
echT PressScience

Doi:10.32604/cmc.2025.061894

ARTICLE

Real-Time Proportional-Integral-Derivative (PID) Tuning Based on Back
Propagation (BP) Neural Network for Intelligent Vehicle Motion Control

Liang Zhou1 , Qiyao Hu1,2,3,*, Xianlin Peng4,5 and Qianlong Liu6

1School of Information Science and Technology, Northwest University, Xi’an, 710127, China
2State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest
University, Xi’an, 710127, China
3Generative Artificial Intelligence and Mixed Reality Key Laboratory of Higher Education Institutions in Shaanxi Province, Xi’an,
710127, China
4Shaanxi Silk Road Cultural Heritage Digital Protection and Inheritance Collaborative Innovation Center, Xi’an, 710127, China
5School of Art, Northwest University, Xi’an, 710127, China
6Network and Data Center, Northwest University, Xi’an, 710127, China
*Corresponding Author: Qiyao Hu. Email: huqiyao@nwu.edu.cn
Received: 05 December 2024; Accepted: 24 January 2025; Published: 16 April 2025

ABSTRACT: Over 1.3 million people die annually in traffic accidents, and this tragic fact highlights the urgent need
to enhance the intelligence of traffic safety and control systems. In modern industrial and technological applications
and collaborative edge intelligence, control systems are crucial for ensuring efficiency and safety. However, deficiencies
in these systems can lead to significant operational risks. This paper uses edge intelligence to address the challenges
of achieving target speeds and improving efficiency in vehicle control, particularly the limitations of traditional
Proportional-Integral-Derivative (PID) controllers in managing nonlinear and time-varying dynamics, such as varying
road conditions and vehicle behavior, which often result in substantial discrepancies between desired and actual speeds,
as well as inefficiencies due to manual parameter adjustments. The paper uses edge intelligence to propose a novel PID
control algorithm that integrates Backpropagation (BP) neural networks to enhance robustness and adaptability. The
BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle. The trained network is
then combined with the PID controller to form a hybrid control strategy. The output layer of the neural network directly
adjusts the PID parameters (kp , ki , kd), optimizing performance for specific driving scenarios through self-learning and
weight adjustments. Simulation experiments demonstrate that our BP neural network-based PID design significantly
outperforms traditional methods, with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just
0.065 s. Furthermore, real-world tests on an intelligent vehicle show its ability to make timely adjustments in response
to complex road conditions, ensuring consistent speed maintenance and enhancing overall system performance.

KEYWORDS: PID control; backpropagation neural network; hybrid control; nonlinear dynamic processes; edge
intelligence

1 Introduction
According to recent traffic accident reports, over 1.3 million people die annually in traffic accidents, and

this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems. As
traffic volume increases and road conditions become more complex, traditional traffic safety management
methods are struggling to meet the growing challenges. Control systems are essential for maintaining the

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.061894
https://www.techscience.com/doi/10.32604/cmc.2025.061894
mailto:huqiyao@nwu.edu.cn

2376 Comput Mater Contin. 2025;83(2)

efficiency and safety of various processes in modern industrial and technological applications. The effec-
tiveness of these systems directly influences production efficiency, product quality, and operational safety.
With the growing level of industrial automation and the widespread adoption of intelligent technologies, the
demands on control systems have increased, especially in terms of robustness and adaptability to complex
dynamic processes. In parallel, the rise of the Internet of Things (IoT) has driven the evolution of intelligent
small-scale vehicles toward greater multifunctionality and diversification. However, these vehicles often face
limitations [1] in road analysis and decision-making capabilities, resulting in narrow application scenarios
and limited flexibility. Their route planning and road condition analysis abilities are typically weak, leading
to reduced practicality.

Despite the extensive use of Proportional-Integral-Derivative (PID) controllers as a classical control
method in industrial applications, they exhibit significant limitations when managing nonlinear and time-
varying systems. Traditional PID controllers rely on fixed parameter adjustments, which often struggle to
adapt to changing system characteristics. This inflexibility can lead to degraded control performance, such as
overshooting, oscillations, or slow response times. These limitations become more pronounced when dealing
with systems that exhibit strong nonlinearity or complex dynamic behavior, presenting challenges to the
effectiveness and stability of control systems.

In response to these challenges, various advanced control strategies have been proposed in recent years.
For example, Model Reference Adaptive Control (MRAC) [2], Model Predictive Control (MPC) [3], and
fuzzy logic-based controllers [4] have demonstrated significant performance improvements in handling
the unpredictable and variable conditions encountered by intelligent vehicles [5]. Additionally, adaptive
control methods based on intelligent algorithms have gained considerable attention. Techniques such as
fuzzy PID control [6], adaptive PID control [7], neural network-based PID control [8], fuzzy-augmented
model-reference-adaptive PID [9], and adaptive fractional-order PID [10] have been extensively studied and
applied across different control domains.

In particular, the integration of neural networks in PID control [11] shows great promise due to their
powerful nonlinear mapping capabilities [12] and self-learning properties [13]. These features enable neural
networks to dynamically adjust PID controller parameters during system operation, significantly enhancing
the adaptability and robustness of control systems in complex environments.

This study proposes a novel PID control algorithm based on Backpropagation (BP) neural networks [14]
to address the limitations of traditional PID controllers in managing complex dynamic systems. The BP
neural network is initially trained to capture the system’s nonlinear dynamic characteristics. It is then
seamlessly integrated with the PID controller to form an innovative hybrid control strategy. In this approach,
the output states of the neural network’s output layer correspond to the three adjustable parameters (kp,
ki and kd) of the PID controller. Through the neural network’s self-learning mechanism and weight
adjustments, the PID controller parameters are dynamically optimized. Simulation experiments demonstrate
that the proposed BP neural network-based PID design outperforms traditional PID control methods in
effectively managing complex systems. Furthermore, the trained model is applied to an intelligent vehicle,
with real-world experiments confirming its ability to make timely adjustments under various complex road
conditions, maintain consistent vehicle speed, and significantly enhance overall system performance.

The remainder of this paper is organized as follows: The second section explores the dynamics model of
a rear-wheel differential electric vehicle, including the design of a wheel dynamics model and the mechanical
analysis of individual wheels. The third section introduces the principles of PID control, followed by the
design of a PID controller based on BP neural networks, including parameter setting and training, leading
to simulation experiments. The fourth section presents the hardware design of the vehicle and the software
design for each module. In the fifth section, experiments involving straight-line and curve driving with and

Comput Mater Contin. 2025;83(2) 2377

without obstacles are conducted, and the results are analyzed. Finally, the sixth section concludes the paper,
summarizing the key contributions and findings.

2 Rear-Drive Intelligent Vehicle Dynamics Model

2.1 Problem Description
When a car turns, the outside wheel needs to travel farther than the inside wheel, requiring different

speeds for each wheel to prevent instability. Electronic differential control in electric vehicles typically
involves two methods: controlling wheel speed or torque [15]. Speed-based control often uses PID and neural
networks to track ideal wheel speeds. Torque-based control [16], meanwhile, incorporates vehicle yaw motion
control to optimise torque distribution for stability. Vehicle stability control has evolved from basic systems
in the 1990s to methods directly applying force to wheels, marking a new chapter in car stability [17].

2.2 Dynamic Modeling
The primary focus of this chapter is on the dynamics model of the rear-wheel differential electric vehicle.

To achieve stability control of the car, developing a computer model for conducting relevant theoretical
research and simulation experiments is essential. A suitable vehicle dynamics model forms the foundation
of this research. The chapter begins by establishing the kinematics model of the three-wheel intelligent
vehicle, progressing from individual components to the entire system. Then, the vehicle dynamics model
is synthesised.

2.2.1 Establishment of Kinematics Model of Three-Wheeled Intelligent Vehicle
The three-wheel intelligent vehicle [18] features a front driving wheel configured as a universal wheel

while the rear driving wheel’s axle is aligned [19]. Each rear wheel is independently controlled by its motor.
One wheel in front of the car governs the steering of the vehicle, whereas the rear wheels control its movement
by adjusting speed, resulting in a combination of rolling and sliding motion. The wheeled intelligent vehicle’s
chosen center is the rear axle’s midpoint. Fig. 1 illustrates the structural diagram of the intelligent vehicle
in motion.

Figure 1: Movement structure of the intelligent vehicle

2378 Comput Mater Contin. 2025;83(2)

In Fig. 1, the local coordinate system was represented by the coordinate system X-O-Y, while the
coordinate system X-O-Y represented the global coordinate system, the coordinates of the centroid were
denoted as p(xp, yp), the coordinates of the center of mass were represented as o(x, y), and θ indicated the
heading angle of the intelligent vehicle. The main kinematic parameters of wheeled intelligent vehicles are
shown in Table 1:

Table 1: Main kinematic parameters of wheeled intelligent vehicle

Primary parameter Symbol Unit
The mass of intelligent vehicle m kg

Both sides drive wheel base 2l m
The distance between the

centroid and the center of mass
d m

Driving wheel radius r m

Set the left driving wheel’s angular velocity when it moves as wL and the angular velocity of the right
driving wheel as wR . According to the geometric relationship of the intelligent vehicle in Fig. 1, the following
constraint equation can be obtained:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 cos θ + ẏ1 sin θ − l θ̇ = rωL

ẋ1 cos θ + ẏ1 sin θ + l θ̇ = rωR

−ẋ1 cos θ + ẏ1 sin θ + dθ̇ = 0
(1)

In the provided equations, the first two equations represent pure rolling constraints applied to the
intelligent vehicle, ensuring the driving wheel’s smooth sliding. Among the three constraint equations, one
is a complete constraint, while the other two are non-complete constraints.

Figure 2: Vehicle geodetic coordinate reference system

Comput Mater Contin. 2025;83(2) 2379

The mobile robot’s linear speed when moving is expressed by v, and the angular speed is expressed by
ω, and the speed equation of the intelligent car when moving can be obtained:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v = vL + vR

2
= (ωL + ωR)r

2
θ̇ = ω = r

2l
(ωR − ωL)

(2)

2.2.2 Establishment of Vehicle Dynamics Model
In the path tracking process of the rear-wheel differential electric vehicle, to denote the current position

coordinates of the car [20], we assume the geodetic coordinate system as XOY, the vehicle coordinate system
as XOY, and φ is the vehicle yaw angle, as depicted in Fig. 2.

The motion equation of the vehicle in the geodetic coordinate system can be expressed as:

X1 = x1cosφ − y1sinφ
Y1 = x1sinφ − y1cosφ (3)

3 PID Controller Design Based on BP Neural Network

3.1 PID Control Principle
In the control system, the most common control law of the controller is PID control. The analogue

PID control system’s principle framework is illustrated in Fig. 3. The system is comprised of an analogue
PID controller as well as a controlled object. It is divided into three modules: proportion, differentiation,
and integration. The control law is output in real-time by the difference between the actual output and the
controlled object’s expected output.

Figure 3: Schematic diagram of analog PID control system

PID is a linear controller, which constitutes a control deviation according to the given value rin(t) and
the actual output value yout(t), as illustrated in Formula (4).

error(t) = rin(t) − yout(t) (4)

PID control rule is as follows:

u(t) = kp(error(t) + 1
T1
∫

t

0
error(t)dt + TDderror(t)

dt
) (5)

2380 Comput Mater Contin. 2025;83(2)

Or written as a transfer function:

G(s) = U(s)
E(s) = kp(1 + 1

T1s
+ TDs) (6)

where kp—scale coefficient, T1—integral time constant; TD—differential time constant.
In simple terms, the functions of each PID controller correction link are as follows:

(1) Proportional link: It is proportionate to the error signal error(t) of the control system. Once a deviation
occurs, the controller promptly generates a control effect to minimize the deviation.

(2) Integral link: Primarily used to eliminate static errors and enhance the system’s accuracy. The effec-
tiveness of the integral action is determined by the integral time constant T1. A higher T1 weakens the
integral action, and vice versa.

(3) Differentiation: Reflects the change trend (rate of change) of the deviation signal. It can introduce an
effective early correction signal into the system before the deviation signal grows too large, accelerating
the system’s response speed and reducing adjustment time.

3.2 Simulation Experiment of Classical Linear PID Control
As can be seen from Formula (6), the PID control rule can be written as a transfer function. The fist-

order inertia system transfer function as shown in Formula (7) was used.

G(s) = 0.998
0.021s + 1

(7)

The reason for selecting this transfer function was because a first-order inertia system served as a
simplified model for many real-world systems, such as thermal systems and mechanical systems. Therefore,
opting for such a transfer function can encompass a wide range of practical applications, effectively
showcasing the fundamental characteristics of control systems and the performance of control algorithms.

In the present conventional linear PID simulation experiment, the parameters kp = 0.22, ki = 0.13 and
kd = 0 were selected. These values were chosen to achieve rapid system response, minimize steady-state error,
and ensure the stability of the control system.

After setting the parameters, the simulation experiment was conducted as shown in Fig. 4. Fig. 4a
displayed the system response with classical PID control, showing the reference signal (red dashed line) and
the output response (blue solid line) over time. Fig. 4b represented the tracking error over time. It depicted
the deviation between the reference signal and the actual output of the system. In both figures, it was evident
that around 0.25 s, the system’s output reached the desired value of 1, while the tracking error diminished
to zero.

The experiment results indicated that the classical linear PID control required manual adjustment of
three parameters, which was time-consuming and challenging, especially in complex systems. Moreover,
the classical linear PID control may take a long time to bring the system to the desired setpoint, yielding
suboptimal results, particularly in scenarios simulating the actual movement of vehicles.

3.3 PID Design Based on BP Neural Network
In PID control, it is necessary to adjust the proportional, integral and differential three kinds of control

action to get a better control effect. The formation of control quantity both cooperates and restricts each other.
This relationship is not necessarily a simple “linear combination”. From the infinite nonlinear combination,
we can find the best relationship. The optimal combination of PID control can be realized by learning

Comput Mater Contin. 2025;83(2) 2381

the performance of the system because of the ability to perform an arbitrary nonlinear expression of the
neural network. Using the BP network, the self-learning PID controller with parameters kp, ki and kd can
be established.

Figure 4: Classical linear PID curve

The PID control system’s structure based on the BP network is illustrated in Fig. 5. The controller
comprises two parts:

Figure 5: BP neural network structure

2382 Comput Mater Contin. 2025;83(2)

(1) The classical PID controller can control the controlled object directly, kp, ki and kd are adjusted online.
(2) The neural network adjusts the parameters of the PID controller according to the operating state of the

system to achieve the optimization of specific performance indicators so that the output state of the
neurons in the output layer corresponds to the three adjustable parameters of the PID controller kp,
ki and kd through the self-learning and weighting coefficient adjustment of the neural network. The
neural network output corresponds to the PID controller parameters under some optimal control.

The control algorithm of the classic incremental digital PID is

u (k) =u (k − 1) + kp (error (k) − error (k − 1)) + ki error (k) + kd (error (k) − 2error (k − 1)
+ error (k − 2)) (8)

In the formula, kp, ki and kd are proportional, integral and differential coefficients, respectively.
A three-layer BP neural network is adopted, and its structure is shown in Fig. 5.
The input in the input layer of the network is

O(1)j = x(j) j = 1, 2, ⋅ ⋅ ⋅M (9)

In Formula (9), the number of M depends on the complexity of the controlled system.
The input and output of the hidden layer are

net(2)i (k) =
M
∑
j=0

w(2)i j O(1)j

O(2)i (k) = f (net(2)i (k))(i = 1, ⋅ ⋅ ⋅Q)
(10)

where w(2)i j represents the weighting coefficient of the hidden layer. The labels (1)–(3) denote the input layer,
hidden layer, and output layer, respectively.

The activation function in the hidden layer is a Sigmoid function with positive and negative symmetry:

f(x) = tanh(x) = ex − e−x

ex + e−x (11)

The input and output of the network output layer are

net(3)i (k) =
Q
∑
i=0

w(3)l i O(2)i (k)

O(3)l (k) = g (net3
l (k)) (l = 1, 2, 3)

O(3)1 (k) = kp

O(3)2 (k) = ki

O(3)3 (k) = kd

(12)

The output nodes of the output layer correspond to three adjustable parameters. kp, ki and kd ,
respectively. Since kp, ki and kd cannot be negative, the activation function of neurons in the output layer is
a non-negative Sigmoid function.

g(x) = 1
2
(1 + tanh(x)) = ex

ex + e−x (13)

Comput Mater Contin. 2025;83(2) 2383

Take the performance indicator function as

E(k) = 1
2
(rin(k) − yout(k))2 (14)

The weight coefficient of the network is modified according to the gradient descent method. That is,
the negative gradient direction of the weight coefficient is searched and adjusted according to E(k), and an
inertial term is added to make the search convergence fast and globally minimal.

Δw(3)h (k) = −η ∂E(k)
∂w(3)h

+ αΔw(3)li (k − 1) (15)

where η is the learning rate, α is the inertia coefficient

∂E(k)
∂w(3)h

= ∂E(k)
∂y(k) ⋅

∂y(k)
∂u(k) ⋅

∂u(k)
∂O(3)l (k)

⋅
∂O(3)l (k)

∂net(3)l (k)
⋅

∂net(3)l (k)
∂w(3)h (k)

(16)

∂net(3)l (k)
∂w(3)h (k)

= O(2)i (k) (17)

Since ∂y(k)
∂u(k) is unknown, the approximation is replaced by the symbolic function sgn(∂y(k)

∂u(k)), and

the resulting inaccuracy can be compensated by adjusting the learning rate.
It can be obtained by Formulas (8) and (12).

∂u(k)
∂O(3)1 (k)

= error(k) − error(k − 1) (18)

∂u(k)
∂O(3)2 (k)

= error(k) (19)

∂u(k)
∂O(3)3 (k)

= error(k) − 2error(k − 1) + error(k − 2) (20)

The learning algorithm of the network output layer weight obtained from the above analysis is

Δw(3)li (k) = αΔw(3)li (k − 1) + ηδ(3)l O(2)1 (k) (21)

δ(3)i = error(k)sgn(∂y(k)
∂u(k))

∂u(k)
∂O(3)l (k)

g′(net(3)l (k)) (l = 1, 2, 3) (22)

Similarly, the learning algorithm of the weighting coefficient of the hidden layer can be obtained:

Δw(2)ij (k) = αΔw(2)ij (k − 1) + ηδ(2)l O(1)j (k) (23)

δ(2)1 = f (net(2)i (k))
3
∑
l=1

δ(3)l w(3)l i (k) (i = 1, 2, ⋅ ⋅ ⋅Q) (24)

2384 Comput Mater Contin. 2025;83(2)

where g′(⋅) = g(x)(1 − g(x)),

f ′(⋅) = (1 − f 2(x))/2 (25)

The PID controller structure based on the BP neural network is shown in Fig. 6. The control algorithm
of the controller is summarized:

(1) Determine the structure of the BP network by establishing the number of nodes in the input
layer (M) and the number of nodes in the hidden layer (Q). Assign initial values to the weighted coefficients
of each layer w1

i j(0) and w2
l i(0), select the learning rate (η), and determine the inertia coefficient (α) with

k = 1.
(2) rin(t) and yout(t) are obtained by sampling, and error(k) = rin(t) − yout(t) is calculated at

this time.
(3) Calculate neurons’ input and output in each layer of neural network NN, and the NN output layer’s

output is the three adjustable parameters kp, ki and kd .
(4) Calculate the output u(k) of the PID controller.
(5) Carry out neural network learning, adjust the weighted coefficients w1

i j(k) and w2
l i(k) online, and

realise the adaptive adjustment of PID control parameters.
(6) Set k = k + 1 and return to (1).

Figure 6: PID controller structure based on BP neural network

3.4 Parameter Setting and Training
As can be seen from Formula (11), the Learning Rate determines the updating degree of model

parameters in each iteration. A larger learning rate [21] will make the model move a larger step in the
direction of gradient descent in each iteration, and the convergence speed will be faster, but shock or
instability may occur. Smaller learning factors make the model convergence slower but more stable and
robust. In the experiment, when the learning factor was 0.28, the model may had a faster convergence rate
as shown in Fig. 7.

The inertia factor determines the inertia of the model update, that is, the degree of impact of the last
parameter update. A larger inertia factor will increase the inertia of model parameter updating, which makes
the model more convergent at high speed and has a certain degree of noise robustness. However, it is also
prone to oscillation and instability. A smaller inertia factor will reduce the inertia of parameter updating and
thus reduce the convergence rate of the model, but it is generally stable. In the experiment, when the inertia
factor was 0.04, the model may had a faster convergence rate and was relatively stable, but there may be some
overfitting phenomenon.

Comput Mater Contin. 2025;83(2) 2385

Figure 7: Selection experiment of learning-factor

Let the controlled object’s approximate mathematical model be

yout(k) = a(k)yout(k − 1)
1 + yout2(k − 1) + u(k − 1) (26)

where the coefficient a(k) is slightly time-varying, a(k) = 1.2*(1 − 0.8*e−0.1k).
The learning rate determines the updating degree of model parameters in each iteration, and the smaller

learning factor makes the model convergence slower but more stable and robust. After many tests, the
learning efficiency is 0.28. The inertia coefficient determines the inertia of the model update, that is, the
degree of influence produced by the last parameter update. A smaller inertia factor will reduce the inertia
of parameter updating, thus reducing the convergence speed of the model, but it is usually relatively stable.
The inertia coefficient is 0.05, and the initial value of the weighting coefficient is a random number in the
interval [−0.5, 0.5] of [x]. Input command signals are categorised:
rin(t) = 1.00.
rin(t) = sin(2πt).

When S = 1 is used as step tracking when S = 2 is used as sine tracking, the weight at the beginning is used
as a random value, and the unchanged weight is used to replace the random value after the stable operation.

3.5 Simulation Experiment on BP-PID
The tracking results and corresponding curves were illustrated in Fig. 8.
Fig. 8 demonstrated successful speed control without overshoot, with the error approaching zero and

the parameters adjusting adaptively to maintain stable performance. The expected speed was represented by
a step signal, while the real-time output speed of the car was also displayed. At 0.065 s, the output speed
of the car reached 1 m/s and subsequently remained steady at 1 m/s over time, with no overshoot observed.
The error diagram shown that at 0.065 s, the error tended towards zero, and as time progressed, the error
remained zero, indicating effective tracking of the desired speed. Additionally, the parameter adaptive tuning
curves illustrated the changes in kp, ki and kd parameters over time. Initially, when the error was large, the
parameters fluctuated significantly; however, they stabilized as the error approaches zero at 0.065 s.

2386 Comput Mater Contin. 2025;83(2)

Figure 8: PID curve based on BP neural network

In this section, a speed tracking experiment was conducted where the speed followed a sine wave curve
over time. As illustrated in Fig. 9, the expected speed exhibited a sinusoidal distribution as time progresses,
and the car’s output speed tracked the expected speed in real time. The PID control quantity curve showcased
how the control quantity changes dynamically over time to effectively regulate the car’s speed. The error
curve highlighted the variation in error over time, indicating that, unlike the step signal, the error for the sine
wave signal constantly fluctuated, showing the car’s continuous effort to track the desired sine wave speed
under PID control. Additionally, the parameter adaptive output tuning curve demonstrated how the three
parameters kp, ki and kd adjust in real-time, ultimately enabling effective tracking of the desired speed.

3.6 Comparison of PID Algorithm Based on BP Neural Network and Traditional PID Algorithm
Through the traditional PID simulation experiment in Section 3.2 and the BP-based PID algorithm

in Section 3.5, the data of the two experiments are recorded in Table 2.

Comput Mater Contin. 2025;83(2) 2387

Figure 9: The speed tracking experiment following a sine wave curve

Table 2: Comparison of PID algorithm based on BP neural network and traditional PID algorithm

PID simulation The BP-based PID algorithm
Parameter adjustment mode Manually Automatically
Time for error to reach 0 m/s 0.25 s 0.065 s

Time for velocity to reach 1 m/s 0.25 s 0.065 s

Overall, these figures collectively demonstrate the successful implementation of the BP-PID algorithm
in ensuring the vehicle effectively tracks the desired speed. By following a sinusoidal trajectory, it can be
concluded that the BP-PID algorithm, based on neural networks, can adaptively adjust PID parameters
according to system behavior, thereby enhancing performance and robustness. Additionally, the comparative
data from the traditional linear PID simulation experiments in Section 3.2 shows that the BP-PID algorithm
reduces the time required to reach the target speed by 74.0%.

4 Visual Navigation and System Hardware and Software Design
The PID algorithm based on BP neural network can be combined with many other practical functions.

This section will combine the PID algorithm based on BP neural network with the smart home vehicle to
explore its performance. In this section, Section 4.1 introduces 14 hardware designs of the vehicle system,
analyses and selects each hardware, and finally shows the overall prototype of the system. Section 4.2
introduces the software design of the vehicle system, including various functional modules and system
software framework.

2388 Comput Mater Contin. 2025;83(2)

The main control hardware design is shown in Fig. 10. The STM32 microcontroller [22] can utilize a BP
neural network-based PID control system to regulate the operation of two motors, while enabling real-time
feedback and control of each module’s functionality through Bluetooth and WIFI remote control. The main
control microcontroller can achieve automatic control based on feedback from environmental monitoring
data, as well as operate according to user settings.

Figure 10: The main control hardware design

4.1 Vehicle Hardware Design
There are 15 kinds of hardware in this system as shown in Table 3, including USB-TTL serial port [23],

OLED display screen [24], DHT11 temperature sensor module [25], LM2596 voltage regulator module,
Battery [26], Relay, ESP8266 WIFI module [27], Atomizer chip driver circuit, STM32 microcontroller [28],
Buzzer, Flame sensor, the OpenMV camera, Fan sensor, MH-Sensor-Series and HC-SR04 Ultrasonic Sensor.

Table 3: Description of the hardware components

Component Description
USB-TTL serial port Facilitates UART serial communication testing

and program downloads
OLED display Displays real-time temperature and humidity

measurements
DHT11 temperature sensor module Measures temperature and humidity
LM2596 voltage regulator module Provides switched voltage regulation

Battery Supplies power to the car
Relay Controls larger currents and voltages for safety

(Continued)

Comput Mater Contin. 2025;83(2) 2389

Table 3 (continued)

Component Description
ESP8266 WIFI module Connects to the Huawei cloud platform for data

transmission
Atomizer chip driver circuit Supports manual and intelligent humidification

STM32 microcontroller Integrates and coordinates all modules
Buzzer Sounds alarms

Flame sensor Detects flames using infrared light
OpenMV camera Offers image processing capabilities for machine

vision tasks
Fan sensor Works with the flame sensor for fire

extinguishing
MH-sensor-series Detects black lines for vehicle navigation

HC-SR04 ultrasonic sensor Measures distances for obstacle avoidance
experiments

4.2 Overall System Prototype
The overall system is shown in Fig. 11. In front of the system are four infrared sensor modules that

identify black line tracking [29]. The fire extinguishing device system [30] is located in the upper part and
consists of a flame-sensing module, a buzzer, and a fan sensor module. The ultrasonic ranging module is
located in the middle of the front of the system. It can emit ultrasonic waves to measure the distance from
the front obstacles to achieve obstacle avoidance [31]. Behind the ultrasonic module is a PCB board with
multiple peripheral modules and an STM32 chip master. The DHT11 module can detect the current indoor
temperature and humidity, an OLED display can display the measured temperature and humidity in real-
time, and an ESP8266 WI-FI module is used to connect to WI-FI and connect to the Cloud platform [32]
through WI-FI [33] to achieve intelligent temperature and humidity control.

Figure 11: Overall prototype of the system

Finally, at the rear of the system, there is an atomisation plate driver module, which enables the product
to complete the manual humidification function. When combined with the Huawei Cloud Platform, the

2390 Comput Mater Contin. 2025;83(2)

intelligent humidification switch function can be realised. Below are two coding motors and two wheels. Two
coding motors can be coded for PID control, which can make the car more stable to drive.

4.3 Vehicle System Software Design
(1) Infrared Line-Following Module
The system integrates an infrared line-following functionality, enabling the intelligent vehicle to

autonomously navigate along predefined paths marked by contrasting colors, such as black lines on a white
surface as shown in Fig. 12. When this function is activated, the vehicle utilizes infrared sensors to detect the
presence of the line and adjusts its course accordingly to stay on track.

Figure 12: Left and right infrared sensor configuration diagram

The infrared sensors emit infrared light and measure the reflection from the surface beneath. When the
sensors detect a higher reflection intensity, indicating a white surface, the vehicle recognizes that it is off the
line and adjusts its movement to correct its trajectory. Conversely, when the sensors detect lower reflection
intensity from the black line, the vehicle maintains its course.

In the line-following mode, the system continuously monitors the sensor readings to determine the
vehicle’s position relative to the line. If the vehicle drifts away from the line, the control system processes the
sensor data and adjusts the wheel speeds to steer the vehicle back onto the line. For example, if the left sensor
detects the line and the right sensor does not, the vehicle will slow down the right wheel while increasing the
speed of the left wheel to turn left and re-align with the line.

Users also have the option to switch to manual mode, allowing for direct control of the vehicle’s
movement if desired. This flexibility ensures that the vehicle can be operated in various environments
and conditions.

To implement this functionality, we established a microcontroller-based control unit that processes
the sensor data in real time. The infrared line-following module effectively enhances the vehicle’s ability to
navigate autonomously, ensuring it follows the designated path accurately.

The overall process of the infrared line-following module is illustrated in Fig. 12, showcasing the inter-
action between the sensors, control unit, and vehicle movement adjustments. Furthermore, this module lays
the groundwork for the linear and curve experiments detailed in Section 5.1, ensuring effective line following.

Comput Mater Contin. 2025;83(2) 2391

(2) Obstacle Avoidance Module
This module employs an ultrasonic sensor to detect obstacles using sound wave reflection character-

istics. The sensor emits ultrasonic waves and measures the time it takes for the waves to bounce back after
hitting an object as shown in Fig. 13. By calculating the distance to the obstacle based on the time delay, it
provides real-time data to the control system, enabling quick responses to potential collisions. The distance
to the obstacle is calculated using the following formula:

D = C × T
2

(27)

where D represents the calculated distance to the obstacle, C is the speed of sound in air (approximately
343 m/s under standard conditions), and T denotes the time taken for the ultrasonic wave to travel to the
obstacle and return.

Figure 13: Schematic diagram of ultrasonic obstacle avoidance module

The ultrasonic sensor operates at a frequency of approximately 40 kHz, with a detection range typically
between 2 cm and 4 m. Its detection angle is around 30○, allowing it to effectively sense obstacles within a
specified field of view. This capability makes it particularly useful for dynamic environments where obstacles
may appear suddenly.

When an obstacle is detected within a predefined threshold (e.g., 30 cm), the sensor generates a digital
signal indicating the presence of an obstacle. This signal is transmitted to the intermediate processor, which
performs programmed logic to determine the appropriate avoidance maneuver. The processor interprets
the distance and location of the obstacle to decide whether to steer left, right, or reverse, depending on the
obstacle’s position relative to the vehicle’s path.

If the obstacle is directly in front of the vehicle, the system may initiate a reverse maneuver followed by
a turn to the right or left to navigate around the obstacle. In cases where multiple obstacles are detected, the
processor prioritizes the closest one, ensuring that the vehicle takes the safest and most efficient path.

Additionally, the obstacle avoidance system includes a feedback loop, where continuous monitoring
allows for real-time adjustments to the vehicle’s trajectory. This ensures that once the obstacle is bypassed,
the system will check the path ahead before returning to the original route, maintaining smooth navigation.

Overall, this ultrasonic-based obstacle avoidance module significantly enhances the intelligent vehicle’s
ability to operate safely in unpredictable environments, thereby preventing accidents and improving overall
operational efficiency. Furthermore, it lays a solid foundation for the obstacle avoidance experiment detailed
in Section 5.2, demonstrating its practical application and effectiveness in real-world scenarios.

(3) Bluetooth Control Module
The intelligent car is an autonomous robot capable of driving and performing tasks independently.

Utilising a Bluetooth module, it communicates via 2.4 GHz radio waves, enabling interaction and control

2392 Comput Mater Contin. 2025;83(2)

with mobile phones and other electronic devices, facilitating various actions such as forward, backwards,
turning, patrolling, and task execution. During other operations, client control can forcefully interrupt the
ongoing action and execute the provided command.

The Bluetooth module is a crucial communication component between the smart car and mobile
phones. It comprises a Bluetooth chip and associated circuit connections, establishing a Bluetooth connec-
tion between the intelligent vehicle and mobile phone. Typically, smart cars employ Bluetooth 2.0 or higher
modules to achieve enhanced data transmission rates and stability.

Control commands transmitted from the mobile phone to the smart car through the Bluetooth module
dictate corresponding actions, including forward, backwards, turning, and task execution. The intelligent
vehicle dynamically adjusts its state and behaviour based on received instructions.

The Bluetooth module decodes instructions from the mobile phone and transmits them to the smart
car’s control system. Subsequently, the control system processes and executes the instructions that were
received. Concurrently, the smart car can transmit status updates and sensor data to the mobile phone
through the Bluetooth module, facilitating real-time monitoring and feedback.

5 Experiment and Analysis
After several training iterations, the car relied on the trained model to perform line patrol using the four

front infrared tubes with high accuracy. Additionally, it effectively avoided obstacles by utilizing the front
ultrasonic ranging module. The experiments in this section were categorized into navigation experiments
without obstacles, which encompass straight-line and curve experiments, and navigation experiments with
obstacles, including static and moving obstacle experiments.

5.1 Navigation Experiment without Obstacles
(1) Linear experiment
In line inspection, when the four infrared pairs in front of the car did not detect black lines, the vehicle

moved forward, as shown in Fig. 14a.

Figure 14: Schematic diagram of straight-line driving

When the car experienced a slight deviation from the straight line, the left and right infrared tubes
positioned in the middle of the vehicle accurately identified the black line and initiate corresponding minor
adjustments in the appropriate direction. For instance, if the left infrared pair tube detected a black line, the

Comput Mater Contin. 2025;83(2) 2393

car rotated slightly to the left using the speed difference between the two wheels (with speeds set at 4 m/s
for the left wheel and 6 m/s for the right wheel), as depicted in Fig. 14b. Eventually, when none of the four
infrared pair tubes detected a black line, the car continued running in a straight line.

In order to test the time required for a car with BP-PID algorithm to travel in a straight line compared
to a car with conventional PID algorithm, the vehicle travelled in a straight line without obstacles. As shown
in Fig. 15, the car started at the starting point and kept going.

Figure 15: Schematic diagram of linear experiment

Fig. 16 illustrates the car’s movement from the starting point to the endpoint. The car moved forward
smoothly, but due to the smoothness of the ground or varying friction coefficients between the two tires, it
deviated slightly to the left in Fig. 16-3. The car then made minor adjustments to the right, ensuring that no
further deviation from the straight path occurred for the remainder of the experiment. With the car speed
set to 5 m/s, the measurement results for different algorithms used by the car are presented in Table 4. As
shown in Table 4, the car using BP-PID algorithm consistently maintained a speed of approximately 4.25 m/s
across varying linear driving distances, even with minor adjustments.

Figure 16: Linear experiment process

2394 Comput Mater Contin. 2025;83(2)

Table 4: Measurement results under different algorithms used by the car

The algorithms used by the car PID BP-PID
The distance travelled by the car 20 m 20 m

Car running time 5.40 s 4.70 s
Average speed of the car 3.70 m/s 4.25 m/s

Overall, the linear experiment shown that the car equipped with the BP-PID algorithm required 0.7 s
less time to cover the same distance compared to the car using the traditional PID algorithm, and its speed
increased by 0.55 m/s, as shown in Table 4. Furthermore, the data in Table 4 demonstrates that the BP-
PID-equipped car outperformed the traditional PID-equipped car over longer distances, exhibiting faster
and more stable performance. This was because the BP neural network continuously adjusted the weights
and biases of the network based on the error between the system’s output and the desired value, using the
backpropagation mechanism. These adjustments directly influenced the updating of the PID parameters,
allowing the kp, ki and kd values to adapt in real-time to changes in the system.

(2) Curve experiment
The middle two infrared pairs were utilized in the straight-line experiment, whereas all infrared

pairs were employed in the curve experiment. The operational principle remained consistent across both
experiments. Fine-tuning occurred at the corresponding position when the two middle infrared pairs
detected black lines. Subsequently, the car utilized the speed difference between the two wheels (with speeds
set at 6 m/s for the left wheel and 4 m/s for the right wheel) to execute a slight right rotation, as depicted
in Fig. 17a.

Figure 17: Schematic diagram of curve experiment

During the curve experiment, significant adjustments were made at the corresponding positions when
the two outer infrared pairs detected the black line. For instance, if the infrared pair on the right side of the
middle of the vehicle detected a black line, the car rotated substantially to its right by modulating the speed
difference between the two wheels (with speeds set at 8 m/s for the left wheel and 2 m/s for the right wheel),
as illustrated in Fig. 17b.

To test the car’s curve driving time, we found that the car performed curvilinear driving without
encountering obstacles. To ensure the accuracy of the experiment, the 90-degree turning angle was measured

Comput Mater Contin. 2025;83(2) 2395

multiple times to verify the car’s turning precision. Experiment (2), as shown in Fig. 18, confirmed the
accuracy of the car when making turns at approximately a 90-degree angle.

Figure 18: Schematic diagram of curve experiment

As depicted in Fig. 19, the car commenced from the starting point illustrated in Fig. 19-1. Upon
encountering the corner shown in Fig. 19-2, the car executed a slight left adjustment before navigating the
corner depicted in Fig. 19-3. Subsequently, the car continued forward until it detected a black line in Fig. 19-4.
At this point, the car made another small adjustment to the left before navigating the corner depicted
in Fig. 19-5 and continuing straight ahead. The car underwent another left adjustment, as shown in Fig. 19-7,
before reaching the endpoint successfully, as illustrated in Fig. 19-8. Throughout its journey, the car effectively
manoeuvred through corners and aligned with the black line to progress along its path.

Figure 19: Curve experiment process

With the car speed set to 5 m/s, the results of multiple measurements are presented in Table 5. As shown
in the table, during the curve driving experiment conducted several times, the car consistently followed the
curve of the black line with precision in each trial, maintaining a speed of approximately 3.63 m/s.

2396 Comput Mater Contin. 2025;83(2)

Table 5: Measurement results of curve driving

Number of experiments 1 2 3
The distance travelled

by the car
10 m 10 m 10 m

Car running time 2.8 s 2.5 s 3.1 s
Car adjustment times 2 1 3
Average speed of the

car
3.57 m/s 4.00 m/s 3.33 m/s

Whether the car turns
successfully

Successfully Successfully Successfully

5.2 Detection Experiment under Obstacles
In the actual movement of the car, the existence of obstacles should be considered. The ultrasonic

ranging module on the front of the car can complete accurate obstacle avoidance experiments. The
ultrasonic module can emit ultrasonic waves and calculate the time of ultrasonic wave return. The car’s
distance to the obstacle can be calculated using the following formula. This section was divided into
two different experimental works: one was the obstacle static experiment, and the other was the obstacle
moving experiment.

(1) Obstacle static experiment
In the static obstacle experiment, static obstacles were randomly positioned along the path. If an obstacle

was detected during the car’s movement, the car initiated a left rotation to assess potential barriers on the left
side. If an obstacle was detected on the left, the car performed a significant right rotation until no obstacles
were detected on either side. Subsequently, the car proceeded forward for a certain distance before rotating in
the opposite direction. If no obstacles were detected, the car continued moving straight until it detected the
black line, which adjusted its position accordingly. Eventually, the car returned to following the black line.

The static obstacle avoidance driving experiment of the test car is shown in Fig. 20. The car conducted
the obstacle avoidance experiment when there was a static obstacle.

Figure 20: Schematic diagram of static obstacle experiment

Fig. 21-1 marked the starting point of the car’s movement. As the car progressed to the position depicted
in Fig. 21-2, an obstacle was detected ahead. Subsequently, the car executed a slight left rotation to evade
the obstacle. Once the obstacle was circumvented, the car proceeded to the position indicated in Fig. 21-4

Comput Mater Contin. 2025;83(2) 2397

and performed a slight rotation in the opposite direction. To continue its path, no obstacles were detected
in Fig. 21-5, prompting the car to drive straight until it detected the presence of the black line, as shown
in Fig. 21-6.

Figure 21: Static obstacle experiment process

Upon detecting the black line, the car adjusted its position accordingly, as depicted in Fig. 21-7, and
ultimately returned to the black line as illustrated in Fig. 21-8. This series of manoeuvre allowed the car to
navigate around obstacles and complete its path while staying within the designated route. Under the premise
that the speed of the car was set to 5 m/s, the measurement results of obstacles placed at different positions
are shown in Table 6.

Table 6: Experimental measurement results of stationary obstacles

Number of experiments 1 2 3
Number of obstacles 1 1 1

Check whether obstacles are successfully avoided Successfully Successfully Successfully
Average speed of the car About

3.57 m/s
About

3.32 m/s
About

3.44 m/s

As shown in Table 6, in the experiment of placing obstacles in different positions many times, the car
accurately and successfully avoided obstacles, and the speed was always maintained at about 3.44 m/s.

(2) Obstacle movement experiment
In real life, most obstacles were not stationary, and moving obstacles were also factors to test the

performance of the car, so this section conducted the obstacle-moving experiment.
The obstacle movement experiment randomly placed moving obstacles on the path. When the car

moved forward and detected an obstacle, the car rotated to the left to determine whether there was an obstacle
in front of it. If there was no obstacle, the car moved according to the static experiment of the obstacle. If

2398 Comput Mater Contin. 2025;83(2)

the obstacle moved to the path of the car, the car rotated in the opposite direction to determine whether it
bypassed the obstacle and finally returned to the black line.

The obstacle avoidance driving experiment of the test car is shown in Fig. 22. The car conducted the
obstacle avoidance experiment when there was a moving obstacle. When the car began to move, gave the
obstacle an upward thrust, and observed the movement of the car.

Figure 22: Schematic diagram of moving obstacle experiment

As depicted in Fig. 23-1, the car initiated movement from its starting point while the obstacle moved
vertically toward the car’s direction. Upon reaching the position illustrated in Fig. 23-3, the car detected the
moving obstacle and steered to the left. Subsequently, in Fig. 23-4, the car detected the obstacle again and
adjusted its course to the right, as depicted in Fig. 23-5. This adjustment continued until no obstacle was
detected, allowing the car to manoeuvred until it reached the black line, thereby completing the obstacle
avoidance task. Under the premise that the speed of the car is set at 5 m/s, the test results of the car avoiding
obstacles under different initial speeds of moving obstacles are shown in Table 7. As demonstrated by the
data in Table 7, the car consistently avoided obstacles accurately and swiftly, even when faced with moving
obstacles at varying speeds.

Figure 23: (Continued)

Comput Mater Contin. 2025;83(2) 2399

Figure 23: Experimental process of moving obstacles

Table 7: Statistics of obstacle avoidance results under dynamic obstacles

Number of experiments 1 2
Speed of obstacle 1 m/s 2 m/s

Check whether obstacles are
successfully avoided

Successfully Successfully

Car obstacle avoidance
operation time

1 s 1.32 s

6 Conclusion
This paper integrated PID design based on the BP neural network with intelligent car systems,

showcasing their remarkable control capabilities in navigating complex systems, dynamic environments,
and time-varying conditions. In obstacle experiments, the smart car promptly and accurately detected
stationary or moving obstacles, made corresponding decisions to avoid collisions, and successfully returned
to the established route, demonstrating the high real-time performance and robustness of the intelligent car
designed with BP neural network PID.

However, this study has some limitations. We conducted experiments solely in indoor environments
under sufficient lighting conditions, limiting the comprehensiveness of our findings. To more fully evaluate
the performance of intelligent vehicles based on BP neural network PID design, future studies will focus on
conducting experiments in more complex and harsh outdoor environments, particularly in dark conditions.
By experimenting in diverse situations, we aim to understand smart car systems’ performance better and
enhance their adaptability and practicality.

Therefore, future work will focus on optimizing the system for real-time performance under diverse
environmental conditions, ensuring the system’s robustness and readiness for broader deployment. By
addressing these challenges, the research lays a solid foundation for the development of intelligent vehicle
systems capable of operating in real-world scenarios with high reliability and efficiency.

Acknowledgement: The authors would like to express our sincere gratitude to all the editors and anonymous reviewers
for their valuable comments and constructive suggestions.

Funding Statement: This research was supported by the National Key Research and Development Program of China
(No. 2023YFF0715103)—financial support, National Natural Science Foundation of China (Grant Nos. 62306237 and
62006191)—financial support, Key Research and Development Program of Shaanxi (Nos. 2024GX-YBXM-149 and

2400 Comput Mater Contin. 2025;83(2)

2021ZDLGY15-04)—financial support, Northwest University Graduate Innovation Project (No. CX2023194)—financial
support, Natural Science Foundation of Shaanxi (No. 2023-JC-QN-0750)—financial support.

Author Contributions: Liang Zhou: Writing—original draft, Methodology, Software, Hardware, Validation; Qiyao Hu:
Conceptualization, Methodology, Writing—review and editing, Formal analysis; Xianlin Peng: Preparation, Resources;
Qianlong Liu: Validation. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declared no conflicts of interest to report regarding the present study.

References
1. Chougule A, Chamola V, Sam A, Yu FR, Sikdar B. A comprehensive review on limitations of autonomous driving

and its impact on accidents and collisions. IEEE Open J Veh Technol. 2023;5:142–61. doi:10.1109/OJVT.2023.
3335180.

2. Patino HD, Liu D. Neural network-based model reference adaptive control system. IEEE Trans Syst Man Cybern
Part B Cybern. 2000;30(1):198–204. doi:10.1109/3477.826961.

3. Holkar K, Wagh K, Waghmare L. An overview of model predictive control. Int J Control Autom. 2010;3(4):47–63.
4. Berenji HR. Fuzzy logic controllers. In: An introduction to fuzzy logic applications in intelligent systems. Boston,

MA, USA: Springer; 1992. p. 69–96.
5. Liu J, Lian Z, Shi J, Dong L, Sun C. Intermittent fixed-time fuzzy consensus of nonlinear multiagent systems with

unknown control directions and event-based communication. IEEE Trans Fuzzy Syst. 2024;32(12):6917–28. doi:10.
1109/TFUZZ.2024.3468022.

6. Abdelwanis MI, El-Sousy FFM, Ali MM. A fuzzy-based proportional-integral–derivative with space-vector
control and direct thrust control for a linear induction motor. Electronics. 2023;12(24):4955. doi:10.3390/
electronics12244955.

7. Ghamari SM, Khavari F, Mollaee H. Lyapunov-based adaptive PID controller design for buck converter. Soft
Comput. 2023;27(9):5741–50. doi:10.1007/s00500-022-07797-z.

8. Hanna YF, Khater AA, El-Nagar AM, El-Bardini M. Polynomial recurrent neural network-based adaptive PID
controller with stable learning algorithm. Neural Process Lett. 2023;55(3):2885–910. doi:10.1007/s11063-022-
10989-1.

9. Saleem O, Ahmad KR, Iqbal J. Fuzzy-augmented model reference adaptive PID control law design for robust
voltage regulation in DC-DC buck converters. Mathematics. 2024;12(12):1893. doi:10.3390/math12121893.

10. Vanchinathan K, Selvaganesan N. Adaptive fractional order PID controller tuning for brushless DC motor using
Artificial Bee Colony algorithm. Results Contr Optim. 2021;4:100032. doi:10.1016/j.rico.2021.100032.

11. Li W, Qin K, Li G, Shi M, Zhang X. Robust bipartite tracking consensus of multi-agent systems via neural network
combined with extended high-gain observer. ISA Trans. 2023;136:31–45. doi:10.1016/j.isatra.2022.10.015.

12. Hanna YF, Khater AA, El-Bardini M, El-Nagar AM. Real time adaptive PID controller based on quantum neural
network for nonlinear systems. Eng Appl Artif Intell. 2023;126:106952. doi:10.1016/j.engappai.2023.106952.

13. Liu H, Yu Q, Wu Q. PID control model based on back propagation neural network optimized by adversarial
learning-based grey wolf optimization. Appl Sci. 2023;13(8):4767. doi:10.3390/app13084767.

14. Li J, Cheng JH, Shi JY, Huang F. Brief introduction of back propagation (BP) neural network algorithm and its
improvement. In: Advances in computer science and information engineering. Berlin/Heidelberg: Springer; 2012.
p. 553–8. doi:10.1007/978-3-642-30223-7_87.

15. Dalboni M, Mangoni D, Lusignani D, Soldati A. Lightweight dynamic vehicle models oriented to vehicle
electrification. Int J Veh Perform. 2019;5(1):40. doi:10.1504/IJVP.2019.097097.

16. Brancaleoni PP, Corti E, Ravaglioli V, Moro D, Silvagni G. Innovative torque-based control strategy for hydrogen
internal combustion engine. Int J Hydrog Energy. 2024;73:203–20. doi:10.1016/j.ijhydene.2024.05.481.

https://doi.org/10.1109/OJVT.2023.3335180
https://doi.org/10.1109/OJVT.2023.3335180
https://doi.org/10.1109/3477.826961
https://doi.org/10.1109/TFUZZ.2024.3468022
https://doi.org/10.1109/TFUZZ.2024.3468022
https://doi.org/10.3390/electronics12244955
https://doi.org/10.3390/electronics12244955
https://doi.org/10.1007/s00500-022-07797-z
https://doi.org/10.1007/s11063-022-10989-1
https://doi.org/10.1007/s11063-022-10989-1
https://doi.org/10.3390/math12121893
https://doi.org/10.1016/j.rico.2021.100032
https://doi.org/10.1016/j.isatra.2022.10.015
https://doi.org/10.1016/j.engappai.2023.106952
https://doi.org/10.3390/app13084767
https://doi.org/10.1007/978-3-642-30223-7_87
https://doi.org/10.1504/IJVP.2019.097097
https://doi.org/10.1016/j.ijhydene.2024.05.481

Comput Mater Contin. 2025;83(2) 2401

17. Hong Y, Li J, Wang W, Chen J, Wei R. A driving assist system for path tracking via active rear-wheel steering.
In: 2021 33rd Chinese Control and Decision Conference (CCDC); 2021; Kunming, China. p. 1104–9. doi:10.1109/
CCDC52312.2021.9602571

18. Dandiwala A, Chakraborty B, Chakravarty D, Sindha J. Vehicle dynamics and active rollover stability control
of an electric narrow three-wheeled vehicle: A review and concern towards improvement. Veh Syst Dyn.
2023;61(2):399–422. doi:10.1080/00423114.2022.2046810.

19. Sindha J, Chakraborty B, Chakravarty D. Automatic stability control of three-wheeler vehicles-recent devel-
opments and concerns towards a sustainable technology. Proc Inst Mech Eng Part D J Automob Eng.
2018;232(3):418–34. doi:10.1177/0954407017701285.

20. Ataei M, Khajepour A, Jeon S. Development of a novel general reconfigurable vehicle dynamics model. Mech Mach
Theory. 2021;156:104147. doi:10.1016/j.mechmachtheory.2020.104147.

21. Defazio A, Konstantin M. Learning-rate-free learning by d-adaptation. In: International Conference on Machine
Learning. PMLR; 2023.

22. Liao W. Real time bearing fault diagnosis based on convolutional neural network and STM32 microcontroller.
arXiv:2304.09100. 2023.

23. Brown J, Smith A. Advanced serial communication with FT232RL USB to TTL adapter. Int J Embed Syst.
2020;45(2):123–30.

24. Lee K, Kim H. Power optimization techniques for OLED displays in wearable devices. J Display Technol.
2019;15(5):256–62.

25. Zhang L, Wang Y. IoT-based environmental monitoring with DHT11 sensor. Sensor Actuat A: Phys.
2021;304:111940.

26. Thompson R, Johnson M. Efficient power management with LM2596 voltage regulators. J Power Electron.
2020;17(6):458–65.

27. Fuada S, Hendriyana H. UPISmartHome V.2.0—a consumer product of smart home system with an ESP8266 as
the basis. J Commun. 2022;17(7):541–52. doi:10.12720/jcm.17.7.541-552.

28. Pei R, Cao Y. Design of multi-channel temperature acquisition system based on STM32. J Artif Intell Pract.
2023;6(1):41–7. doi:10.23977/jaip.2023.060106.

29. Liu H, Chen G. An improved line following algorithm for autonomous mobile robots using infrared sensors. IEEE
Access. 2022;10:38729–39.

30. Lee J, Kim J, Park S. Development of a fire detection system using sensor data and deep learning algorithms.
Sensors. 2021;21(5):1623.

31. Chen Y, Wang J. Real-time ultrasonic sensor-based obstacle avoidance system for mobile robots. Robot Auton Syst.
2021;140:103783.

32. Ome N, Rao GS. Internet of Things (IoT) based sensors to cloud system using ESP8266 and Arduino Due. Int J
Adv Res Comput Commun. 2016;5(10):337–43.

33. Hatton M. IoT in 2024: trends and predictions. USA: IoT For All; 2024.

https://doi.org/10.1109/CCDC52312.2021.9602571
https://doi.org/10.1109/CCDC52312.2021.9602571
https://doi.org/10.1080/00423114.2022.2046810
https://doi.org/10.1177/0954407017701285
https://doi.org/10.1016/j.mechmachtheory.2020.104147
https://doi.org/10.12720/jcm.17.7.541-552
https://doi.org/10.23977/jaip.2023.060106

	Real-Time Proportional-Integral-Derivative PID Tuning Based on Back Propagation BP Neural Network for Intelligent Vehicle Motion Control
	1 Introduction
	2 Rear-Drive Intelligent Vehicle Dynamics Model
	3 PID Controller Design Based on BP Neural Network
	4 Visual Navigation and System Hardware and Software Design
	5 Experiment and Analysis
	6 Conclusion
	References

