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ABSTRACT: Physical layer authentication (PLA) in the context of the Internet of Things (IoT) has gained significant
attention. Compared with traditional encryption and blockchain technologies, PLA provides a more computationally
efficient alternative to exploiting the properties of the wireless medium itself. Some existing PLA solutions rely on
static mechanisms, which are insufficient to address the authentication challenges in fifth generation (5G) and beyond
wireless networks. Additionally, with the massive increase in mobile device access, the communication security of
the IoT is vulnerable to spoofing attacks. To overcome the above challenges, this paper proposes a lightweight deep
convolutional neural network (CNN) equipped with squeeze and excitation module (SE module) in dynamic wireless
environments, namely SE-ConvNet. To be more specific, a convolution factorization is developed to reduce the
complexity of PLA models based on deep learning. Moreover, an SE module is designed in the deep CNN to enhance
useful features and maximize authentication accuracy. Compared with the existing solutions, the proposed SE-ConvNet
enabled PLA scheme performs excellently in mobile and time-varying wireless environments while maintaining lower
computational complexity.

KEYWORDS: Physical layer authentication; blockchain; squeeze and excitation module; computational cost; mobile
scenario

1 Introduction
Advancements in wireless technology are driving the rapid deployment of Internet of Things (IoT)

devices, enabling extensive connectivity across various applications and environments [1]. However, the
increasing transmission of sensitive data over wireless channels has raised significant concerns about the
security of IoT network communications [2]. Given the massive scale of mobile device access, ensuring
IoT communication security has become increasingly critical [3]. Blockchain, a type of distributed ledger
technology, is utilized in cryptographic algorithms for its secure, reliable, and tamper-proof characteris-
tics [4]. Fang et al. [5] proposed a smooth handover authentication approach that utilizes decentralized
edge intelligence and hierarchical blockchain technology in the zero-trust Internet of Vehicles (IoV).
However, blockchain technology inherently relies on the execution of complex cryptographic algorithms
and consensus mechanisms, both of which demand significant computational resources [6]. To enhance the
utilization of computing resources, researchers have turned to physical layer authentication (PLA) technique
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that offers distinct advantages over traditional upper-layer authentication methods based on encryption.
Unlike encryption, PLA is characterized by low latency and reduced complexity [7]. In light of the security
threats posed by potential attackers, a rapid and efficient lightweight authentication scheme is essential for
identifying unknown IoT transmitting devices effectively [8].

In recent years, PLA has proven to be a promising approach for detecting spoofing attacks by utilizing
physical layer characteristics [9]. PLA differentiates between legitimate and illegitimate devices by analyzing
radio frequency (RF) [10] fingerprints, including received signal strength (RSS), and carrier frequency offset
(CFO). However, a device’s RF fingerprint arises from inherent hardware imperfections and is influenced
by environmental conditions, such as temperature. Time-varying factors can also impact these fingerprints,
posing challenges for reliable authentication [11]. RSS and CFO have limitations as they only provide limited
information on signal strength and frequency offset, and fail to capture the multi-dimensional characteristics
of the channel, such as phase and delay [12]. Channel state information (CSI) provides a more detailed and
fine-grained fingerprint of the wireless channel. Based on the widely used Jakes model, received signals
become decorrelated beyond a distance of half a wavelength, making it challenging for attackers to replicate
the channel between legitimate devices [13]. Therefore, CSI fingerprints offer high spatial resolution, making
them highly effective for detecting illegitimate devices [14].

CSI provides detailed insights into channel conditions, including amplitude and phase data across mul-
tiple channels [15]. Such fine-grained information allows CSI-based authentication methods to distinguish
more accurately between devices or devices by leveraging specific channel characteristics. PLA can be broadly
classified according to the decision strategy into threshold-based and threshold-free methods. Additionally,
it can be further subdivided based on the characteristics of the authenticated devices into categories such as
static user authentication and mobile user authentication.

On the one hand, some researchers propose physical layer authentication in static scenarios. Liao
et al. [16] and Li et al. [17] used convolutional neural networks (CNNs) to differentiate legitimate and
illegitimate devices under simulated conditions, achieving a certain degree of accuracy. In [18], Qiu et al.
introduced an adaptive neural network capable of tracking time-varying CSI data for intelligent authenti-
cation. In [19], the use of a confidence branch in combination with CNNs enabled not only discrimination
between legitimate and illegitimate devices but also identification of distinct legitimate devices. Further,
Gao et al. [20] proposed an angle-delay calculation method using environmental semantics, leveraging the
YOLO network and a lightweight architecture to extract CSI data and achieve high-precision authentication.
Xie et al. [21] suggested utilizing phase differences to map wireless device locations for spoofing attack
detection, feeding phase-difference-generated heatmaps into a neural network model for training. The
results successfully demonstrated the superior performance of this approach. In [22], Chen et al. propose
a Convolutional Denoising Autoencoder (CDAE) structure to denoise CSI with noise, and then used K-
Nearest Neighbors (K-NN) algorithm to distinguish between legitimate and illegitimate devices. Chen
et al. [23] use a threshold-based detection approach utilizing channel differences to create labeled offline
training datasets for machine learning algorithms, eliminating the need for manual labeling. Martins
et al. [24] propose using CSI parameters as an authentication mechanism and tracking the wireless channel
to prevent network attacks from impersonating legitimate users’ communication. On the other hand,
several studies explore the implementation of physical layer security authentication in mobile environments.
Study [25] present a deep learning-based authentication approach that captures and monitors changes in
channel characteristics, improving the adaptability of PLA. In [26], Jing et al. introduce a multi-attribute PLA
mechanism without the need for thresholds. Wang et al. [27] introduced a spatiotemporal gradient-based
physical layer authentication (STG-PLA) algorithm enhanced by CSI-to-image transformation. It extracts
correlation and scattering features to represent channel characteristics and converts multiple CSI sequences
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into a CSI image for efficient analysis. In [28], Pan et al. apply residual network (ResNet) to achieve legal and
illegal residual network authentication in the mobile industrial Internet scene, and proved that the accuracy
of ResNet authentication in the mobile scene is higher than the K-NN algorithm. In [29], data augmentation
and transfer learning are introduced into the authentication scheme. ResNet50 network is used to realize
multi-user authentication in the industrial IoT environment.

However, PLA has been extensively studied, addressing the memory and computational constraints
of authentication systems in dynamic, time-varying mobile environments remains a challenging aspect.
This paper aims to enhance authentication performance for mobile devices in dynamic environments by
introducing a lightweight model for resource-constrained devices, addressing the real-time needs of IoT
devices. We collect instantaneous CSI data from the IoT environment to use as training data for our model.
When an external device attempts to intrude and submits an access request, its instantaneous CSI data is input
into the trained authentication model to extract intricate CSI features, allowing for precise identification of
the unknown device’s type. Therefore, we introduce the Squeeze and Excitation Convolutional Network (SE-
ConvNet), a network that reduces complexity through the integration of the SE module and convolution
factorization, while leveraging the squeeze and excitation mechanism of the SE module to enhance the
accuracy of the authenticator. Our contributions are summarized below:

1. We propose a scheme based on the SE module and convolution factorization for authenticating CSI
from mobile devices in IoT. The goal is to balance authentication accuracy and computation complexity
for mobile devices.

2. In order to reduce the computation complexity, we introduce the SE module and convolution fac-
torization. The SE module enhances useful features and suppresses irrelevant ones, demonstrating
outstanding performance in various image processing tasks. Convolution factorization decomposes
complex convolution operations into simpler ones, reducing computational complexity.

3. Comprehensive evaluation metrics are proposed to evaluate the proposed scheme. Simulation findings
indicate that SE-ConvNet not only effectively verifies device identity but also demonstrates robustness
in time-varying wireless conditions.

The rest of the paper is as follows: the Section 2 describes our proposed PLA framework in detail through
a flowchart, explaining the key methods and principles of its main components. In Section 3, we present
the experimental setup, results, and comparisons with alternative algorithms. Finally in the Section 4, we
summarizes our findings and discusses potential directions for future research.

2 Methodology
In this section, we begin by presenting the system model for PLA. Next, we detail the proposed SE-

ConvNet, including its mechanism and the design of the authentication model. Finally, we provide an analysis
of the model’s complexity.

2.1 System Model
PLA must account for the time-varying characteristics of wireless channels, including fading and

multipath effects. Additionally, it should consider the mobility of both the transmitter and receiver. Device
movement can cause fluctuations in channel characteristics, influenced by factors such as Doppler shift and
coherence time. Fig. 1 depicts the standard Alice-Bob-Eve model in a wireless communication scenario.
In this model, Alice, the legitimate transmitter, communicates with Bob, the legitimate receiver, in a
multipath scattering environment. Meanwhile, a malicious device, Eve, attempts to impersonate Alice and
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gain illegitimate access to Bob. Such an attack diminishes the credibility of the legitimate transmitter, posing
a threat to the security of the communication system.

Figure 1: PLA model in the mobile scenario

Assuming that orthogonal frequency division multiplexing (OFDM) technology is utilized in this study
and Ns subcarriers are assigned for communication, let the vectors X⃗ and Y⃗ denote the transmitted and
received signals, respectively. We have the following equation:

Y⃗ = Ha ⋅ X⃗ +W (1)

where Ha represents the channel frequency response (CFR) matrix with dimensions Na × Ns , where Na is
the number of antennas and Ns is the number of subcarriers. This matrix can be estimated using pilot signals.
The term W represents additive white Gaussian noise. For the i-th antenna and the j-th subcarrier, the CFR
Hai j is defined as a complex number:

Hai j = ∣Hai j ∣ e
j∠Hai j = real(Hai j) + j ⋅ img(Hai j) (2)

The channel matrix Hai j typically represents the CSI. Changes in the wireless communication environ-
ment can affect some signal paths, while others remain invariant. The receiver (Bob) collects the CSI between
itself and the transmitter (Alice), and uses this CSI as a reference for identifying legitimate communication.
Given that Eve, an eavesdropper within communication range, may attempt to inject illegitimate messages,
Bob must determine the legitimacy of a message source based on the real-time CSI characteristics.

To facilitate authentication, Bob labels the CSI data with unique identifiers to distinguish between
transmitters. CSI from Eve is labeled as 0, while Alice’s data is labeled as 1. Bob uses historical CSI data and
corresponding labels to train the lightweight SE-ConvNet network for authentication. When Bob receives a
signal from an unidentified transmitter, he inputs the estimated CSI into the pretrained SE-ConvNet model.
By activating the sigmoid function at the end of the fully connected layer, a prediction score mapped to
between 0 and 1 is obtained. Finally, the score is compared to the threshold:

D = {1, if score > ε0
0, if score ≤ ε0

(3)

where D = 1 denotes that there is a legitimate device, and D = 0 denotes that there is no legitimate devices
and threshold ε0 is obtained through experiments.
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2.2 Proposed PLA Scheme
2.2.1 Establishment of Authentication Mechanism

The proposed authentication mechanism is shown in Fig. 2. It consists of three stages: acquisition of
instantaneous CSI data, extraction of deep CSI features and establishment of the authentication model, and
access authentication for unknown devices.

Figure 2: PLA mechanism based on SE-ConvNet

We divide the wireless communication environment into multiple grids, sampled multiple devices
moving differently within this space, and collected numerous snapshots of instantaneous CSI data. This
approach yields a substantial dataset, ensuring ample training samples for effective model development.
Given the distinctiveness of wireless channels, the channel characteristics between each legitimate device and
the access point (AP) are unique, which makes them suitable for authentication. When an unknown device
attempts to connect to the AP, we capture its real-time CSI data and feed it into the pre-trained authentication
model. This process enables the extraction of deep features from the CSI, allowing us to accurately verify
the legitimacy of the device’s identity. The mathematical expression for this phase is represented in Eq. (4) as
follows:

Cclass(t) = fconv(Ha(t)) (4)

where fconv(⋅) denotes the proposed PLA mechanism, which effectively differentiates between the types
of user authentication. The term Ha(t) represents the current CSI, while Cclass(t) indicates the output
authentication identity type. The establishment process of the proposed authentication mechanism is
illustrated in Algorithm 1.
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Algorithm 1: SE-ConvNet physical layer authentication
Input: The transmitter’s channel Ĥa(t) in experimental scenario
Output: The updated weight of SE-ConvNet corresponds to the predicted labels for the active transmitters.

1: Initialize a preprocessed dataset data consisting of the recorded CSI data along with their associ-
ated labels.

2: The pre-processed data set is input to the SE-ConvNet network for training to obtain the output label of
the network

3: if ŷ = 0 then
4: Reject the request and trigger a spoofing alarm.
5: else
6: Accept the request and identify which legitimate transmitter it originated from.
7: end if
8: Return the prediction tag for K devices {y1 , . . . , yK} and updated weight matrix

2.2.2 The Structure of SE-ConvNet
As the core of the proposed PLA mechanism, the design of SE-ConvNet has a great impact on the overall

authentication performance. Fig. 3 illustrates the architecture of SE-ConvNet.

Figure 3: The structure of SE-ConvNet

After each convolution layer in the SE-ConvNet architecture is a Batch Normalization (BN) layer and
a Leaky ReLU activation function. Inspired by ResNet [30] and channel attention mechanism [31], we
introduce the SE module suitable for lightweight processing while designing the network structure. During
network training, the BN layer normalizes a group of sample features with the same dimension, which speeds
up model training and improves accuracy. The activation function gives the network nonlinear modeling
capabilities, allowing it to perform nonlinear transformations on separable CSI data and enabling the verifier
to capture and model underlying core features. SE-ConvNet applies Leaky ReLU to the various convolution
layers. The Leaky ReLU formula is shown below:

Leaky ReLU(x) = {x , if x ≥ 0
αx , if x < 0 (5)



Comput Mater Contin. 2025;83(2) 2031

where α ∈ (0, 1) is the negative slope. We set α to 0.3 in the SE-ConvNet. The various components of the
SE-ConvNet network structure are integral to its functionality, and these components are described in
detail below.

Convolution Factorization Convolution factorization is a technique that decomposes a standard con-
volution kernel into multiple smaller kernels. This approach is widely utilized in deep learning, particularly in
the design of CNNs. In this paper, convolution factorization is incorporated into the proposed SE-ConvNet
architecture to reduce both computational complexity and the number of parameters, while striving to
maintain model accuracy as much as possible. The structure is illustrated in Fig. 4.

Figure 4: Convolution factorization

This approach involves decomposing the standard convolution kernel into multiple smaller convolution
kernels. The core concept of convolution factorization is rooted in tensor decomposition theory, which has
been extensively applied in signal processing, pattern recognition, and machine learning. By decomposing
high-dimensional tensors into the product of multiple low-dimensional tensors, this approach effectively
reduces both storage requirements and computational costs. This principle has been seamlessly incorporated
into the optimization of convolution operations in deep learning, particularly in the development of
lightweight models and their deployment on mobile and embedded systems. In our proposed design,
convolution factorization is integrated into the SE-ConvNet architecture, with the specific calculation
formula represented as:

U(l+1)
N (i , j) = fl

⎛
⎝

Kl

∑
k=1
[

nl

∑
x=1

U(l)
k (sl ⋅ i + x , j)w(l)

K1
(x , y)] ⋅

nl

∑
y=1

w(l)
K2
(y, 1) + Ξ

⎞
⎠

(6)

where U(l) refers to the output of neurons in layer l , while f (l)(⋅) represents their activation function. K1 and
K2 denote convolution kernels of size 1 × n and n × 1, respectively. The dimensions of the neurons’ output in
layer l are specified as nl × nl . Kl and nl correspond to the number of convolution kernels and the number
of neurons in this layer, respectively. The weight of the k-th convolution kernel in layer l is denoted as wl

k .
Parameters sl and pl define the stride and the size of padding applied in the convolution layer. The threshold
matrix is represented by Ξ. Padding involves surrounding the edges of the input matrix with additional
elements (such as zeros, ones, or repeated values) to ensure that the output matrix has the same dimensions
as the input after convolution. Stride determines how far the convolution kernel moves with each step during
the operation. This decomposition method effectively reduces computational complexity while preserving
the model’s expressiveness.
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SE Module We introduce the SE module, which is designed based on the principles of Squeeze and
Excitation Networks. The objective of this module is to enhance model accuracy while maintaining a low
floating-point operations (FLOPS) count. The structure of the SE Module is illustrated in Fig. 5.

Figure 5: The structure of SE module

Step 1 Squeeze: Each learned filter operates within a local receptive field, which means that each unit of
the transformation output global channel information cannot leverage contextual information beyond that
localized region, the formula to be applied is F(Û(i , j)) = D(i , j). This issue becomes more pronounced
at the lower levels of the network, where the receptive field is relatively small. To mitigate this limitation,
we propose compressing the global channel information into a single channel descriptor. This can be
accomplished by employing global average pooling to generate channel-level statistics. Formally, in the
spatial dimension of the narrow h ×w output Dc , we generate statistics z, with the first Zc elements calculated
using the following formula:

Zc =
1

h ×w

h
∑
i=1

w
∑
j=1

Dc(i , j), for c = 1, . . . , C (7)

Step 2 Excitation: To maximize the information gathered during the compression process, a second
operation is performed to effectively capture channel dependencies. This operation needs to meet two key
requirements: firstly, it must be able to learn nonlinear interactions between channels; secondly, it should
account for non-mutually exclusive relationships, enabling multiple channels to be considered at the same
time rather than isolating a single activation. To fulfill these requirements, we have selected a simple gating
mechanism and employed the sigmoid activation function:

s = σ(W2 ⋅ δ(W1z)) (8)

the channel weight s generated by the excitation operation provides crucial information for subsequent
weighting. We apply these weights to the original feature map u, enabling the model to dynamically adjust
the significance of each feature based on channel importance. Dimensionality is reduced through the fully
connected layer with a Leaky ReLU activation function, usually reducing the dimension from C to C/r (where
r is the scaling factor). This approach enhances the expressive power and overall performance of the network.
The channel weight s is applied to the original feature map D, with weighting achieved through channel-level
multiplication. Consequently, the output feature map can be expressed as follows:

X̃ = D ⋅ s (9)
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2.2.3 Complexity Analysis of SE-ConvNet
To some degree, the number of FLOPS reflects the computational complexity of SE-ConvNet. The

complexity of a single convolution layer can be expressed as O(hl wl k2
l Cl−1Cl). The convolution factor

complexity introduced in this paper is given by O(hl wl(kl + 1)Cl−1Cl). Because the SE module utilizes fully
connected layers and global average pooling layers, its computational complexity can be described as:

O (C ⋅ (C
r
) + (C

r
) ⋅ C) = O (2C2

r
) = O (C2

r
) (10)

By integrating the complexity of the convolution layers with the complexity formula of the SE module,
the overall complexity of SE-ConvNet can be derived as follows:

O (hl wl(kl + 1)Cl−1Cl +
C2

r
) (11)

where hl and wl denote the height and width of the feature map, with kx representing the size of the filter.
Cl−1 is the number of output channels from the preceding layer, and Cl refers to the output channels in the
current layer. The relationship between the output feature at layer l and the feature map from the previous
layer is given by Eq. (12), where pl and sl indicate the padding and stride values for the l-th layer, respectively.
If the size is not divisible evenly, the convolutional layer truncates the size, while the pooling layer performs
rounding up.

hl =
hl−1 − kl + 2pl

sl
+ 1,

wl =
wl−1 − kl + 2pl

sl
+ 1

(12)

3 Experiment Results
This section outlines the experimental setup, including the key parameters, simulation environment,

evaluation criteria, and datasets used. We then present the results of the proposed approach, followed by an
in-depth analysis of the findings.

3.1 Experimental Parameters
We set the learning rate to 1 × 10−3 to strike a balance between fast convergence and training stability. A

higher learning rate may cause instability during training, whereas a lower value could result in unnecessarily
prolonged training. To mitigate overfitting, we employ a weight decay coefficient of 5 × 10−4 for regular-
ization, penalizing large weights and promoting simpler models that generalize better to unseen data. The
model is trained for 50 epochs, a number selected based on monitoring both training and validation losses to
ensure sufficient learning without overfitting. A batch size of 32 is used during training, balancing efficiency
and memory constraints; smaller batches introduce noise in gradient updates, while larger ones may exceed
memory capacity.

The integration of these hyperparameters is crucial to the training process and significantly impacts the
model’s performance in the authentication task. This section first describes the source of the channel dataset,
followed by a comparison of the performance of SE-ConvNet and a traditional CNN. During testing, both the
SE-ConvNet and CNN models are evaluated by feeding them the test set. The comparison not only involves
the probability of the received channel data belonging to the legitimate device (Alice), but also includes a
series of other performance metrics.
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3.2 Performance Metrics
Recall and False Positive Rate (FPR) are critical metrics for assessing the effectiveness of PLA schemes.

Recall, also referred to as True Positive Rate (TPR), indicates the percentage of actual positive instances
correctly identified by the model. Conversely, FPR reflects the model’s propensity to misclassify negative
samples. A low FPR indicates better discrimination between positive and negative samples. This is partic-
ularly important in applications such as security monitoring and fraud detection, where minimizing false
alarms is critical. Precision, on the other hand, measures the proportion of samples labeled as positive by the
model that are truly positive. The formulas for these metrics are given below:

Recall(TPR) = TP
TP + FN

,

FPR = FP
FP + TN

,

Precision = TP
TP + FP

(13)

In these equations, FP denotes instances where Bob incorrectly classifies Eve’s channel matrix as
authenticated. TN indicates the number of illegitimate labels that Eve’s signal should have received. FN
represents the number of legitimate channels that Bob misclassifies as illegitimate, while TP signifies the
correct identification of legitimate tags from legitimate devices. The accuracy of the model is computed using
the following formula:

Accuracy = TP + TN
TP + TN + FP + FN

(14)

To comprehensively assess the overall performance of SE-ConvNet, this study also introduces the F1-
score, which combines accuracy and recall. The F1-score offers a comprehensive assessment of the model’s
performance, with values ranging from 0 to 1, where a higher score signifies better performance. The formula
for the F1-score is as follows:

F1-score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(15)

The loss function used for training the model is the binary cross-entropy loss, expressed as:

Lcross = −[C log Ĉ + (1 −C ) log(1 − Ĉ )] (16)

In this equation, the classification labels for legitimate and illegitimate devices are assigned values of
1 and 0, respectively. The variable C represents the true label of the data, while Ĉ indicates the predicted
probability that the data comes from a legitimate device.

3.3 Dataset
In this study, we employed the advanced wireless channel generator QuaDRiGa [32] to simulate channel

environments and obtain CSI data. The QuaDRiGa platform incorporates a drift model that enables the
smooth evolution of small-scale parameters, such as multipath power, delay, departure angles, and arrival
angles, over short time intervals as mobile terminals move along a specified trajectory.

The receiver’s movement trajectory in the automobile assembly plant is illustrated in Fig. 6. Our
experiment considers a 100 m × 100 m region, where a stationary receiver records channel data as the
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transmitter moves along different paths, introducing channel heterogeneity. CSI data gathered from various
locations within this region are treated as originating from distinct emitters, thereby simulating the CSI of
multiple transmitters.

Figure 6: The receiver’s position and the transmitter’s movement trajectory in an automotive assembly plant

QuaDRiGa generated two datasets for this study: Dataset A, using parameters aligned with [17], and
Dataset B, employing parameters tailored for experimental validation as described in Table 1. The QuaDRiGa
platform generated a complex CSI matrix of size 10,000 × 1024, with each CSI instance represented as a 1 ×
1024 complex vector. Each vector was subsequently converted into a 32 × 32 channel matrix. The dataset was
partitioned into three subsets for training, validation, and testing, with a distribution of 80%, 10%, and 10%,
respectively. For comparative evaluation, we selected a CNN architecture from [17] as a baseline model.

Table 1: Parameter settings for Dataset B

Options Parameter settings
Channel model 3GPP_38.901_UMi_NLOS

Center frequency 3.5 GHz
Bandwidth 20 MHz

Base station height 10 m
User height 1.5 m

User movement speed 1 m/s
Number of subcarriers 32
Polarization direction Vertical polarization
Antenna configuration AP: 32 antenna

Nodes: Single antenna

Since SE-ConvNet requires a specific data format for training and testing, the CSI data must be
normalized. Normalization refers to mapping the input values to the range of [0, 1] to enhance the learning
efficiency of the authenticator. The normalization formula is as follows:

Ĥl ′

anorm
(t) = Ĥl

a(t) − Ĥamin(t)
Ĥamax(t) − Ĥamin(t)

(17)
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In the 1-D case, Ha(t) is transformed by obtaining its maximum Ĥamax(t) and minimum Ĥamin(t)
values. The 1-D is denoted as Ĥl

a(t), and the normalized value is Ĥl ′

anorm
(t). Moreover, before using the

authenticator to identify devices in the wireless communication environment, the authenticator must be
trained. Specifically, we input the preprocessed dataset into the authenticator for training to extract deep
features, thereby acquiring an authentication model that can represent and differentiate spatiotemporal
environmental features at different locations.

3.4 Comparative Experiments and Results Analysis
When tested on Dataset A, both CNN and the proposed SE-ConvNet achieved high accuracy, as shown

in Table 2 below:

Table 2: Comparison of network models and authentication accuracy on Dataset A

Name Network model Accuracy (under 0 dB)
Our scheme SE-ConvNet 96.9%

Scheme proposed by X. Li CNN 94.8%

Fig. 7 illustrates the authentication accuracy comparison between SE-ConvNet and a traditional CNN
across varying SNR conditions on Dataset B. When the SNR is 20 dB, both models achieve over 95% accuracy,
demonstrating their effectiveness in high-quality signal environments. However, as the SNR drops to 0 dB,
SE-ConvNet maintains high accuracy, whereas the CNN’s performance declines significantly. The robustness
of SE-ConvNet at 0 dB SNR can be attributed to the SE module, which enhances the model’s ability to
accurately process low-SNR channel data.

Figure 7: A comparison of authentication accuracy between PLA scheme based on SE-ConvNet and CNN
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To further analyze the training process of SE-ConvNet, Fig. 8 illustrates the evolution of its accuracy
and loss curves as the number of epochs increases under different SNR levels. The training and validation
losses consistently decrease, while accuracy enhances, demonstrating that the model effectively fits the data
with strong generalization ability. These results validate the training efficacy of SE-ConvNet under specific
channel conditions and highlight its adaptability to the training data. Moreover, the stable trends suggest that
the model avoids overfitting during training, providing a robust foundation for practical applications.

Figure 8: Accuracy and loss curves: (a) Accuracy curves; (b) Loss curves

Fig. 9a presents the ROC curve of SE-ConvNet under different signal-to-noise ratios (SNR). At an SNR
of 0 dB, the area under the ROC curve (AUC) reaches 0.980, indicating SE-ConvNet’s strong performance
in distinguishing legitimate from illegitimate devices even in low-SNR environments. Fig. 9b illustrates the
F1-score variations across different thresholds when the SNR is 0 dB. The F1-score remains above 0.9 for
thresholds within the [0.5, 0.9] range, peaking near a threshold of 0.85, which signifies optimal classification
accuracy under these challenging conditions.

Figure 9: Classification performance metrics: (a) ROC curves; (b) F1-scores at 0 dB (SNR)

Fig. 10 provides a comparative analysis of FLOPS and memory usage between SE-ConvNet and CNN
with an input data size of 2 × 32 × 32. FLOPS serves as a key indicator of a model’s computational complexity,
with lower values indicating greater efficiency in inference. Memory usage measures the amount of memory



2038 Comput Mater Contin. 2025;83(2)

required for model parameters and intermediate activations during inference. Time per batch indicates
the duration needed to process a specified number of input samples. A lower time per batch reflects
higher throughput and faster response times, critical for real-time applications. Analyzing this metric
helps identify optimization opportunities for improved computational efficiency. The comparison clearly
shows that SE-ConvNet has significantly lower computational complexity than traditional CNN while
maintaining accuracy. This finding not only demonstrates SE-ConvNet’s advantages in resource-constrained
environments but also indicates its feasibility for large-scale deployment.

Figure 10: Model efficiency comparison

4 Conclusion
In this paper, we present SE-ConvNet, a lightweight scheme designed to detect physical layer spoofing

attacks for mobile devices in IoT scenarios. This approach achieves packet authentication by leveraging the
CSI of devices across various locations to accurately identify spoofing attacks. The simulation results show
that, compared to other authentication schemes, the proposed SE-ConvNet exhibits superior robustness
under time-varying conditions and environmental disturbances, while maintaining a lower model overhead.
Notably, even at 0dB (SNR), the AUC remains above 0.980, highlighting the scheme’s resilience under
challenging signal conditions. The current approach may still experience performance degradation under
certain class imbalance conditions in the dataset. Therefore, future work can address these issues through
further improvements in data processing and model architecture.

Future research should focus on developing PLA schemes suitable for large-scale multi-user mobile
scenario. As proposed in [27], optimizing feature extraction and selection of CSI samples enhances feature
discriminability, improving PLA efficiency in complex communication environments. Additionally, explor-
ing methods that adapt to multiple application scenario while balancing performance and complexity will
be critical.
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