 3 × 10−4,
and the smoothing coefficient at α = 0.01. The initial weight range is [−0.5, 0.5] as in the previous part.

Table 4: Details of the regression data sets

Dataset Instances Features Training set Test set
Boston housing 506 13 354 152

Diabetes 442 10 309 133
Wine quality 6497 11 5198 1299

Energy efficiency 768 8 614 154
Student performance 649 30 519 130

In the evaluation of regression models, the standard metric used is Mean Squared Error (MSE), which
is calculated using the following formula:

MSE = 1
n

n
∑
i=1

(pred i − true i)2, (43)

where pred 1 , pred2, . . . , predn indicate the predicted values, and the set of actual values is denoted by
true1 , true2, . . . , truen .

Table 5 shows that the Test MSE of SL1-GRU is consistently the smallest, indicating that it performs
the best on the test set and has the strongest generalization ability. From the perspective of sparsity, the
network weights of SL1-GRU remain the sparsest, which suggests that it eliminates unimportant parameters
to enhance the computational efficiency of the model while maintaining its excellent performance.
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Table 5: Evaluation indicators of regression result (The bold entries indicate the optimal performance)

Dataset Models Training MSE Test MSE Sparsity Training time (s)

Boston housing

RNN 3.3659 × 10−4 0.5001 8.5728 × 10−5 36.53
LSTM 1.8025 × 10−4 0.1720 2.0008 × 10−5 34.32
GRU 1.5778 × 10−4 0.1749 1.2787 × 10−5 31.70

L1-GRU 2.6969 × 10−5 0.1446 0.4379 29.32
L2-GRU 4.7778 × 10−5 0.1639 2.1054 × 10−4 31.54
SL1-GRU 5.9140 × 10−5 0.1446 0.4382 28.98

Diabetes

RNN 0.1023 3.2653 3.2451 × 10−7 33.65
LSTM 0.0398 0.0602 2.5778 × 10−6 31.96
GRU 0.0482 0.0641 1.8440 × 10−6 31.75

L1-GRU 0.0481 0.0534 5.3077 × 10−3 28.33
L2-GRU 0.0385 0.0632 1.2382 × 10−4 30.88
SL1-GRU 0.0364 0.0528 5.4721 × 10−3 28.32

Wine quality

RNN 0.1895 0.7521 1.0078 × 10−6 189.96
LSTM 0.0229 0.6002 5.5248 × 10−6 180.23
GRU 0.0253 0.5969 8.9947 × 10−6 168.41

L1-GRU 0.0207 0.5902 0.4729 157.33
L2-GRU 0.0222 0.5898 0.0342 167.39
SL1-GRU 0.0235 0.5862 0.4784 152.63

Energy efficiency

RNN 1.7029 5.6548 3.7448 × 10−7 62.63
LSTM 0.4961 3.7296 1.2036 × 10−5 58.66
GRU 0.5154 3.9230 8.9947 × 10−6 53.02

L1-GRU 0.4543 3.1730 0.4729 48.50
L2-GRU 0.4652 3.2356 4.8124 × 10−5 53.29
SL1-GRU 0.4359 2.9928 0.4770 46.58

Student performance

RNN 0.0447 0.1085 5.3696 × 10−6 60.38
LSTM 0.0201 0.0742 3.2778 × 10−4 57.20
GRU 0.0213 0.0765 4.1212 × 10−5 51.90

L1-GRU 0.0180 0.0325 0.1034 45.32
L2-GRU 0.0185 0.0478 0.0321 50.23
SL1-GRU 0.0192 0.0331 0.1298 43.30

5 Conclusions
This article proposes a GRU with smoothing L1 regularization to address the issue of non-

differentiability at the origin inherent in traditional L1 regularization. This approach also aims to enhance
the network sparsity and generalization capability. We theoretically demonstrate the monotonicity, weak
convergence, and strong convergence of SL1-GRU in backpropagation algorithms and design simulation
experiments to compare SL1-GRU with RNN, LSTM, GRU, L1-GRU, and L2-GRU. The simulation results
align with the theoretical analysis, demonstrating that SL1-GRU effectively curbs excessive weight growth,
reduces the risk of overfitting, and enhances the network’s generalization capability. In addition, SL1-GRU
also performs well in handling classification and regression problems on real-world datasets, indicating its
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usability in practical problems. Future workwill focus on conducting theoretical analysis undermore relaxed
assumptions. Furthermore, we will investigate whether dynamically adjusting the smoothing coefficients can
further optimize model performance. For example, the smoothing coefficients could be adaptively adjusted
based on gradient changes during training.
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Appendix A Detailed Proof
Lemma A1. The function f (x) is specified over a closed and bounded [a, b], with its derivative f ′(x) being
Lipschitz continuous, constant c > 0. Then the following equationas holds:

f (x) ≤ f (x0) + f ′ (x0) (x − x0) +
c
2
(x − x0)2 ,∀x0, x ∈ [a, b] (A1)

Proof of Lemma A1. ◻
A new function is constructed as:

g(x) = f (x) − f (x0) − f ′(x0)(x − x0) −
c
2
(x − x0)2 (A2)

where c denotes a positive constant.
Taking the derivative of x

g′(x) = f ′(x) − f ′ (x0) − c (x − x0) (A3)
∣ f (x) − f ′ (x0)∣ ≤ c ∣x − x0∣ (A4)

{g
′(x) ≤ 0, x ≥ x0
g′(x) ≥ 0, x < x0

(A5)

then,

g(x) ≤ g (x0) = 0 (A6)
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Proof of Theorem 1. ◻
By (15), the errors at the k-th and (k+1)-th iterations are given as:

Ek+1 =
N
∑
n=1

σn(W k+1
out ⋅ hk+1,n

t ) + λL1(W k+1
out ) (A7)

Ek =
N
∑
n=1

σn(W k
out ⋅ hk ,n

t ) + λL1(W k
out) (A8)

and the difference between them is:

Ek+1 − Ek =
N
∑
n=1

σn(W k+1
out ⋅ hk+1,n

t ) + λL1(W k+1
out ) − [

N
∑
n=1

σn(W k
out ⋅ hk ,n

t ) + λL1(W k
out)]

=
N
∑
n=1

[σn(W k+1
out ⋅ hk+1,n

t ) − σn(W k
out ⋅ hk ,n

t )] + λ[L1(W k+1
out ) − L1(W k

out)]

=
N
∑
n=1

[σ ′n(W k
out ⋅ hk ,n

t )(W k+1
out ⋅ hk+1,n

t − W k
out ⋅ hk ,n

t )] + R1 + λ[L1(W k+1
out ) − L1(W k

out)]

=
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ hk ,n

t +
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )W k
out ⋅ Δhk ,n

t

+
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ Δhk ,n

t + R1 + λ[L1(W k+1
out ) − L1(W k

out)]

=
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ hk ,n

t + λ[L1(W k+1
out ) − L1(W k

out)]

+
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )W k
out ⋅ Δhk ,n

t +
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ Δhk ,n

t + R1 (A9)

where Lagrange remainder

R1 =
1
2

N
∑
n=1

σ ′′(sk ,n)(W k+1
out hk+1,n

t − W k
out h

k ,n
t )2 (A10)

in the above equation, sk ,n is a constant between W k+1
out hk+1,n

t and W k
out hk ,n

t .
To simplify, we use the following notation:

A1 =
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ hk ,n

t + λ[L1(W k+1
out ) − L1(W k

out)] (A11)

A2 =
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )W k
out ⋅ Δhk ,n

t (A12)

A3 =
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ Δhk ,n

t (A13)
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According to Lemma A1,

λ[L1(W k+1
out ) − L1(W k

out)] ≤ λ[L1
′

(W k
out)[L1(W k+1

out ) − L1(W k
out)] +

c
2
[L1(W k+1

out ) − L1(W k
out)]

2]

≤ λL1
′(W k

out)ΔL1(W k
out) +

λc
2
[ΔL1(W k

out)]
2

(A14)

Using transition variables

Δhk ,n
t = hk+1,n

t − hk ,n
t

= [(1 − zk+1,n
t ) ○ hn

t−1 + zk+1,n
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continuing from the previous step and according to assumption (A1),
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t−1) + σ ′(ξrx)(ΔW k ,n

r ,x ⋅ xn
t )) ○ hn

t−1))

+ tanh′(ξh̃x)(ΔW k ,n
h̃ ,x

⋅ xn
t )]

≤ [D0(ΔW k ,n
z ,h ⋅ D1) + D0(ΔW k ,n

z ,x ⋅ D1)] ○ [D0(ΔW k ,n
h̃ ,r

⋅ (D0 ○ D1)

+ W k ,n
h̃ ,r

⋅ ((D0(ΔW k ,n
r ,h ⋅ D1) + D0(ΔW k ,n

r ,x ⋅ D1)) ○ D1)) + D0(ΔW k ,n
h̃ ,x

⋅ D1)] (A20)

and

A5 = [σ(W k+1,n
z ,h ⋅ hn

t−1 + W k+1,n
z ,x ⋅ xn

t ) − σ(W k ,n
z ,h ⋅ hn

t−1 + W k ,n
z ,x ⋅ xn

t )]
○ tanh(W k+1,n

h̃ ,r
⋅ (rk+1,n

t ○ hn
t−1) + W k+1,n

h̃ ,x
⋅ xn

t )

= [σ(W k+1,n
z ,h ⋅ hn

t−1 + W k+1,n
z ,x ⋅ xn

t ) − σ(W k ,n
z ,h ⋅ hn

t−1 + W k ,n
z ,x ⋅ xn

t )] ○ tanh(W k+1,n
h̃ ,r

⋅ (σ(W k+1,n
r ,h ⋅ hn

t−1 + W k+1,n
r ,x ⋅ xn

t ) ○ hn
t−1) + W k+1,n

h̃ ,x
⋅ xn

t )

= [σ ′(ξzh)(ΔW k ,n
z ,h ⋅ hn

t−1) + σ ′(ξzx)(ΔW k ,n
z ,x ⋅ xn

t )]
○ tanh(W k+1,n

h̃ ,r
⋅ (σ(W k+1,n

r ,h ⋅ hn
t−1 + W k+1,n

r ,x ⋅ xn
t ) ○ hn

t−1) + W k+1,n
h̃ ,x

⋅ xn
t )

≤ [D0(ΔW k ,n
z ,h ⋅ D1) + D0(ΔW k ,n

z ,x ⋅ D1)] ○ D0 (A21)

and

A6 = zk ,n
t ○ [tanh(W k+1,n

h̃ ,r
⋅ (rk+1,n

t ○ hn
t−1) + W k+1,n

h̃ ,x
⋅ xn

t ) − tanh(W k ,n
h̃ ,r

⋅ (rk ,n
t ○ hn

t−1) + W k ,n
h̃ ,x

⋅ xn
t )]

= σ(W k ,n
z ,h ⋅ hn

t−1 + W k ,n
z ,x ⋅ xn

t ) ○ [tanh′(ξh̃r)(W k+1,n
h̃ ,r

⋅ (rk+1,n
t ○ hn

t−1) − W k ,n
h̃ ,r

⋅ (rk ,n
t ○ hn

t−1))

+ tanh′(ξh̃x)(W k+1,n
h̃ ,x

⋅ xn
t − W k ,n

h̃ ,x
⋅ xn

t )]

= σ(W k ,n
z ,h ⋅ hn

t−1 + W k ,n
z ,x ⋅ xn

t ) ○ [tanh′(ξh̃r)(ΔW k ,n
h̃ ,r

⋅ (rk+1,n
t ○ hn

t−1) + W k ,n
h̃ ,r

⋅ Δ(rk ,n
t ○ hn

t−1))

+ tanh′(ξh̃x)(ΔW k ,n
h̃ ,x

⋅ xn
t )]

= σ(W k ,n
z ,h ⋅ hn

t−1 + W k ,n
z ,x ⋅ xn

t ) ○ [tanh′(ξh̃r)(ΔW k ,n
h̃ ,r

⋅ (σ(W k+1,n
r ,h ⋅ hn

t−1 + W k+1,n
r ,x ⋅ xn

t ) ○ hn
t−1)

+ W k ,n
h̃ ,r

⋅ ((σ(W k+1,n
r ,h ⋅ hn

t−1 + W k+1,n
r ,x ⋅ xn

t ) − σ(W k ,n
r ,h ⋅ hn

t−1 + W k ,n
r ,x ⋅ xn

t )) ○ hn
t−1))
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+ tanh′(ξh̃x)(ΔW k ,n
h̃ ,x

⋅ xn
t )]

= σ(W k ,n
z ,h ⋅ hn

t−1 + W k ,n
z ,x ⋅ xn

t ) ○ [tanh′(ξh̃r)(ΔW k ,n
h̃ ,r

⋅ (σ(W k+1,n
r ,h ⋅ hn

t−1 + W k+1,n
r ,x ⋅ xn

t ) ○ hn
t−1)

+ W k ,n
h̃ ,r

⋅ ((σ ′(ξrh)(ΔW k ,n
r ,h ⋅ hn

t−1) + σ ′(ξrx)(ΔW k ,n
r ,x ⋅ xn

t )) ○ hn
t−1)) + tanh′(ξh̃x)(ΔW k ,n

h̃ ,x
⋅ xn

t )]

≤ D0 ○ [D0(ΔW k ,n
h̃ ,r

⋅ (D0 ○ D1) + W k ,n
h̃ ,r

⋅ ((D0(ΔW k ,n
r ,h ⋅ D1) + D0(ΔW k ,n

r ,x ⋅ D1)) ○ D1))

+ D0(ΔW k ,n
h̃ ,x

⋅ D1)] (A22)

further, we have

A7 = [σ(W k+1,n
z ,h ⋅ hn

t−1 + W k+1,n
z ,x ⋅ xn

t ) − σ(W k ,n
z ,h ⋅ hn

t−1 + W k ,n
z ,x ⋅ xn

t )] ○ hn
t−1

= [σ ′(ξzh)(W k+1,n
z ,h ⋅ hn

t−1 − W k ,n
z ,h ⋅ hn

t−1) + σ ′(ξzx)(W k+1,n
z ,x ⋅ xn

t − W k ,n
z ,x ⋅ xn

t )] ○ hn
t−1

= [σ ′(ξzh)(ΔW k ,n
z ,h ⋅ hn

t−1) + σ ′(ξzx)(ΔW k+1,n
z ,x ⋅ xn

t )] ○ hn
t−1

≤ [D0(ΔW k ,n
z ,h ⋅ D1) + D0(ΔW k+1,n

z ,x ⋅ D1)] ○ D1 (A23)

From the previous equation (A15) to (A23), it follows that

Δhk ,n
t = A4 + A5 + A6 + A7

≤ [D0(ΔW k ,n
z ,h ⋅ D1) + D0(ΔW k ,n

z ,x ⋅ D1)] ○ [D0(ΔW k ,n
h̃ ,r

⋅ (D0 ○ D1)

+ W k ,n
h̃ ,r

⋅ ((D0(ΔW k ,n
r ,h ⋅ D1) + D0(ΔW k ,n

r ,x ⋅ D1)) ○ D1)) + D0(ΔW k ,n
h̃ ,x

⋅ D1)] + [D0(ΔW k ,n
z ,h ⋅ D1)

+ D0(ΔW k ,n
z ,x ⋅ D1)] ○ D0 + D0 ○ [D0(ΔW k ,n

h̃ ,r
⋅ (D0 ○ D1) + W k ,n

h̃ ,r
⋅ ((D0(ΔW k ,n

r ,h ⋅ D1) + D0(ΔW k ,n
r ,x

⋅ D1)) ○ D1)) + D0(ΔW k ,n
h̃ ,x

⋅ D1)] + [D0(ΔW k ,n
z ,h ⋅ D1) + D0(ΔW k+1,n

z ,x ⋅ D1)] ○ D1

≤ [D0D1(ΔW k ,n
z ,h + ΔW k ,n

z ,x )] ○ [D2
0D1ΔW k ,n

h̃ ,r
+ D2

0D2
1 D2(ΔW k ,n

r ,h + ΔW k ,n
r ,x ) + D0D1ΔW k ,n

h̃ ,x
]

+ D0D2
1 (ΔW k ,n

z ,h + ΔW k ,n
z ,x ) + D3

0D1ΔW k ,n
h̃ ,r

+ D3
0D2

1 D2(ΔW k ,n
r ,h + ΔW k ,n

r ,x ) + D2
0D1ΔW k ,n

h̃ ,x

+ D0D2
1 (ΔW k ,n

z ,h + ΔW k ,n
z ,x )

≤ D3[(ΔW k ,n
z ,h + ΔW k ,n

z ,x )(ΔW k ,n
h̃ ,r

+ ΔW k ,n
h̃ ,x

) + (ΔW k ,n
z ,h + ΔW k ,n

z ,x )(ΔW k ,n
r ,h + ΔW k ,n

r ,x )

+ 2(ΔW k ,n
z ,h + ΔW k ,n

z ,x ) + (ΔW k ,n
h̃ ,r

+ ΔW k ,n
h̃ ,x

) + (ΔW k ,n
r ,h + ΔW k ,n

r ,x )]

≤ D3[(−η ∂E
∂W k

z
)(−η ∂E

∂W k
h̃

) + (−η ∂E
∂W k

z
)(−η ∂E

∂W k
r
)

+ 2(−η ∂E
∂W k

z
) + (−η ∂E

∂W k
h̃

) + (−η ∂E
∂W k

r
)]

≤ D3[(−η ∂E
∂W k

z
)(−η ∂E

∂W k
h̃

) + (−η ∂E
∂W k

z
)(−η ∂E

∂W k
r
) + 2(−η ∂E

∂W k
z
) + (−η ∂E

∂W k
h̃

) + (−η ∂E
∂W k

r
)]

≤ D3[
1
2

η2(∣∣ ∂E
∂W k

z
∣∣2 + ∣∣ ∂E

W k
h̃

∣∣2) + 1
2

η2(∣∣ ∂E
∂W k

z
∣∣2 + ∣∣ ∂E

W k
r
∣∣2)

+ (−η)∣∣ ∂E
∂W k

z
∣∣2 + (−η) 1

2
∣∣ ∂E

W k
h̃

∣∣2) + (−η) 1
2
∣∣ ∂E

∂W k
r
∣∣2] (A24)
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then

(Δhk ,n
t )2 ≤ D2

3[(ΔW k ,n
z ,h + ΔW k ,n

z ,x )(ΔW k ,n
h̃ ,r

+ ΔW k ,n
h̃ ,x

) + (ΔW k ,n
z ,h + ΔW k ,n

z ,x )(ΔW k ,n
r ,h + ΔW k ,n

r ,x )

+ 2(ΔW k ,n
z ,h + ΔW k ,n

z ,x ) + (ΔW k ,n
h̃ ,r

+ ΔW k ,n
h̃ ,x

) + (ΔW k ,n
r ,h + ΔW k ,n

r ,x )]2

≤ D2
3[4(ΔW k ,n

z ,h + ΔW k ,n
z ,x )2 + 2(ΔW k ,n

h̃ ,r
+ ΔW k ,n

h̃ ,x
)2 + 2(ΔW k ,n

r ,h + ΔW k ,n
r ,x )2]

≤ η2D2
3(4∣∣

∂E
∂W k

z
∣∣2 + 2∣∣ ∂E

W k
h̃

∣∣2 + 2∣∣ ∂E
∂W k

r
∣∣2) (A25)

where D3 = max{D3
0D2

1 , D3
0D3

1 D2, D2
0D2

1 , D0D2
1 , D3

0D1 , D3
0D2

1 D2, D2
0D1}.

The next step is to focus on deriving (A11) to (A13):

A1 =
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ hk ,n

t + λ[L1(W k+1
out ) − L1(W k

out)]

≤
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ hk ,n

t + λL′1(W k
out)ΔL1(W k

out) +
λC
2

[ΔL1(W k
out)]2

≤ ∂Ek

∂W k
out

ΔW k
out +

λC
2

[ΔL1(W k
out)]2

≤ ∂Ek

∂W k
out

(−η ∂Ek

∂W k
out

) + λC
2

∣ΔW k
out ∣

2

≤ −η( ∂Ek

∂W k
out

)2 + η2 λC
2

∣ ∂Ek

∂W k
out

∣
2

(A26)

and

A2 =
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ hk ,n

t

≤
N
∑
n=1

D0D2D3[(ΔW k ,n
z ,h + ΔW k ,n

z ,x )(ΔW k ,n
h̃ ,r

+ ΔW k ,n
h̃ ,x

) + (ΔW k ,n
z ,h + ΔW k ,n

z ,x )(ΔW k ,n
r ,h + ΔW k ,n

r ,x )

+ 2(ΔW k ,n
z ,h + ΔW k ,n

z ,x ) + (ΔW k ,n
h̃ ,r

+ ΔW k ,n
h̃ ,x

) + (ΔW k ,n
r ,h + ΔW k ,n

r ,x )]

≤ ND0D2D3[
1
2
(∣∣ ∂E

∂W k
z
∣∣2 + ∣∣ ∂E

W k
h̃

∣∣2) + 1
2
(∣∣ ∂E

∂W k
z
∣∣2 + ∣∣ ∂E

W k
r
∣∣2) + (−η)∣∣ ∂E

∂W k
z
∣∣2

+ (−η) 1
2
∣∣ ∂E

W k
h̃

∣∣2) + (−η) 1
2
∣∣ ∂E

∂W k
r
∣∣2] (A27)

and

A3 =
N
∑
n=1

σ ′n(W k
out ⋅ hk ,n

t )ΔW k
out ⋅ Δhk ,n

t

≤ ND0D2D3[
1
2
(∣∣ ∂E

∂W k
z
∣∣2 + ∣∣ ∂E

W k
h̃

∣∣2) + 1
2
(∣∣ ∂E

∂W k
z
∣∣2 + ∣∣ ∂E

W k
r
∣∣2) + (−η)∣∣ ∂E

∂W k
z
∣∣2

+ (−η) 1
2
∣∣ ∂E

W k
h̃

∣∣2) + (−η) 1
2
∣∣ ∂E

∂W k
r
∣∣2] (A28)
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next,

R1 =
1
2

N
∑
n=1

σ ′′(sk ,n)(W k+1
out hk+1,n

t − W k
out h

k ,n
t )2

= 1
2

N
∑
n=1

σ ′′(sk ,n) [ΔW k
out (zk+1,n

t ○ h̃k+1,n
t + (1 − zk+1,n

t ) ○ hn
t−1) − W k

outΔhk ,n
t ]2

= 1
2

N
∑
n=1

σ ′′(sk ,n)[ΔW k
out(σ(W k+1,n

z ,h ⋅ hn
t−1 + W k+1,n

z ,x ⋅ xn
t ) ○ tanh(Wh̃k+1,n ⋅ (rk+1,n

t ○ hn
t−1) + W k+1,n

h̃
⋅ xn

t )

+ (1 − σ(W k+1,n
z ,h ⋅ hn

t−1 + W k+1,n
z ,x ⋅ xn

t )) ○ hn
t−1) − W k

outΔhk ,n
t )]2

≤ 1
2

N
∑
n=1

D0[ΔW k
out(D0D0 + (1 − D0)D1) − D2Δhk ,n

t )]2

≤ D0
1
2

N
∑
n=1

[ΔW k
out(D2

0 + D1 − D0D1) − D2Δhk ,n
t ]2

≤ D0
1
2

N
∑
n=1

2[(ΔW k
out)2(D2

0 + D1 − D0D1)2 + D2
2(Δhk ,n

t )2]

≤ 1
2

D0

N
∑
n=1

[(ΔW k
out)2(D2

0 + D1 − D0D1)2 + D2
2D2

3[4(ΔW k ,n
z ,h + ΔW k ,n

z ,x )2 + 2(ΔW k ,n
h̃ ,r

+ ΔW k ,n
h̃ ,x

)2

+ 2(ΔW k ,n
r ,h + ΔW k ,n

r ,x )2]]

≤ 1
2

D0N[η2∣∣ ∂E
∂W k

out
∣∣2(D2

0 + D1 − D0D1)2 + D2
2D2

3η2(4∣∣ ∂E
∂W k

z
∣∣2 + 2∣∣ ∂E

W k
h̃

∣∣2 + 2∣∣ ∂E
∂W k

r
∣∣2)] (A29)

Building on the previous equations and Assumption (A3),

Ek+1 − Ek = A1 + A2 + A3 + R1

≤ ∂Ek

∂W k
out

(−η ∂Ek

∂W k
out

) + λC
2

∣ΔW k
out ∣

2

≤ −η∣∣ ∂Ek

∂W k
out

∣∣2 + η2 λC
2

∣∣ ∂Ek

∂W k
out

∣∣
2

+ ND0D2D3[
1
2

η2(∣∣ ∂E
∂W k

z
∣∣2 + ∣∣ ∂E

W k
h̃

∣∣2)

+ 1
2

η2(∣∣ ∂E
∂W k

z
∣∣2 + ∣∣ ∂E

W k
r
∣∣2) + (−η)∣∣ ∂E

∂W k
z
∣∣2 + (−η) 1

2
∣∣ ∂E

W k
h̃

∣∣2 + (−η) 1
2
∣∣ ∂E

∂W k
r
∣∣2]

+ ND0D2D3[
1
2
(∣∣ ∂E

∂W k
z
∣∣2 + ∣∣ ∂E

W k
h̃

∣∣2) + 1
2
(∣∣ ∂E

∂W k
z
∣∣2 + ∣∣ ∂E

W k
r
∣∣2) + (−η)∣∣ ∂E

∂W k
z
∣∣2

+ (−η) 1
2
∣∣ ∂E

W k
h̃

∣∣2) + (−η) 1
2
∣∣ ∂E

∂W k
r
∣∣2] + 1

2
D0N[(D2

0 + D1 − D0D1)2η2∣∣ ∂E
∂W k

out
∣∣2

+ D2
2D2

3η2(4∣∣ ∂E
∂W k

z
∣∣2 + 2∣∣ ∂E

W k
h̃

∣∣2 + 2∣∣ ∂E
∂W k

r
∣∣2)]

≤ [−η + η2 λC
2

+ 4ND0D2D3(η2 − η) + 1
2

D0N[(D2
0 + D1 − D0D1)2η2 + 8D2

2D2
3η2]]∣∣ ∂E

∂W k ∣∣
2

≤ [−η + η2 λC
2

+ 4ND0D2D3η2 − 4ND0D2D3η
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+ 1
2

D0N(D2
0 + D1 − D0D1)2η2 + 4ND0D2

2D2
3η2]∣∣ ∂E

∂W k ∣∣
2

≤ [−η + η2 λC
2

+ 4ND0D2D3η2 − 4ND0D2D3η + 1
2

D0N(D2
0 + D1 − D0D1)2η2

+ 4ND0D2
2D2

3η2]∣∣ ∂E
∂W k ∣∣

2

≤ η[−1 − 4ND0D2D3 + ( λC
2

+ 4ND0D2D3 +
1
2

D0N(D2
0 + D1 − D0D1)2

+ 4ND0D2
2D2

3)η]∣∣ ∂E
∂W k ∣∣

2

≤ −η[1 + 4ND0D2D3 − η( λC
2

+ 4ND0D2D3 +
1
2

D0N(D2
0 + D1 − D0D1)2

+ 4ND0D2
2D2

3)]∣∣
∂E

∂W k ∣∣
2

≤ −η[1 + D4 − η( λC
2

+ 2D4 + D5)]∣∣
∂E

∂W k ∣∣
2

≤ 0 (A30)

where D4 = max{4ND0D2D3, 4ND0D2
2D2

3} and D5 = 1
2 D0N(D2

0 + D1 − D0D1)2.
This completes the proof of Theorem 1.

Proof of Theorem 2. ◻
Let D6 = η[1 + D4 − η( λC

2 + 2D4 + D5)]. According to assumptions (A2) and (A3), there is obviously
D6 > 0. Using the result from Eq. (A30), we have

Ek+1 ≤ Ek − D6 ∥
∂Ek

∂W k ∥
2

≤ Ek−1 −
⎛
⎝

D6 ∥
∂Ek−1

∂W k−1 ∥
2

+ D6 ∥
∂Ek

∂W k ∥
2⎞
⎠

≤ ⋅ ⋅ ⋅

≤ E0 − D6

k
∑
i=0

∥ ∂E
∂W i ∥

2
(A31)

with Ek+1 ≤ 0, we can get

0 ≤ E0 − D6

k
∑
i=0

∥ ∂E
∂W i ∥

2
(A32)

when k → +∞,

k
∑
i=0

∥ ∂E
∂W i ∥

2
≤ E0

D6
< +∞ (A33)

lim
k→+∞

∥ ∂E
∂W k ∥

2
= 0 (A34)
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Consequently

lim
k→+∞

∥ ∂E
∂W k ∥ = 0 (A35)

This concludes the proof of Theorem 2.
Proof of Theorem 3. ◻

Lemma A2. Consider U ⊂ R
Q as a compact set, where the function F: RQ → R is both continuous and

differentiable. Assume that Ω̄ = {x ∈ U ∣ ∂F(x)
∂x } = 0 includes only a finite number of points. If a sequence{xk} ⊂

U satisfies

lim
k→∞

∥xk+1 − xk∥ = 0, lim
k→∞

33333333333

∂F (xk)
∂x

33333333333
= 0 (A36)

then, there has x∗ ∈ Ω̄ such that lim
k→∞

xk = x∗.

According to assumption (A4), Lemma A2 and (A35), a point W∗ ∈ ϕ1 exists such that

W∗ = lim
k→∞

W k (A37)

Thus the proof to Theorem 3 is completed.
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