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ABSTRACT: UAV-based object detection is rapidly expanding in both civilian and military applications, including
security surveillance, disaster assessment, and border patrol. However, challenges such as small objects, occlusions,
complex backgrounds, and variable lighting persist due to the unique perspective of UAV imagery. To address these
issues, this paper introduces DAFPN-YOLO, an innovative model based on YOLOv8s (You Only Look Once version
8s). The model strikes a balance between detection accuracy and speed while reducing parameters, making it well-suited
for multi-object detection tasks from drone perspectives. A key feature of DAFPN-YOLO is the enhanced Drone-
AFPN (Adaptive Feature Pyramid Network), which adaptively fuses multi-scale features to optimize feature extraction
and enhance spatial and small-object information. To leverage Drone-AFPN’s multi-scale capabilities fully, a dedicated
160 × 160 small-object detection head was added, significantly boosting detection accuracy for small targets. In the
backbone, the C2f_Dual (Cross Stage Partial with Cross-Stage Feature Fusion Dual) module and SPPELAN (Spatial
Pyramid Pooling with Enhanced Local Attention Network) module were integrated. These components improve feature
extraction and information aggregation while reducing parameters and computational complexity, enhancing inference
efficiency. Additionally, Shape-IoU (Shape Intersection over Union) is used as the loss function for bounding box
regression, enabling more precise shape-based object matching. Experimental results on the VisDrone 2019 dataset
demonstrate the effectiveness of DAFPN-YOLO. Compared to YOLOv8s, the proposed model achieves a 5.4 percentage
point increase in mAP@0.5, a 3.8 percentage point improvement in mAP@0.5:0.95, and a 17.2% reduction in parameter
count. These results highlight DAFPN-YOLO’s advantages in UAV-based object detection, offering valuable insights for
applying deep learning to UAV-specific multi-object detection tasks.

KEYWORDS: YOLOv8; UAV-based object detection; AFPN; small-object detection head; SPPELAN; DualConv; loss
function

1 Introduction
In recent years, UAV-based object detection has shown immense application potential and significant

advantages [1,2]. UAVs can efficiently cover large areas and capture real-time aerial images, enabling their use
in various fields such as agriculture [3], urban planning [4], forest conservation [5], and transportation [2].
Compared to traditional satellite or stationary camera systems, UAVs excel in efficiency, flexibility, and
responsiveness, especially in dynamic and complex environments. These features have made the combi-
nation of UAV imagery and object detection a critical research area. However, UAV-captured images face
challenges [6], including environmental factors like weather changes and wind, which degrade image quality.
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Additionally, the prevalence of small objects, occlusions, and complex backgrounds increases the difficulty
of detection and recognition.

Object detection methods can be categorized into traditional approaches based on handcrafted fea-
tures and conventional machine learning algorithms, as well as deep learning-based methods. Traditional
techniques, like Haar Cascade [7], struggle with complex scenarios, exhibiting low detection accuracy and
speed, making them unsuitable for real-time applications. In contrast, deep learning methods are now the
preferred choice due to their robustness and higher accuracy. These methods can be further divided into
two-stage and one-stage approaches. Two-stage methods, which first generate region proposals followed by
classification and regression, achieve high accuracy but are computationally expensive and slow, rendering
them impractical for real-time UAV detection tasks. Among one-stage methods, the YOLO (You Only Look
Once) series [8,9] is particularly suitable for UAV detection due to its efficiency, lightweight design, ability
to handle multi-scale features, and adaptability to complex environments. The YOLO series has advanced to
its latest version, YOLOv11 [10], yet challenges remain in UAV image object detection. These include poor
performance in detecting small and occluded objects due to insufficient integration of low-level features,
which limits detection capability. Additionally, balancing detection accuracy and computational efficiency
is particularly challenging for resource-constrained UAV platforms. Traditional loss functions like CIoU
struggle to accurately capture irregular shapes and diverse aspect ratios, leading to reduced localization
accuracy of bounding boxes. These issues often result in missed detections or false positives in aerial images.
To address these problems, this study introduces DAFPN-YOLO, an enhanced object detection algorithm
based on YOLOv8s [11], specifically designed for UAV imagery. This model incorporates multiple innovations
to overcome the outlined challenges, aiming to achieve an optimal balance between detection accuracy
and speed. It demonstrates outstanding performance on the UAV dataset VisDrone2019 [12]. The primary
contributions of this paper are as follows:

1. We propose an enhanced feature fusion network named Drone-AFPN, based on AFPN [13], designed
to efficiently integrate multi-scale features and strengthen shallow feature utilization. This network
employs a multi-level adaptive spatial feature fusion (ASFF) module [13], which adaptively prioritizes
feature maps of varying sizes, enabling effective multi-scale feature blending. This approach significantly
improves detection performance, particularly for small objects.

2. Regarding the improvement of the neck network structure, in order to further enhance the detection
effect of small targets, we introduce a 160 × 160 pixel small-object detection head. This addition
allows the model to focus on finer-grained features, facilitating the detection of smaller and more
detailed objects.

3. We design a novel C2f_Dual module by integrating the DualConv module [14] with the C2f module [9],
replacing the original C2f module in the backbone network. Additionally, the SPPELAN module [15]
replaces the SPPF module [9], ensuring robust feature extraction and information aggregation while
reducing model parameters and improving inference speed.

4. We replace the original CIoU loss [16] with Shape-IoU [17] for bounding box regression, enabling
the model to more accurately reflect the true shapes of objects. This replacement enhances regression
precision, particularly for small targets with detailed and irregular shapes, reducing false negatives and
positives and improving the model’s robustness in complex scenarios.

2 Related Works

2.1 Object Detection
Recent developments in object detection have seen notable progress. Traditional techniques mainly

relied on methods like sliding windows [18] and hand-crafted feature extractors, such as Viola-Jones [18],
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HOG (Histograms of Oriented Gradients) [19], and SIFT (Scale-Invariant Feature Transform) [20]. However,
with the rapid advancement of deep learning, CNN-based detection algorithms have become predominant,
particularly in two-stage and one-stage models. Two-stage detectors, which are region-based methods,
include the R-CNN family [20], starting with R-CNN (Region-CNN) [21], and followed by Fast R-CNN [22]
and Faster R-CNN [23]. These methods first generate region proposals, followed by classification and
regression through deep networks. Enhancements like FPN (Feature Pyramid Networks) [24] and Mask
R-CNN [25] improved detection performance by refining their structures. However, these models often
face challenges such as high computational complexity, large parameter sizes, and slower processing times,
which limit their use in some scenarios. On the other hand, one-stage detectors, including the YOLO
series and SSD (Single Shot MultiBox Detector) [26], treat object detection as a single regression task,
performing both classification and bounding box regression within one network, leading to significantly
faster inference times. Recent models like EfficientDet [27], YOLOv3, YOLOv5, YOLOv8, YOLOv10, and
YOLOv11 [8–11] have emerged, offering a good balance between accuracy and speed. These algorithms
incorporate innovations such as improved feature fusion, efficient backbones, and attention mechanisms,
further enhancing detection performance.

2.2 UAV Object Detection
UAV images present unique challenges for object detection due to characteristics such as extensive

backgrounds, low target pixel counts, and frequent interference. These factors exacerbate issues like small
object prevalence, occlusion, and information loss, making UAV-based detection more demanding than
traditional methods. Researchers have introduced various improvements to address these challenges. Pang
et al. [28] proposed a Faster R-CNN-based multi-scale fusion detection method, enhancing UAV detection
accuracy but increasing model complexity and slowing down performance. Fang et al. [29] integrated
residual blocks into U-Net and employed multi-scale feature fusion for image reconstruction, treating
small UAV detection as residual image prediction to boost accuracy, although it relies heavily on precise
residual estimation.

UAV detection tasks often face limitations in computational and storage resources, making high-
demand methods difficult to deploy. Additionally, real-time detection requirements impose strict
constraints, reducing the feasibility of certain approaches. The YOLO series detection networks have
alleviated some of these challenges, but their detection accuracy remains relatively low. To address this,
researchers have proposed improvements to YOLO-based models. For instance, Deng et al. [30] developed
LAI-YOLOv5s, incorporating DFMCPFN for feature fusion and VoVNet for better feature extraction,
achieving higher accuracy. Tang et al. [31] introduced HIC-YOLOv5, adding a small object detection
head, channel enhancement convolutional blocks, and CBAM to emphasize critical features. Nie et al. [32]
extended YOLOv8n with a small object detection layer, an SSFF module, and HPANet, improving accuracy
while reducing parameters. Li et al. [33] proposed SOD-YOLO, integrating the RFCBAM module into the
backbone to enhance feature extraction and designing the bsi-FPN neck structure to balance spatial and
semantic information effectively. Wang et al. [34] developed a YOLOv8-based UAV strawberry detection
model, integrating an attention module and the VoV-GSCSP module, which improved both detection speed
and accuracy. Li et al. [35] enhanced YOLOv8s by introducing the Bi-PAN-FPN neck structure, replacing
some C2f modules with GhostblockV2, and substituting WiseIoU for CIoU. These modifications reduced
information loss during feature transmission and increased model robustness.

Although these improvements have shown promising results, they are often accompanied by an increase
in parameter counts or computational burden. Existing methods still have limitations, such as insufficient
integration of low-level features, leading to poor detection performance for small and occluded objects,
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and difficulty balancing detection speed and accuracy. Methods that prioritize accuracy often significantly
reduce speed. Additionally, traditional bounding box regression methods (e.g., CIoU) struggle to handle
the irregular shapes and diverse aspect ratios of objects in UAV detection. To address these gaps, this study
proposes DAFPN-YOLO, an improved UAV object detection model based on YOLOv8s, which achieves high
detection accuracy and competitive speed on UAV imagery. Meanwhile, Bakirci’s [36] research highlights
that YOLOv8-Nano, by reducing parameters and computational complexity, delivers high inference speed
suitable for edge devices in intelligent transportation systems. However, its lightweight design sacrifices
detection accuracy in complex environments, making it ineffective for detecting occluded objects and
small targets in UAV imagery with background variations. This study introduces modules like Drone-
AFPN and Shape-IoU to prioritize detection accuracy, addressing the unique challenges of UAV detection.
These innovations enhance multi-scale feature fusion and improve the localization of irregular objects,
delivering exceptional performance in complex UAV scenarios. A comparison reveals that this study achieves
a better balance between speed and accuracy, maximizing detection accuracy with minimal sacrifice to
detection speed.

3 Methods
To improve object detection accuracy in UAV images, we introduce DAFPN-YOLO, an enhanced

detection algorithm based on YOLOv8s. This section outlines the architectures of both YOLOv8 and
DAFPN-YOLO, emphasizing the specific advancements made in DAFPN-YOLO over the original model.

3.1 Network Framework of YOLOv8
YOLOv8 is a highly advanced and widely used version in the YOLO series, consisting of three key

components: the backbone network, the neck network, and the detection head. These components work
collaboratively to perform feature extraction, multi-scale feature fusion, and produce the final output of
bounding boxes and class predictions, ensuring efficient and real-time object detection. The backbone
network integrates an upgraded CSPNet [37], which enhances feature extraction by leveraging its deep
learning capabilities. The neck network incorporates a PAN-FPN [38] structure, improving the fusion
of features at different scales and ensuring robust performance, especially for small-object detection.
Additionally, the anchor-free detection head simplifies the design by removing the need for anchor boxes,
which in turn accelerates detection speed and improves overall efficiency. YOLOv8 strikes an optimal balance
between detection accuracy and real-time capability, making it suitable for a wide range of object detection
applications across various industries. The architecture of YOLOv8 is shown in Fig. 1.

3.2 Overview of DAFPN-YOLO
Detecting objects in UAV imagery poses significant challenges due to unique image characteristics,

including complex backgrounds, a high ratio of small-to-medium targets, and frequent occlusions. These fac-
tors complicate accurate and efficient detection, particularly for small objects in dense scenes. To tackle these
challenges, we propose an advanced algorithm, DAFPN-YOLO, built upon YOLOv8 and tailored for UAV
object detection, as illustrated in Fig. 2. This model achieves a balance between accuracy and speed through
four key enhancements. First, the backbone’s C2f module is replaced with the C2f_Dual module, improving
feature extraction and overall efficiency. Second, the SPPF module is substituted with the SPPELAN module,
balancing performance and computational cost to optimize detection. Third, enhancements to the neck and
head include integrating the Drone-AFPN structure for improved multi-scale feature fusion and adding a
small-object detection head to better capture fine details. Lastly, the Shape-IoU loss function is introduced
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for bounding box regression, enhancing localization accuracy and accelerating convergence by accounting
for shape and positional variations.
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3.3 DualConv
To improve feature extraction efficiency and overall model performance, we propose the C2f_Dual

module, designed as a replacement for the C2f module in the backbone network. This module combines
the strengths of DualConv and the traditional C2f module, enabling efficient feature representation and
multi-scale information fusion.

DualConv is a novel network component that enhances feature extraction capabilities and compu-
tational efficiency. It processes input feature maps using 3 × 3 group convolution and 1 × 1 pointwise
convolution simultaneously, optimizing information processing. The 3× 3 group convolution extracts spatial
features, while the 1 × 1 pointwise convolution aggregates these features for effective fusion. Grouped con-
volution further divides input and output feature maps into separate groups, each processed independently
with dedicated kernels, significantly reducing parameters and computational complexity. This design ensures
efficient resource use while controlling model complexity by limiting the scope of each group’s filters.
The structural layout of DualConv is illustrated in Fig. 3, where K denotes the kernel size, M represents
the number of input channels, N indicates the depth of the output feature map, and G is the number of
convolution groups.
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Figure 3: Structural layout of dual convolution

By innovatively combining C2f with DualConv, replacing the residual convolution in the C2f module
with DualConv, this design demonstrates significant advantages over the traditional C2f module. First,
DualConv employs smaller convolution kernels and depthwise separable convolutions. Traditional con-
volutions typically use larger kernels (e.g., 5 × 5), while DualConv adopts smaller kernels (e.g., 3 × 3
and 1 × 1), directly reducing the parameters for each layer. Additionally, depthwise separable convolutions
decompose traditional convolutions into two smaller operations, significantly lowering computational cost
and parameter count. DualConv is further optimized in terms of channel efficiency, and combined with
residual connections, it minimizes redundant convolution operations, leading to even greater reductions
in parameter count. Moreover, the use of depthwise separable convolutions and smaller kernels allows
for more precise extraction of local features, enabling the model to capture richer and finer details across
multiple layers and scales, especially in scenarios with intricate image details. As a result, the C2f_Dual
module provides more comprehensive and valuable feature representations. This improvement enhances the
model’s ability to generate high-quality feature representations while reducing computational complexity and
parameter overhead, laying the foundation for efficient model applications. The structure of the C2f_Dual
module is shown in Fig. 4.
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Figure 4: Structure of the C2f_Dual module
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3.4 Space Pyramid Pool Improvement
To enhance the model’s ability to capture crucial information in complex scenarios while improving

inference speed, this study replaces the SPPF module in the backbone network with SPPELAN (Spatial
Pyramid Pooling Enhanced with ELAN). SPPELAN, derived from Spatial Pyramid Pooling (SPP) [39], opti-
mizes max-pooling operations by integrating SPP with the Efficient Layer Aggregation Network (ELAN) [40]
through a sequential structure of a CBS module and three MaxPool2d modules. This design enables faster
and more effective feature extraction. Unlike SPPF, SPPELAN addresses redundant feature extraction in
some images, significantly improving recognition accuracy without increasing parameters. Its local attention
mechanism dynamically adjusts feature map weights, emphasizing target areas and suppressing irrelevant
background details. This refinement enhances feature extraction for small or occluded objects, reducing
false positives and missed detections, thereby improving detection performance and robustness in complex
scenarios. By integrating the strengths of SPP and ELAN, SPPELAN achieves an optimal balance between
efficiency and performance. Fig. 5 illustrates its structure.

CBS MAXPool2d MAXPool2d MAXPool2d Concat CBS

CBS BN SiLUConv

SPPELAN

Figure 5: Structure of the SPPELAN module

A study by Jin et al. [41] also optimized the SPPCSPC module with pooling layers by integrating
the Bi-level Routing Attention (BRA) mechanism into the original SPPCSPC pyramid pooling network.
BRA dynamically weights critical regions and important channels of feature maps through a dual-level
routing mechanism, enhancing the interaction of multi-scale features. In comparison, the BRA-integrated
SPPCSPC is more suitable for high-precision tasks but comes with significant computational overhead.
On the other hand, SPPELAN, designed with a lightweight architecture, performs exceptionally well
in embedded environments, balancing performance and efficiency. Despite its limited improvement in
accuracy, SPPELAN consumes fewer resources, offers higher real-time performance, and is better suited for
UAV detection scenarios.

3.5 Improvement of the Neck and Head
3.5.1 Drone Asymptotic Feature Pyramid Network

For object detection, extracting and fusing multi-scale image features is essential. In YOLOv8, the Path
Aggregation Network (PANet) [31] is employed to facilitate multi-scale object detection through effective
bottom-up and top-down feature fusion. However, PANet faces challenges in information transmission,
often resulting in the loss of low-level feature and positional information during fusion. These limitations
hinder classification and localization accuracy in complex scenes. Additionally, PANet’s design involves a
high parameter count and computational burden.

To address these challenges, the Adaptive Feature Pyramid Network (AFPN) was developed, gaining
popularity for its efficiency and lightweight design. Fig. 6 illustrates the AFPN structure in YOLO. Through
progressive fusion, AFPN mitigates conflicts in multi-scale information and assigns differentiated spatial
weights to features at different levels. This design not only enhances the contributions of critical feature
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layers but also reduces semantic gaps between cross-layer feature mappings. However, AFPN in YOLO
does not sufficiently integrate low-level features, leading to a lack of positional information. This limitation
reduces the model’s robustness in complex scenes, as detecting small objects and acquiring positional
details heavily rely on the finer details of low-level feature maps. Without adequately fusing low-level
features, the model performs poorly in identifying small objects. Since UAV aerial images often contain
numerous small and medium-sized objects, the AFPN structure in YOLO generally delivers lower detection
accuracy compared to PANet. When integrating AFPN structures from other detection models like Faster
R-CNN into YOLOv8, low-level features are sufficiently fused, resulting in improved detection accuracy.
However, this approach significantly increases the number of parameters and computational complexity,
slowing down inference speed. To balance detection accuracy and inference speed, we propose the Drone-
AFPN structure, specifically designed for UAV aerial image detection tasks. Its simple design is shown
in Fig. 7. Specifically, Drone-AFPN innovatively builds upon the adaptive feature fusion mechanism of
the original AFPN. It retains the advantages of automatically adjusting feature importance for different
scenarios, reducing semantic information loss, and preserving spatial details. Additionally, Drone-AFPN
streamlines unnecessary multi-scale feature fusion and optimizes the integration of low-level features. By
controlling model complexity, it significantly improves small-object detection accuracy and enhances the
overall robustness of the model. In the first stage, Drone-AFPN retains the progressive fusion strategy of
AFPN in YOLO, initializing feature fusion using shallow features of two different resolutions. In the second
stage, the traditional strategy is modified to incorporate the highest-resolution low-level features into the
output of the previous stage. This approach not only avoids semantic gaps between cross-layer feature
mappings but also alleviates conflicts in multi-object information during spatial feature fusion, resulting in
richer positional information. This improvement significantly enhances the detection accuracy of small and
medium-sized objects as well as occluded targets. In the final stage, high-level features from the previous
stage output are fused with high-level features from the backbone network. This final output feature map
thus contains both rich positional and semantic information, achieving high performance in detecting
larger objects. Notably, during the second stage of fusion, high-level features are not fully integrated. This
decision is based on the fact that UAV aerial images predominantly contain small and medium-sized objects,
where fusing high-level features contributes minimally and instead increases model parameters and reduces
inference speed.

C3

C5

C4

e
n

o
b

kc
a

B

Predict

Predict

Predict

Figure 6: The architecture of the AFPN in YOLO
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The Adaptive Spatial Feature Fusion (ASFF) Module is crucial in the feature fusion network. Fig. 8
shows an example of adaptive spatial fusion, where features from three different levels are fused. This method
can be adapted to incorporate more or fewer feature levels. The main function of ASFF is to perform a
weighted linear combination of feature vectors from different levels, creating a fused vector that emphasizes
key features while reducing conflicting information.
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Figure 8: Adaptive spatial fusion operation

Let xn→l
i j represent the feature vector at (i, j) transitioning from level n to level l. The fused feature vector

yl
i j at level l, obtained through the adaptive spatial fusion of multi-level features, is defined as the linear

combination of feature vectors x 1→l
i j , x2→l

i j and x3→l
i j , expressed as:

yl
i j = αl

i j ⋅ x 1→l
i j + βl

i j ⋅ x2→l
i j + γl

i j ⋅ x3→l
i j (1)

where αl
i j , βl

i j, and γl
i j represent the spatial weights of the features of the three levels at level l, subject to the

constraint that αl
i j + βl

i j + γl
i j = 1.
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3.5.2 Small-Object Detection Head
UAV imagery often contains numerous small objects, making detection particularly challenging.

Reflecting these traits, the dataset includes many hard-to-detect small objects. To tackle this, we added
a dedicated small-object detection head to the original model. As mentioned earlier, the Drone-AFPN
structure was introduced to improve multi-scale feature fusion. Leveraging the positional and small-object
information extracted by Drone-AFPN, the small-object detection head minimizes information loss and
enhances the model’s ability to capture fine details. This addition greatly boosts localization and recognition
accuracy, especially for small targets.

3.6 Shape-IoU Loss Function
Traditional IoU methods focus mainly on the overlapping area, overlooking the shape and aspect ratio of

object boundaries. This limitation is especially problematic in UAV imagery, where numerous small, densely
packed targets make conventional metrics less effective, leading to reduced detection accuracy. To address
this, the Shape-IoU metric was introduced. Unlike traditional IoU, Shape-IoU considers both the overlapping
area and the shape and aspect ratio of object boundaries. This enables the model to better distinguish
small objects with similar shapes but different sizes, significantly improving detection accuracy. Shape-IoU
enhances the detection of small objects by capturing detailed boundary features, reducing false positives
and missed detections caused by insufficient overlap. It performs well in complex scenarios with overlapping
targets and challenging backgrounds, improving robustness and localization precision. Particularly for UAV
images with numerous small objects, Shape-IoU demonstrates superior accuracy. The structure of Shape-IoU
is shown in Fig. 9.
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bgt
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Figure 9: Structure of the Shape-IoU

In comparison, Jin et al. [41] introduced WIoUv3, which uses dynamic weighting to adapt to varying
target scales and shapes, excelling in detecting large objects and handling complex backgrounds, albeit with
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higher computational cost. While WIoUv3 offers better generalization, Shape-IoU’s strength in detecting
small objects makes it ideal for drone-based tasks requiring fine detail and robustness.

The calculation formula of Shape-IoU is as follows:

IoU =∣B ∩ Bg t ∣
∣B ∪ Bg t ∣ (2)

ww = 2×(w g t)scal e

(w g t)scal e+(hg t)scal e (3)

hh = 2×(hgt)scal e

(w g t)scal e+(hg t)scal e (4)

distancesha pe= hh×(xc−x g t
c )

2/c2+ww×(yc−yg t
c )

2/c2 (5)

Ωsha pe= ∑
t=w ,h
(1−e−ωt)θ , θ = 4 (6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ωw= hh× ∣w−w g t ∣
max (w ,w g t)

ωh= ww× ∣h−hg t ∣
max (h,hg t)

(7)

where scale refers to the scale factor, which is linked to the target sizes in the dataset. The parameters ww and
hh represent the weight coefficients for the horizontal and vertical directions, respectively, and are related to
the shape of the ground truth (GT) bounding boxes. The bounding box regression loss is then defined as:

LSha pe−IoU = 1 − IoU + distancesha pe + 0.5 ×Ωsha pe (8)

3.7 Overfitting Testing and Mitigation Strategies
To assess generalization, we used cross-validation and training/validation loss comparison to detect

overfitting. An increase in validation loss during training signals potential overfitting. To address this, we
applied data augmentation (e.g., rotation, flipping, scaling), L2 regularization, and model simplification to
reduce parameters. These strategies effectively mitigated overfitting and improved generalization.

4 Experiment

4.1 Datasets
This study utilized the VisDrone 2019 dataset, created by the AISKYEYE team at Tianjin University in

collaboration with other research institutions, to advance UAV visual perception tasks such as object detec-
tion, tracking, and semantic segmentation. The dataset contains 10,209 annotated UAV images captured from
diverse environments across multiple Chinese cities, including urban streets, rural fields, and construction
sites. It features multiple perspectives, task-specific data, and 10 object categories, such as pedestrians and
vehicles, addressing challenges like detecting small objects in dense, complex backgrounds.

Following the VisDrone 2019 Challenge standard, the dataset is divided into a training set (6471 images),
validation set (548 images), and test set (1610 images), ensuring broad coverage of scenarios and conditions.
This study selected VisDrone 2019 over VisDrone 2021 due to its maturity and widespread adoption for multi-
object and small-object detection tasks. While VisDrone 2021 offers expanded annotations and scenarios,
VisDrone 2019 provides stable, diverse imagery that effectively captures complex scenarios, making it an
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ideal benchmark for addressing small-object detection and dense multi-object challenges. Its widespread use
ensures meaningful comparisons with existing research, meeting the specific needs of this study.

4.2 Experimental Environment
The experiments were conducted on a Windows 10 system using PyCharm as the programming

platform. The deep learning framework combined PyTorch 2.3.1, Python 3.9, and CUDA 12.1. The hardware
setup included an NVIDIA GeForce RTX 4060 GPU with 8 GB of RAM. Training was performed over 200
epochs with a batch size of 8 and a default image resolution of 640 × 640. The initial learning rate was set
to 0.01. Data augmentation utilized the mosaic method [42], which involves randomly cropping four images
and combining them into a single composite image for training.

4.3 Evaluation Metrics
This study utilized six evaluation metrics to comprehensively analyze the algorithm’s performance:

precision (P), recall (R), mAP@0.5, mAP@0.5:0.95, frames per second (FPS), and parameters (Params).
Precision (P) quantifies the proportion of correctly identified samples among all predictions, indicating
classification accuracy. Recall (R) represents the proportion of correctly detected positive samples among
actual positives, reflecting the model’s detection capability for all positive categories. Mean Average Precision
(mAP), a standard metric in object detection, evaluates accuracy across categories; mAP@0.5 uses an IoU
threshold of 0.5, while mAP@0.5:0.95 averages precision over IoU thresholds ranging from 0.5 to 0.95 for a
more comprehensive assessment. FPS measures the image processing rate per second, crucial for evaluating
real-time detection. Params indicate the number of model parameters, representing its complexity. The
formulas for these metrics are as follows:

FPS =
1/ (Tpre + Tin + Tpost)

1000
(9)

P = TP
TP + FP

(10)

R = TP
TP + FN

(11)

AP = ∫
1

0
p (r) dr (12)

mAP = 1
k

i
∑

k
APi (13)

where Tpre , Tin and Tpost refer to the time taken for preprocessing, inference, and postprocessing, respec-
tively. TP (true positives) represents correctly identified positive samples, while FP (false positives) indicates
negative samples misclassified as positive. FN (false negatives) refers to positive samples that were either
missed or misclassified as negative. The term p(r) corresponds to the precision-recall curve, AP denotes the
average precision for the i-th detection category, and k signifies the total number of categories.
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4.4 Results and Analysis
4.4.1 Comparison with YOLOv8s

To highlight the detection advantages of our proposed model, we conducted comparative experiments
between the DAFPN-YOLO model and the baseline YOLOv8s model on the VisDrone2019 dataset. Fig. 10
presents the PR (Precision-Recall) curves for YOLOv8s and DAFPN-YOLO, showcasing the AP values for
individual classes and the overall mAP@0.5 values across all classes. As shown in the figure, our proposed
model demonstrates improved detection performance compared to YOLOv8s, achieving a 5.4 percentage
point increase in mAP@0.5.

Figure 10: PR curve comparison chart (a) YOLOv8s PR curve; (b) DAFPN-YOLO PR curve

To visually compare the detection performance of the two models for individual target categories, we
created bar charts illustrating the detection precision of YOLOv8s and DAFPN-YOLO for various targets,
as shown in Fig. 11. In this context, walking or standing individuals are labeled as “pedestrians,” while
those sitting on vehicles or the ground are categorized as “people.”. The chart clearly demonstrates that
DAFPN-YOLO significantly improves detection performance across all categories, with the most notable
increases observed for “people” and “pedestrians,” which show improvements of 9.6 percentage points and 9.5
percentage points, respectively. These results indicate that DAFPN-YOLO enhances detection performance
for targets of various scales, particularly for small objects.
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Figure 11: Histogram of different object detection accuracy of YOLOv8s and DAFPN-YOLO

Using visualized images for comparison provides a clearer understanding of the differences in detection
performance between the two models across various scenes and environments. This approach is partic-
ularly valuable for evaluating the models’ ability to detect occluded objects and assess robustness. Fig. 12
presents the visualization results of DAFPN-YOLO and YOLOv8s under different backgrounds and lighting
conditions. The comparison reveals that DAFPN-YOLO not only significantly reduces false positives and
missed detections but also demonstrates improved detection performance under varying environmental and
lighting conditions compared to the baseline model.

4.4.2 Comparison with Current Advanced Algorithms
This study compares one-stage and two-stage detection algorithms. The one-stage algorithms include

RetinaNet, YOLOv3-tiny, YOLOv5s, YOLOv6s, YOLOv8n, YOLOv8s, YOLOv8m, YOLOv10s, and the latest
YOLOv11s. The two-stage algorithms comprise Faster R-CNN and Cascade R-CNN [43]. Table 1 summarizes
the comparison results on the VisDrone2019 dataset. As shown, DAFPN-YOLO exhibits clear advantages
over two-stage algorithms in detection accuracy, model size, and speed. Compared to RetinaNet, DAFPN-
YOLO outperforms it in detection accuracy, speed, and model size, with an FPS improvement of 46.6%.
When compared to the YOLO series, a one-stage algorithm, DAFPN-YOLO also shows strong performance
in detection accuracy and model size. It achieves a 5.8% improvement in mAP@0.5 over the latest YOLOv11s
algorithm, while reducing the number of parameters by 2.1%. In terms of detection speed, although the
detection speed is slightly reduced at the same model size (Small), it outperforms the next model size
(Medium). Additionally, by comparing DAFPN-YOLO with YOLOv8n, it can be seen that YOLOv8n is more
advantageous for resource-constrained tasks with high real-time requirements.



1944 Comput Mater Contin. 2025;83(2)

Figure 12: Visualization of the detection results of YOLOv8s and DAFPN-YOLO. The red boxes highlight the areas
with the most noticeable differences in detection. (a) Original image to be detected. (b) Detection results of YOLOv8s.
(c) Detection results of DAFPN-YOLO

Table 1: Comparison results of different detection algorithms on the VisDrone2019 dataset

Models mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) FPS
Faster-RCNN 37.4 22.0 41.2 36.2

Cascade-RCNN 39.0 24.2 69.1 31.6
RetinaNet 28.1 16.1 19.8 62.3

YOLOv3-tiny 23.5 13.1 12.1 207.0
YOLOv5s 38.0 22.6 9.1 148.6
YOLOv6s 36.6 22.0 16.3 151.9

(Continued)
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Table 1 (continued)

Models mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) FPS
YOLOv8n 32.7 19.1 3.1 181.2
YOLOv8s 38.7 23.0 11.1 149.1
YOLOv8m 42.5 25.8 25.8 101.1
YOLOv10s 38.5 22.9 8.0 145.1
YOLOv11s 38.3 22.7 9.4 162.3

DAFPN-YOLO
(ours)

44.1 26.8 9.2 117.9

Note: Bold indicates the highest ranking for this metric.

4.4.3 Ablation Experiment
To further verify the effectiveness of the proposed improvements in the DAFPN-YOLO network, abla-

tion experiments were conducted using the YOLOv8s model, with the proposed enhancements progressively
integrated. The design of the ablation experiments is as follows:

(1) A: Replace C2f with C2f_Dual in the backbone network.
(2) B: Replace SPPF with SPPELAN in the backbone network.
(3) C: Modify the neck and head by introducing Drone-AFPN and a small-object detection head.
(4) D: Integrate the Shape-IoU loss function.

The experimental results are presented in Table 2. Models M1, M2, and M4 show improvements over
M0 across all metrics, indicating that the individual introduction of C2f_Dual, SPPELAN, or their combined
integration can enhance detection accuracy, reduce model size, and improve detection speed. Compared to
M0, M3 achieves a 4.8% increase in mAP@0.5 (%), demonstrating that the improvements made to the neck
and head contribute to the most significant accuracy gains. However, we observe that the improvements
made to the neck and head of the model, while significantly increasing detection accuracy and reducing
model parameters, result in a decrease in inference speed, as indicated by a 39.5 drop in FPS. Let’s discuss
this in detail. First, the number of model parameters is not directly related to inference speed, as speed is
more influenced by factors such as computational complexity, feature map size, and hardware utilization
efficiency. Even if the parameter count is reduced, if new modules increase computational complexity (such
as processing larger feature maps or implementing complex feature fusion mechanisms), inference speed
may still decrease. In our model, the Drone-AFPN structure, while optimizing the number of parameters,
integrates low-level features (i.e., higher-resolution maps), which increases computational complexity and
slows down inference speed. However, this also leads to a significant accuracy improvement. In conclusion,
we sacrificed a slight decrease in detection speed for a substantial accuracy boost. Finally, the comparison
between M6 and M5 shows that the introduction of Shape-IoU also enhances detection accuracy.

4.4.4 Drone-AFPN Improvement Experiments
To evaluate the effectiveness of Drone-AFPN in UAV aerial image object detection, various feature

pyramid networks (FPN) were integrated into the baseline YOLOv8s model for comparative testing, with
results shown in Table 3. While Drone-AFPN does not achieve the best results in parameter count or
detection speed, it shows notable advantages in precision, recall, mAP@0.5, and mAP@0.5:0.95. Overall,
Drone-AFPN effectively extracts multi-scale feature information and demonstrates excellent detection
performance for UAV aerial.
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Table 2: Results of ablation experiments

Models A B C D mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) FPS
M0 38.7 23.0 11.1 149.1
M1

√
38.8 23.0 10.5 152.6

M2
√

39.0 23.1 10.5 151.2
M3

√
43.5 26.3 10.4 109.6

M4
√ √

39.2 23.2 9.9 153.3
M5

√ √ √
43.6 26.4 9.2 118.2

M6
√ √ √ √

44.1 26.8 9.2 117.9

Note: Bold indicates the highest ranking for this metric.

Table 3: Comparative experiment of feature fusion network on the VisDrone2019 dataset

Method P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) FPS
PAFPN 50.6 37.7 38.7 23.0 11.1 149.1
BIFPN 50.6 38.4 39.4 23.8 10.3 148.6
AFPN 49.2 37.1 37.8 22.5 8.6 149.7

Drone-AFPN 52.6 41.5 43.5 26.3 10.4 109.6

Note: Bold indicates the highest ranking for this metric.

5 Conclusion
This paper presents DAFPN-YOLO, an enhanced model based on YOLOv8s, designed to tackle

challenges in UAV object detection, such as small objects, occlusions, and complex backgrounds, while
maintaining a balance between accuracy and speed. The model integrates the C2f_Dual and SPPELAN
modules into the backbone, enhancing feature extraction and information aggregation, thereby improving
inference efficiency. The inclusion of Drone-AFPN significantly enhances feature fusion by fully integrating
low-level features through an adaptive fusion mechanism. This approach minimizes semantic information
loss and spatial detail blurring, while strengthening multi-scale feature fusion capabilities. Additionally, a
160 × 160 small-object detection layer is added, enabling a finer receptive field to improve the detection of
smaller objects and enhancing accuracy for small targets. Finally, Shape-IoU is employed as the bounding box
regression loss, improving localization accuracy for irregularly shaped and occluded objects. Experiments
conducted on the VisDrone2019 dataset demonstrate that DAFPN-YOLO outperforms the YOLOv8s base-
line, achieving a 5.4 percentage point increase in mAP@0.5, a 3.8 percentage point increase in mAP@0.5:0.95,
and a 17.2% reduction in parameters. These results highlight the model’s superior detection performance
and efficiency. DAFPN-YOLO not only provides an innovative solution for drone-based object detection
tasks but also offers valuable insights for addressing small object detection, real-time optimization, and
target recognition in complex environments. Future work will focus on further optimizing the Drone-AFPN
structure to enhance its lightweight design, expanding its applicability for real-time UAV detection tasks.
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