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ABSTRACT: Wireless Sensor Networks (WSNs) are one of the best technologies of the 21st century and have seen
tremendous growth over the past decade. Much work has been put into its development in various aspects such as
architectural attention, routing protocols, location exploration, time exploration, etc. This research aims to optimize
routing protocols and address the challenges arising from conflicting objectives in WSN environments, such as
balancing energy consumption, ensuring routing reliability, distributing network load, and selecting the shortest path.
Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right
balance between multiple conflicting objectives. To address this gap, this paper proposes an innovative approach that
integrates Particle Swarm Optimization (PSO) with a fuzzy multi-objective framework. The proposed method uses
fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing
methods that only deal with one or two objectives. The search efficiency is improved by particle swarm optimization
(PSO) which overcomes the large computational requirements that serve as a major drawback of existing methods.
The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness. The fuzzy
logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions. These
adjustments influence PSO’s velocity updates, ensuring continuous adaptation under varying network conditions. The
proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation. The results show that the proposed
model is capable of improving the network lifetime by 15.2%–22.4%, increasing the stabilization time by 18.7%–25.5%,
and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques. The proposed model
also achieves a 15%–24% reduction in load variance, demonstrating balanced routing and extended network lifetime.
Furthermore, analysis using p-values obtained from multiple performance measures (p-values < 0.05) showed that
the proposed approach outperforms with a high level of confidence. The proposed multi-objective PSO-fuzzy model
provides a robust and scalable solution to improve the performance of WSNs. It allows stable performance in networks
with 100 to 300 nodes, under varying node densities, and across different base station placements. Computational
complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic
controls the power usage to make the system practical for real-world use.
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1 Introduction
A wireless sensor network (WSN) is a critical tool for studying and interacting with the physical world.

As illustrated in Fig. 1, a sensor network typically comprises numerous small sensor nodes. Each sensor node
contains one or more sensing components to sense environmental factors such as temperature, humidity,
and pressure. It also contains a processing component to perform simple basic operations on the data and
communicate with its neighboring nodes. Sensor nodes are distributed over a large area and communicate
with each other via wireless links [1]. Control nodes called base stations process the data collected from
sensor nodes, collect control commands for sensor nodes, and connect this network to other networks such
as the Internet. The base station forms the core of WSN. It implements various programs ranging from critical
signal processing and routing protocol configuration to application programs. Sensor nodes are typically
deployed randomly and then form a sensor network in an ad hoc manner to perform specific tasks. There is
usually no infrastructure support for WSNs [2].

Figure 1: The architecture of WSN communication

A large number of applications based on WSNs have emerged and been deployed in different geo-
graphical areas such as scientific exploration, military surveillance, traffic monitoring, marine surveillance,
environmental protection, object tracking, and other valuable applications. So it is natural to talk about
special cases in WSN, which usually include sensor node failure or communication failure due to power
outages [3]. Besides, there are many other problems that they suffer from such as low reliability of wireless
communication systems, how to balance the loads on the available nodes, limited available power, and
instability of nodes. These limitations are mainly caused by the limited resources of sensor nodes and the
variability of network scenarios. Solving such problems requires the development of new routing protocols
that improve energy utilization, network lifetime, load balancing, and reliability [4,5]. Numerous research
studies have been conducted to explore various optimization algorithms aimed at addressing the challenges
associated with WSNs. Routing strategies can be classified into two categories, namely the traditional
approach and the swarm intelligence-based approach. Previously implemented techniques such as Low
Energy Adaptive Clustering Hierarchy (LEACH) work on the hierarchical clustering algorithm to improve
the network lifetime problem by using balanced power distribution [6]. These techniques have been useful
in static, small, and less tangled environments. However, they suffer from obvious drawbacks when applied
to dynamic or large networks. Swarm intelligence techniques are known to enhance flexibility and increase
throughput in wireless sensor networks, which will be reviewed here. These techniques have been useful in
small, less tangled, and static environments, but they have obvious drawbacks when applied to dynamic or
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large networks. Swarm intelligence techniques are known to enhance flexibility and increase throughput in
wireless sensor networks, which will be reviewed here. In 2015, Umadevi et al. applied ACO to optimize the
placement of sensor nodes in an attempt to achieve the best possible stability of the overall network and
reduce path failures [7]. Similarly, in 2016, Mohajerani et al. also used ACO in wireless sensor networks to
extend the network lifetime by prioritizing paths with the highest remaining energy [8]. A fault-tolerant
routing based on PSO has been proposed to increase the reliability of the network architecture, showing
great compatibility with WSNs [9]. An improved genetic algorithm is used to select an energy-efficient multi-
hop path, showing significant improvements in network lifetime and energy utilization [10]. Similarly, a
chaotic genetic algorithm is introduced for clustering and routing, which effectively balances the energy
consumption across nodes while enhancing load balancing [11]. An improved ABC algorithm has been
used to improve data transmission in power-constrained WSN environments [12]. The multipath adaptive
routing techniques discussed in [13] use genetic algorithms to find reliable multiple paths with higher
data throughput and fault tolerance. A new DRL routing protocol for WSNs has been proposed in [14].
This approach improves the traditional decision-making approach because it adapts to changes in network
conditions. A PSO-based routing protocol was proposed in [15] to achieve better energy efficiency and load
balancing by dynamically adjusting routing decisions. A dynamic routing algorithm based on distributed
neural networks has been developed to increase the flexibility and energy saving in different WSNs [16].
To alleviate the packet reordering problem in lossless data centers, an innovative load balancing method
that encapsulates intra-network recirculation has been proposed to improve network performance and
availability [17]. Thus, the development of new efficient heuristic techniques, including techniques based
on combining swarm intelligence, machine learning, and adaptive techniques that mimic natural processes,
has been shown to improve both the convergence rate and solution quality of more complex optimization
problems in recent years [18]. A self-healing path approach was proposed in [19] to enhance fault tolerance
in WSNs. This approach is based on a path selection method that changes its path in case of a node or some
links that pose a hindrance to communication processes. A new ACO-based routing protocol specifically
designed for WSNs in the IoT environment is presented in [20].

Based on these works, the proposed study presents a PSO-fuzzy algorithm specifically designed for
WSNs. Unlike ACO, genetics and DRL deal with one or two objectives and face problems such as slow
convergence or high resource consumption. For example, adaptive DRL protocols exhibit some slow
convergence in the training process, which is time-consuming. Also, using a different number of nodes
or changing the spatial configuration also requires retraining the DRL model, which is computationally
expensive. Although ACO is effective at optimizing a single objective, it has difficulty managing multiple
conflicting objectives. It requires separate heuristics for different objectives, which can lead to inefficiency.
The combination of PSO and fuzzy in the proposed PSO-fuzzy directly addresses these issues. PSO can
converge faster without the need for prolonged training. Fuzzy logic is incorporated to guide particle updates,
dynamic weight adjustment, and multiple fitness evaluations to optimize routing. These improvements
address multiple conflicting objectives together in a single protocol, which were missing in previous studies.
The proposed routing method is designed to achieve operational gains in case of minor failure of some of its
components, especially in hard-to-reach environments.

The rest of this paper is organized as follows: Section 2 outlines the mathematical modeling of the
problem, including the formulation of all objectives and the fuzzy system along with its membership func-
tions. Section 3 provides the methodology in detail. Section 4 describes the experimental setup, simulation
environment, and parameter settings, followed by an analytical study of the results. Finally, the conclusions
of this study and future trends are stated in Section 5.
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2 The Problem Formulation
This section presents the mathematical model for routing optimization in WSNs based on multiple

objectives, including minimizing the path length, reducing energy consumption, maximizing routing relia-
bility, and achieving load balancing. Together, these objectives aim to reduce node failure and connectivity
loss. Consider a WSN comprising a certain number of sensor nodes (NoS). Each node X ∈ {1, 2, . . . , NoS}
has a status STi which is defined by Eq. (1).

STi =
⎧⎪⎪
⎨
⎪⎪⎩

1 i f sensor works
0 i f sensor f ail

(1)

Network connections (C) represented by Eq. (2) are defined as a measure of the number of active sensors
that can communicate within the network. In fully connected networks, it is necessary to achieve at least one
path between sensors to ensure data flow between them.

C =
NoS
∑
i=1

NoS
∑
j=i

Ai jSi S j ∀i ≠ j (2)

where C represents the WSN connections, S is the sensor node, NoS contains the number of sensor nodes
and Ai j denotes the connectivity matrix, which represents the relationship between sensors Si and S j. The
contents of Ai j are determined using Eq. (3).

Ai j =
⎧⎪⎪
⎨
⎪⎪⎩

1 i f sensors i and j are connected
0 i f sensors i and j are Disconnected

(3)

where 1 indicates connections between two sensors, while 0 indicates no connection between them.

2.1 Formulating the Main Objectives Mathematically
Reducing power consumption remains a critical concern in WSNs, as the majority of sensor nodes rely

on limited battery power. It has been observed that edge nodes, which forward or broadcast messages, as well
as those positioned within efficient network architectures, tend to consume more energy. Consequently, these
nodes experience significant battery degradation, increasing the likelihood of network failures and reducing
duty cycles. The energy consumption of a sensor node i is denoted as Ei , and its mathematical representation
is provided in Eqs. (4) and (5).

ETotal =
NoS
∑
i=1

Ei (4)

Ei = Ei
tx + Ei

rx + Ei
ex (5)

where ETotal is the total energy consumption, Ei is the energy consumption of sensor i. Ei
tx , Ei

rx , and Ei
ex

are the transmission, reception, and computing energy of sensor node i, respectively.
From Eqs. (4) and (5), which quantify energy consumption, we establish a foundation for evaluating

the energy efficiency of WSNs, as well as for designing and comparing more energy-efficient network
configurations. To achieve efficient energy utilization, equal energy consumption should be achieved by all
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nodes. Therefore, the next goal is to reduce the variation in energy demand across sensor nodes to promote
equal energy utilization across the network using Eq. (6).

σE =
1

NoS

NoS
∑
i=1
(Ei − μE)2 (6)

where σE is the variance of energy consumption, μE represents the average energy consumption across all
sensor nodes, which is calculated by Eq. (7).

μE =
1

NoS

NoS
∑
i=1

Ei (7)

To improve routing efficiency, choosing the shortest path to use for data transmission is always vital.
This effectively addresses the issues of power drain and latency. Eq. (8) calculates the total path distance.

D =
Nos
∑
i=1

di j (8)

where di j represents the distance between sensor i and sensor j in the path.
The performance related to routing reliability is essential for the ability of data packets to pass through

the network from source nodes to the base station or sink. The quality of service in WSN applications is
directly determined by this metric which is measured by Eqs. (9) and (10).

R =
Nos
∏
i=1

ri j (9)

ri j = ω1 .SNR + ω2.LQI + ω3.BER + ω4.PDR + ω5.REN (10)

where R is the total path reliability, ri j the reliability of the link between i and j.
The product∏ represents the probability of a path’s reliability based on the reliability of each link within

it. The reliability of a link depends on sundry factors. Key factors include a signal-to-noise ratio (SNR), Link
Quality Indicator (LQI), Bit Error Rate (BER), Packet Delivery Ratio (PDR), and Residual Energy of Nodes
(REN). REN represents the remaining energy of the transmitting and receiving sensors in the link. The link
constructed from node to node has more reliability if the sensor node has high residual energy [21].

2.2 Fuzzy Multi-Objective Model Formulation
Fuzzy multi-objective models have attracted increasing attention in the recent past due to their

suitability for dealing with the complexities of uncertain and multi-objective problems. These models use the
concept of fuzzy logic to address the ambiguity and imprecision present in a real-world system. In contrast
to classical optimization techniques, multi-objective models under fuzzy theory are exceptionally efficient
because they allow for degrees of membership in the criteria at hand [22]. Fig. 2 illustrates an example of
three membership functions related to the “height” level. They indicate the level of activity of each input
within a given fuzzy set. In particular, it places weights on the inputs, measures the degree of intersection
between them, and determines the influence provided to generate the output response [23]. In this paper,
multi-objective fuzzy models are used for a WSN routing protocol. When fuzzy logic and PSO are combined,
several trade-offs can be analyzed and suitable solutions can be provided. The multi-objective fuzzy routing
scheme aims to minimize energy consumption, balance load, maximize data transmission reliability, and
find the shortest path. We employ fuzzy membership functions for each objective.
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Figure 2: Three membership functions for “height” level

These functions enable the transition between different levels of the performance metrics, which
provides flexibility together with stability in decision-making processes. Below, we present the mathematical
model for each membership function, justify their selection, define their bounds, and explain how they are
combined to guide optimization. The membership for the shortest path (μSP) is defined by a piecewise linear
decreasing function as in Eq. (11). It defines a high level of satisfaction for short distances and a decreasing
level of satisfaction as the distances increase. It also ensures that moderate deviations can be tolerated easily,
especially when the increase is not too sharp before punishing long paths.

μSP(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, x ≤ SPmin
SPmax − x

SPmax − SPmin
, SPmin < x < SPmax

0, x ≥ SPmax

(11)

where μSP (x) is the membership of the shortest path for solution x, SPmin and SPmax are the minimum
acceptable path length and maximum tolerable path length, respectively.

The membership for energy minimization (μE) is defined by a linear decreasing function as in Eq. (12)
which specifies a high level of satisfaction with decreased energy consumption and a decreasing level of
satisfaction with increased consumption.

μE (x) = 1 − x − Emin

Emax − Emin
, Emin ≤ x ≤ Emax (12)

where Emin and Emax are the minimum acceptable power consumption and maximum allowed power
consumption levels, respectively.

The proposed PSO-fuzzy scheme enhances energy consumption in WSNs by prioritizing energy-
efficient nodes and distributing energy consumption equitably among all nodes, particularly those with the
least remaining energy. This is done using a fuzzy logic scheme that evaluates other parameters such as
the potential remaining energy of any node, the distance to be traveled to make the connection, or the
size of the data packet to be sent. Since energy-intensive nodes get a higher order in terms of paths, the
overloading problem of low-energy nodes is solved, thus prolonging their life cycle. Therefore, providing
energy in this more stable way means that they are ready to adapt to different conditions in the long run.
Furthermore, the PSO mechanism continuously optimizes the path selection in energy aspects to ensure a
reliable and sustainable selection of energy-efficient paths. The routing reliability membership function is
given by Eq. (13). It is represented by a piecewise linear increasing function. This membership function would
represent the logical progress toward the routing paths that have greater reliability. It prioritizes routes with
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higher reliability but without degrading the performance.

μR(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ Rmin

x − Rmin

Rmax − Rmin
, Rmin < x < Rmax

1, x ≥ Rmax

(13)

where Rmin and Rmax are the minimum reliability threshold and desired reliability level, respectively.
The load balancing membership function is given by Eq. (14). It is represented as a routing reliability

membership function. In this way, we can ensure that the load distribution across the nodes is essential and
should not allow the formation of heterogeneous loads, which would cause premature failure within the
system.

μLB(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ Bmin

x − Bmin

Bmax − Bmin
, Bmin < x < Bmax

1, x ≥ Bmax

(14)

where Bmin and Bmax are the minimum acceptable load and ideal load, respectively.
Table 1 summarizes the fuzzy membership functions in this study. Each membership function is

designed to address a specific routing objective, allowing the proposed model to prioritize the optimal
solutions to the WSN routing problem.

Table 1: Fuzzy membership functions, types, description, and the key benefits

Objective Membership
function type

Description Benefits

Shortest path
μSP (x)

Piecewise linear
decreasing

Guarantees shorter paths are given
priority before penalizing longer paths.

Reduces latency and
improves network

efficiency.
Energy μE (x) Linear decreasing Prioritizes nodes with lower energy

consumption and promotes fair energy
use.

Extends network lifespan
and conserves resources.

Reliability
μR (x)

Piecewise linear
increasing

Encourages paths with higher reliability
without degrading overall performance.

Enhances communication
robustness and reduces

packet loss.
Load balancing

μLB (x)
Piecewise linear

increasing
Promotes uniform load distribution

across nodes.
Prevents network

congestion and node
failures.

The proposed PSO-fuzzy uses fuzzy membership functions to improve routing by addressing four main
objectives. Based on pre-defined thresholds, these functions determine satisfaction levels to optimize path
selection and energy consumption to extend the network lifetime. The shortest path function ensures that the
shortest paths are prioritized. The energy minimization function takes care of the energy-efficient nodes. The
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reliability membership function ensures reliable communication paths to eliminate the possibilities so that
performance and data delivery are guaranteed. Finally, the load balancing function prevents traffic inequality
that leads to network node failure and premature node failure. The overall fuzzy score μtotal is computed by
combining all the above individual membership functions by Eq. (15).

μtotal(x) = λ1 .μSP (x) + λ2.μE (x) + λ3.μR(x) + λ4.μLB(x) (15)

where λi represents the weight of the corresponding objective such that the sum of λi equals one.
These weights should be chosen based on considerations of the level of importance of each objective.

This would add more flexibility due to the difference in application needs to create suitable solutions.
The above overall fuzzy score that integrates the contribution of all objectives follows the following fuzzy
logic rule.

IF path length is Low, path energy consumption is Low AND routing reliability is High AND Load
balancing degree is High, THEN the solution is considered perfect.

Consequently, the defuzzification process identifies the best solution from the aggregated results. The
solution that achieves the highest overall satisfaction in terms of power, reliability, shortest path, and load
distribution with the fewest faults is selected. This fuzzy score leads to a more flexible and dynamic decision-
making process that is appropriate in the many different WSN settings.

3 The Methodology
This section introduces the process of using the PSO algorithm in conjunction with a fuzzy multi-

objective system. It includes a description and modification of the PSO algorithm, the inclusion of fuzzy logic
control, and a general analysis of the computational requirements. Fig. 3 depicts the velocities and positions
of the PSO algorithm. Each particle in the PSO algorithm consists of a position and a velocity coming from
the decision space that determines the direction of the particle’s flight. At each iteration, the particle moves
from one position to another within the space in its search for the best solution. The two parameters used in
PSO are the global best solution (gBest) and the stopping criterion that indicates the exit point of the PSO.
gBest is the global best solution obtained at any time during the PSO run. It is useful in guiding the particles
toward the target.

Figure 3: Velocities and positions of the PSO algorithm

The velocity of a particle in the flock is scaled concerning the distance to the destination point. This
velocity is supported using the relationship shown in Eq. (16).

Vi (t + 1) = Vi (t) +U1C1 . (pBesti − Xi (t)) +U2C2. (gBesti − Xi (t)) (16)
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where Vi (t + 1) represents the new velocity, Vi (t) is the current speed, U1 and U2 are two random variables,
while C1 and C1 are learning factors representing self-attraction and social attraction, respectively.

After that, each particle jumps to a new position in the search space depending on the calculated velocity
as shown in Eq. (17). Such repeated exploration and exploitation occurrence allows particles to obtain better
solutions.

Xi (t + 1) = Xi (t) + Vi (t + 1) (17)

where Xi (t + 1) and Xi (t) represent the new position and the current position, respectively.
Fig. 4 shows the pseudo-code of the proposed multi-objective PSO-fuzzy to improve routing for WSNs

that rely on several routing objectives.

1)  #Initiation

2) Determine WSN with nodes.

3) Set energy level E[i] for each sensor node 

4) Initialize the matrix A[i][j] for Network connections.

5) Determine the failure threshold for sensor fault detection.

6) Set weights of the objectives.

7) Set parameters: (number of particles), (number of iterations), . 

8) Paths = routing (WSN, , )

9)  #Re-evaluated WSN routing upon fault detection

10) FailuresNodes = FaultDetection(WSN, , )

11) #Re-evaluated WSN routing in case of scalability detection 

12) = number of new added sensor nodes.

13) IF (FailuresNodes is updated)

14) Paths = routing (WSN, , , FailuresNodes)     

15) END IF

16) IF ( is updated)

17) Paths = routing (WSN, , , )     

18) END IF

Figure 4: Pseudo-code of the proposed multi-objective PSO-fuzzy model

First, the WSN is initialized with NoS sensor nodes where each node possesses an initial energy level
and the connectivity between the nodes is represented by a matrix A[i][j]. Parameters such as the number of
particles, the maximum number of iterations, and the maximum speed are also specified. Then the weights of
the optimization objectives are specified. The best paths are determined by the routing module possessed by
the algorithm. Similarly, when there are any changes in the size of the WSN such as failed nodes or additional
sensors, they are identified and then the routing paths are recalculated by calling the same function with new
parameters. It also provides dynamic integration of the optimization criterion by continuously re-adjusting
the paths under the current network configurations. The proposed system includes a robust fault detection
technique where the energy level is the primary measure of node health. Each node monitors its energy
level, and the nodes with the fastest energy decline are selected for further analysis including packet delivery
success rates and response time at specified threshold values. Each node also sends periodic “heartbeat”
signals to its neighbors. If a node fails to send such a signal in the mentioned time frame, it is suspected to
have developed a fault. After a node fails, it is considered to be out of the active communication topology
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network. This elimination process aims to restore routing across the remaining nodes. To address scalability
considerations, let new nodes integrated into the network be represented by NoSnew . Routing paths must
be changed and adapted at runtime to accommodate the new topology without depriving the network of
its efficiency and performance. Thus, by invoking the proposed algorithm, the number of particles will be
directly proportional to the number of sensor nodes. The Pseudo-code of the routing module is modulated
in Fig. 5. It searches for the best routing paths in WSN by leveraging Particle PSO integrated with fuzzy
score. First, it eliminates the failed nodes from WSN and includes newly added sensor nodes. A vector
of paths is initialized empty to store best-obtained paths and their fitness values. The routing problem is
modeled in a PSO network by treating each possible path as a particle in the solution space. The position
of the particle represents a specific routing path. Initially, a random solution is generated for each particle
that reflects the path from any randomly chosen source sensor node to the base station. Over Tmax , the
algorithms compute the fitness of each particle’s path using fuzzy score by Eq. (15). This obtained path is
normally added to a vector of paths if it improves performance. The velocity as well as the position is changed
in each iteration to obtain new routing paths. The equations of velocity and position are based on the overall
fuzzy score μtotal in Eq. (15). The velocity is adjusted using Eq. (16). When computing the velocity, pBesti
will be μtotal (particl eBest), Xi (t) will be μtotal (particl eSol) and gBesti will be μtotal (GBSol). So,
it primarily depends on the aggregated membership functions of the global best solution, the current best
particle solution, and the current solution. The key here is that we use fuzziness as a decision-making layer
that produces adaptive methodology I in the PSO framework. Thus, membership functions are defined to
determine concrete fuzzy sets in quantitative values. The calculated velocity adjusts the particle’s motion
towards GBSol . By associating the velocities with the combined membership functions, the particles are
directed according to the nature of the multi-objective problem being addressed. Then the position update
rule is applied by Eq. (17) after updating the relevant velocities. Also, to adapt the proposed routing module
to enhance the WSN, some changes have been made. The first alteration concerns the expansion of the
particle encoding type to include multiple scales as subtypes of particle position. Fuzzy sore is utilized to
make sure that particles look for the routing solutions that fulfill the conflicted objectives at once and make
compensation between them.

The complexity analysis of the proposed routing module, shown in Fig. 5, can be explained by studying
the pseudo-code. The complexity can be divided into two phases: initialization and iterative optimization.
In the initialization phase, in order to exclude a failed node, (N f ) operations are required, where F is the
total failed nodes, and in order to add an expanded node, it needs (NoSnew ) where NoSnew is the count
of expanded nodes. Random selection of source nodes has a complexity of (Ns), where Ns is the number
of source nodes. In the iterative optimization, the amount of computation work in general varies only
by the number of particles (NoP), the iterations (Tmax ), and the dimension of the problem space which
is the numbers nodes in WSN (NoS). The algorithm executes for a maximum of Tmax iterations, where
each iteration involves updating NoP particles. For each particle, the fitness calculation by the proposed
fuzzy score of a routing path depends on traversing edges of the wireless sensor network graph, resulting
in a complexity of O (F). In addition, path additions or updates, as well as velocity and position updates,
are constant-time operations, (1). Therefore, the overall complexity of the algorithm can be expressed as
O(Tmax × NoP × F) with the initialization cost O(N f + +NoSnew + Ns) which is relatively small compared
to the iterations which can be neglected.
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1) Routing (WSN, , , = None, =None)

2) Begin:

3) Exclude from WSN.

4) Add to WSN.

5) Set Paths-Vector empty

6) Select sources sensors nodes randomly.

7) For each particle

8) Generate a random solution from randomly selected sensor node source to Base Station.

9) END For 

10) FOR t = 1 to 

11) FOR each particle

12) Calculate fitness value for the obtained path by Eq. (15)

13) IF no path stating form this source node in Paths-Vector

14) Add the obtained path to Paths-Vector with its fitness value.

15) Else

16) IF fitness value of obtained path is more capable

17) Update old path in Paths-Vector with obtained path.

18) END IF

19) END IF

20) Compute velocity of particle.

21) Update position of particle. 

22) END FOR//particle  

23) END FOR//

24) END

Figure 5: Pseudo-code of the proposed routing module

Some of the limitations when using the fuzzy PSO model in real-time include: computational time
delay and environmental variability. The delays are inherent in the computation of the underlying PSO
algorithm which often requires multiple iterations. This can be compensated for either by using concurrent
computing or simply running the model on a boosted computing device. Fuzzy contributes to overcoming
the challenge of unpredictability. There are inherent physical limitations of sensor nodes including limited
memory capacity and computing power. Hence, relatively low-complexity and energy-efficient algorithms
should be used which are addressed by the proposed fuzzy PSO model.

4 Experimental Results
The simulation environment of NS-3 in [24,25] was designed to evaluate the performance of the

proposed PSO-fuzzy model in various WSN scenarios. Tables 2 and 3 summarize the environmental settings
of the NS-3 simulation and PSO parameters. The network topology used in the simulation of this model is
a grid where nodes are placed at equal distances and in equal numbers to achieve connectivity across the
area of interest. Node densities are set as medium and high as a way to create variation in scalability and
performance. In the traffic scenario, both constant bit rate and variable bit rate sources are used to simulate
a wide range of traffic characteristics for connectivity requirements.
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Table 2: NS-3 parameter settings

Parameter Value
Covered area 200 × 200 m2

Base station location (Scenario 1) (100, 100) at center
Base station location (Scenario 2) (0, 0) at corner
Number of Sensors nodes (NoS) 100, 200, 300

Initial sensor node energy 2–6 J
Total initial energy 200–900 J
Transmission range 10–40 m

Rounds 100–1200
Packet size 256–1024 bytes
Bandwidth 512–1024

Routing protocols PSO-fuzzy, ABC, EGA, ACO, and DRL

Table 3: The parameters of the proposed PSO-fuzzy

Parameter Value
Swarm size 50–150

Tmax 100
Inertia weights U1 and U1 0.3
Cognitive coefficient C1 1.5

Social coefficient C2 2
λ1 , λ2, λ3 and λ4 0.25

The simulation settings in Table 2, include a covered area of 200 × 200 m2, with two base station
placement scenarios: centrally located at (100, 100) and at the corner in (0, 0). The central base station is
particularly suitable in the agricultural sector where many sectors use sensor nodes to measure variables such
as humidity, temperature, and moisture. In particular, a central base station allows the data received from all
nodes to be collected and reduces the timing delay and energy consumption of the entire network. Essentially,
this format allows for precision agriculture by ensuring that the large distance for data transmission to the
base station is optimized. In urban environments, the central base station may operate nodes that will track
various parameters including traffic flow. The distribution of nodes will be uniform and the reduction in
energy consumption makes the system more sustainable and responsive. Sometimes, it may be necessary
to place a base station in the corner to reduce exposure to hazardous areas due to physical security needs
during natural disasters. Although this design is physically reasonable, it makes the power consumption of
the remote nodes high.

The proposed PSO-fuzzy model will be demonstrated to work successfully on these two different
network topologies. The network contains 100 to 300 sensor nodes with an initial energy of 2 to 6 J per node
and a total initial energy of 200 to 900 J. The transmission range ranges between 10 and 40 m with the rounds
between 100 and 1200. Various routing protocols such as PSO-fuzzy, ABC, EGA, ACO, and DRL are tested
and evaluated. The selected parameters for the proposed PSO-fuzzy in Table 3 are as follows. The swarm size
is therefore between 50 and 150 with the maximum iteration count of Tmax is 100. Random weights (U1 and
U2) are 0.3 whereas C1 and C2 coefficients are 1.5 and 2, respectively. Influence factors (λ1 , λ2, λ3, and λ4) are
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set to equal to 0.25 this is because multiple objectives are valued equally in the optimization process. The
parameters λ1 , λ2, λ3 and λ4 represent the weights assigned to the four main objectives. A sensitivity analysis
was performed to evaluate the impact of changing these weights. The weights were changed individually
while keeping the other weights constant. The performance metrics analyzed included measurements of the
four objectives. Increasing λ1 gave more preference to the shortest paths while occasionally leading to lower
energy utilization and path reliability. With the increase of λ2, the energy efficiency was enhanced, but the
path distance became longer, and the reliability was low. Higher λ3 improved reliability but resulted in longer
paths and higher power consumption. The network stability is improved when λ4 is increased, but the path
length and the power consumption are also affected. The choice of these weights is influenced by the specific
requirements of the application and the main considerations are as follows:

• Real-time applications should have a higher λ3 weight to ensure network reliability.
• Energy-Constrained Networks should have a higher λ2 weight to prioritize energy conservation.
• Long-lifetime networks increase the weights of λ2 and λ4 to ensure that the network does not suffer from

premature node failure or energy drain.
• General Purpose Networks assign equal weights to λ1 , λ2, λ3 and λ4 to provide a balanced trade-off

between all objectives.

So, we assume that λ1 , λ2, λ3 and λ4 are all equal. This approach was chosen to balance the optimization
of the objectives without favoring any particular objective. The performance of the proposed PSO-fuzzy
is tested for WSNs with four common algorithms namely Enhanced Genetic Algorithm [10], Improved
Artificial Bee Colony (ABC) Algorithm [12], Deep Reinforcement Learning (DRL) [14], and Ant Colony
Optimization (ACO) [20]. The evaluation depends on various metrics such as network lifetime, stability
duration, residual energy, energy consumption, and load balancing. These metrics quantify the energy
consumption, communication, reliability, and fairness of routing load in WSNs [10,12,26]. The network
lifetime metric for two scenarios of the proposed PSO-fuzzy vs. four other methods is shown in Figs. 6 and 7.
Network lifetime as used in this context refers to the time that elapses between the time the network has
commenced operation and a particular performance level is attained. These results prove that the proposed
PSO-fuzzy provides the longest network lifetime than other algorithms in the two scenarios concerning all
the sensor densities.
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Figure 6: Network Lifetime metric of the proposed PSO-fuzzy vs. four other methods in scenario 1
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Figure 7: Network lifetime metric of the proposed PSO-fuzzy vs. four other methods in scenario 2

Table 4 summarizes the computed values of μSP (x) , μE (x) , μR (x) and μLB(x) for various paths
sample in a WSN. It provides a better visual understanding of how membership is changed. For Path P1, the
μtotal is computed as follows. μtotal (P1) = 0.25(0.8) + 0.25(0.4) + 0.25(0.7) + 0.25(0.9) = 0.7. This table
helps in understanding membership functions and their role in the fuzzy logic model.

Table 4: Examples of membership function values for different paths in a WSN

Path Distance
(m)

Energy
consumption (mJ)

Reliability
score

Load μSP (x) μE (x) μR (x) μLB (x)

P1 50 202 0.8 0.6 0.8 0.4 0.7 0.9
P2 75 323 0.6 0.8 0.6 0.2 0.5 0.7
P3 93 371 0.5 0.5 0.4 0.1 0.3 0.6

The stabilization time for the two scenarios is illustrated in Figs. 8 and 9 shows how long all nodes of the
network will perform without energy exhaust. The proposed PSO-fuzzy algorithm significantly outperforms
the other methods in terms of maximum stability time where up to 1000 cycles are realized with 100 sensors
and also high efficiency when network size is increased.

Figs. 10 and 11 summarize the total remaining energy for the two scenarios. Each figure contains three
charts clarifying the remaining energy levels for networks with 100, 200, and 300 nodes, respectively.
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Figure 8: Stabilization time measurement of scenario 1
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Figure 9: Stabilization time measurement of scenario 2
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Figure 10: The total residual energy measurement for scenario 1. (A) WSN with 100 sensors. (B) WSN with 200 sensors.
(C) WSN with 300 sensors
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Figure 11: The total residual energy measurement for scenario 2. (A) WSN with 100 sensors. (B) WSN with 200 sensors.
(C) WSN with 300 sensors
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This metric can be used to gain an understanding of the energy consumption patterns of network
protocols and to estimate the remaining lifespan of the network. In the initial round, each algorithm begins
with the same total available energy for a specified number of sensors reducing the impact of energy
differences between algorithms in the evaluation of the energy consumption patterns during the construction
of the network. In terms of energy consumption, the PSO-fuzzy algorithm shows better performance than
other algorithms.

Figs. 12 and 13 illustrate the standard deviation of load for the two scenarios. It is possible to observe
an increase in standard deviations as the rounds continue in two scenarios, due to the decreasing balance in
energy levels and workload distribution between nodes over time. The proposed PSO-fuzzy model demon-
strates significant advantages over the four compared methods (ABC, EGA, ABC, and DRL). Although ABC
and ACO are widely used optimization algorithms for path finding and energy utilization in wireless sensor
networks, their effectiveness decreases while working with multiple conflicting objectives.

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

Rounds

Standard Deviation

PSO-fuzzy

EGA

ABC

DRL

ACO

Figure 12: The standard deviation of the load for scenario 1
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Figure 13: The standard deviation of the load for scenario 2

ABC and ACO often select one or two objectives. They only deal with energy efficiency in routing
without any decision-making capability for reliability and load balancing in a dynamic environment.
Similarly, EGA enhances multi-hop routing but lacks the multi-objective adaptability that the proposed
method relies on. Conversely, Deep Reinforcement Learning (DRL) for policy-based methods is a moderate
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method for learning the best approaches and choices to make regarding decision-making problems, but it
entails a large number of samples and computational costs. On the other hand, the routing method applies
a framework of PSO, which is in fact, more efficient in terms of offering a more straightforward approach to
achieve the real-time balance of multiple goals. In general, the proposed routing method demonstrates the
best performance in terms of various measurements compared to other algorithms.

Table 5 presents the p-values for the comparative performance of the proposed PSO-fuzzy vs. the
EGA, ABC, ACO, and DRL algorithms across four key metrics. Lower p-values (typically less than 0.05)
indicate significant differences between the proposed PSO-fuzzy and the respective algorithms in the
given metrics. Table 5 demonstrates that the proposed PSO-fuzzy algorithm exhibits statistically significant
improvements in most of the evaluated metrics compared to the other algorithms. This suggests that PSO-
fuzzy is a promising approach for optimizing WSN performance in terms of lifetime, stability, energy
efficiency, and load balancing.

Table 5: p-values for the proposed PSO-fuzzy vs. other algorithms

Metric EGA ABC ACO DRL
Network lifetime 0.0021 0.0213 0.0491 0.0028
Network stability 0.0077 0.0161 0.0316 0.0110

Total residual energy 0.000109 0.000153 0.000503 0.000153
Standard deviation 0.000013 0.000847 0.000242 0.000056

It is pertinent to mention that based on all the comparisons, the decision-making process in the
proposed PSO-fuzzy model involves and benefits from the adaptive integration of multiple objectives in
WSN to monitor the environment. For example, when sensor nodes need to send data to a central node
with certain objectives, the model uses fuzzy logic to summarize several fuzzy variables and calculate their
membership values. These values are then combined until a distinct path that addresses the desired objectives
is chosen. For example, there may be two paths that are equally energy efficient but have different degrees
of reliability. In this case, the model will prioritize reliability. This decision is then optimized by PSO which
runs along the selected path and provides the best solution through an iterative system. The proposed fuzzy
PSO framework shows great real-world relevance in extreme potential situations, e.g., disaster relief, and
environmental conservation. It is best suited where there is dynamism and where the solution must include
variables within the emergency environment. In disaster recovery, it determines the resource efficiency of
environmental monitoring and how to manage the energy required to support a long-term wireless sensor
network. The fuzzy logic component allows for handling changing priorities or unexpected conditions. These
capabilities have proven effective in a range of simulation tests such as lifetime, stability, etc. These results
qualify the model to respond to various real-time applications such as fire monitoring, autonomous driving
systems, etc.

5 Conclusions and Future Work
This paper proposes a comprehensive solution for routing optimization in WSNs by combining PSO and

a multi-objective fuzzy framework. A mathematical model of multi-objective and fuzzy systems in WSNS
is presented. The proposed model successfully addresses critical challenges, including minimizing energy
consumption, shortest path, maximizing routing reliability, and achieving load balancing to ensure reduced
node failure and communication loss. Simulation results show that the proposed PSO-fuzzy model can
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outperform other techniques using different criteria in energy efficiency metrics, load standard deviation,
network lifetime, and routing stability.

For future work, the proposed multi-objective PSO-fuzzy model will be tested using more advanced
algorithms and other metrics. Case studies simulating real-world environments such as flood response
operations and urban pollution tracking can be validated to verify the model’s adaptability to complex and
evolving conditions. This helps to demonstrate the potential of the proposed model to enhance operational
efficiency and decision-making in these real-world domains. IoT-enabled WSN technologies can also be used
to demonstrate their applicability. Other optimization methods can be combined with PSO to enhance the
scalability and convergence factors of the result.
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WSN Wireless Sensor Network
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
ABC Artificial Bee Colony
DRL Deep Reinforcement Learning
EGA Enhanced Genetic Algorithm
SNR Signal-to-Noise Ratio
LQI Link Quality Indicator
BER Bit Error Rate
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