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ABSTRACT: Large language models cross-domain named entity recognition task in the face of the scarcity of large
language labeled data in a specific domain, due to the entity bias arising from the variation of entity information
between different domains, which makes large language models prone to spurious correlations problems when dealing
with specific domains and entities. In order to solve this problem, this paper proposes a cross-domain named entity
recognition method based on causal graph structure enhancement, which captures the cross-domain invariant causal
structural representations between feature representations of text sequences and annotation sequences by establishing
a causal learning and intervention module, so as to improve the utilization of causal structural features by the large
language models in the target domains, and thus effectively alleviate the false entity bias triggered by the false relevance
problem; meanwhile, through the semantic feature fusion module, the semantic information of the source and target
domains is effectively combined. The results show an improvement of 2.47% and 4.12% in the political and medical
domains, respectively, compared with the benchmark model, and an excellent performance in small-sample scenarios,
which proves the effectiveness of causal graph structural enhancement in improving the accuracy of cross-domain entity
recognition and reducing false correlations.
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1 Introduction
In recent years, LLMs such as GPT-3 [1] have demonstrated remarkable performance in zero-shot and

few-shot tasks, advancing the research on CD-NER [2]. However, CD-NER still faces the challenge of scarcity
of large scale annotated data in specific domains. This scarcity limits the model’s ability to learn features
relevant to the target domain, leading to reduced accuracy in entity recognition. Additionally, it exacerbates
issues related to causal and spurious correlations within NER tasks, which traditional methods struggle to
effectively address. The emergence of LLMs has significantly alleviated this dependency. Although LLMs
have exhibited excellent generalization capabilities in NLP tasks through contextual learning [1] and chain-
of-thought [3] techniques, their performance in cross-domain NER tasks still requires improvement. Current
research on cross-domain tasks primarily models the interaction between domains using two methods:
domain adaptation based on pre-trained language models and prompt-based approaches leveraging LLMS.
Domain adaptation methods enhance target domain performance by sharing source domain knowledge
and domain-invariant features, but their generalization ability relies on the similarity between the source
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and target domains. When there is a significant disparity, model performance tends to decline markedly.
Prompt-based methods, on the other hand, improve target domain performance by designing domain-
specific prompts to activate the latent capabilities of LLMs [4]. However, their effectiveness depends on the
choice and design of prompts, and they have limited generalization capacity to new domains.

Furthermore, selective biases induced by label and contextual correlations across domains can lead
to model overfitting to non-representative features, ignoring the true causal relationships and thereby
constraining the model’s generalization capability and prediction accuracy. As illustrated in Fig. 1, “John
Preskill” should be recognized as a “scientist” rather than merely a “Person”, and the reason for this problem
is that LLMs will incorrectly learn the correlation between “John Preskill” and the “person” during the pre-
training process, but this correlation is a spurious correlation problem. Therefore, in complex cross-domain
tasks, causal and spurious correlations are critical issues [5]. Causal correlations are stable and interpretable,
whereas spurious correlations fluctuate with changes in the environment. Recent studies have attempted to
mitigate the impact of spurious correlations using causal inference methods [6–8], optimizing the model’s
predictive capabilities, reducing the negative effects of confounding factors, and enhancing performance in
cross-domain tasks.

Figure 1: Causal learning helps models alleviate entity bias

Despite the effectiveness of these methods in reducing the over-prediction issues in cross-domain
tasks, they still face several challenges. Firstly, there is a lack of thorough exploration of causal relationship
consistency across domains. Traditional approaches are often applied to model training in specific scenarios
and fail to fully leverage underlying structured knowledge [9]. Secondly, the issue of entity bias [10] is difficult
to effectively filter out. The variation in entity information across different domains can affect LLMs, leading
them to rely on biased parameters and make unreliable predictions [11]. Additionally, LLMs parameters are
not accessible and their logical structure is uncalibrated, which hampers the capture of causal relationships
in cross-domain tasks, resulting in inadequate adaptability to diverse domain data.

To address the aforementioned challenges, this paper proposes a CD-NER method based on the
enhancement of causal graph structure. The model is designed to meet the different requirements of different
domains. The model generates fused semantic features by migrating the original semantic information and
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domain invariant feature knowledge from the source domain model to the target domain and combining
them with the target domain. In addition, the fusion semantic features are then used to build a causal graph
with the target domain labels to capture the causal semantic features between the fusion semantic features and
the target domain labels, so as to explain the causal relationship between them. After that causal intervention
and counterfactual strategies are used to generate cross-domain invariant causal structure predictions, which
enhances the ability of LLM to recognize causal relationships and improves its performance in cross-domain
entity information detection. The main contributions are as follows:

1. This paper proposes a method that fuses multiple domains to identify and leverage causal relationships,
enhancing large language model performance by mitigating semantic interference, causal inconsistency,
and entity bias in cross-domain tasks.

2. Experimental results on several domain-specific NER datasets validate the effectiveness of
this approach.

2 Related Works
This section will introduce related works in the areas of cross-domain NER, large language models, and

causal invariant learning.

2.1 Cross-Domain Named Entity Recognition
Current CD-NER models primarily employ two approaches: domain adaptation and contrastive learn-

ing. Mou et al. [12] introduced the basic concepts and ideas of domain transfer, leveraging shared knowledge
from the source domain to enhance the performance in the target domain. However, Tang et al. [13] pointed
out that previous methods neglected domain-specific information, leading to conflicts in entity types. To
address this, they built upon the work of Li et al. [14] by employing entity discrimination tasks and entity-
aware training settings to mitigate the negative impacts of domain-specific entity type dependencies. Wang
et al. [15] explored multi-domain adaptation by setting up linear and layers for each domain. Nevertheless,
with an increase in the number of domains, the model tends to become more complex and difficult to train.

In the context of contrastive learning methods, Das et al. [16] suggested using Gaussian embeddings
and contrastive learning to improve the accuracy of few-shot NER. However, this approach overlooked the
integrity of entities. Xu et al. [17] proposed guided momentum contrastive learning, which improves the
accuracy of cross-domain NER by guiding the learning process through EB and LB.

In comparison, previous methods have failed to adequately leverage the causal relationship between
features and labels to optimize predictive performance. This shortfall has resulted in suboptimal handling of
entity bias issues. Moreover, these methods have not fully explored the rich knowledge embedded in LLMs.

2.2 Large Language Models
Recent research has increasingly explored the use of LLMs for IE tasks [1]. LLMs have demonstrated

excellent performance across a wide range of NLP tasks, particularly in zero-shot environments. By leverag-
ing instruction tuning, they have significantly enhanced performance, showcasing their great potential in IE
tasks [1]. However, recent studies indicate that LLMs still face challenges when dealing with complex cross-
domain tasks [18]. Qin et al. [19] found that ChatGPT shows limited performance in zero-shot sequence
labeling tasks. Fei et al. [20] suggested that the choice and order of examples in context learning may lead
to prediction biases. Wang et al. [21] argued that entity bias significantly affects large models, causing these
LLMs to rely on biased parameters, resulting in unreliable predictions. Ye et al. [22] proposed using data
augmentation techniques to improve LLMs’ capabilities in few-shot NER by enhancing original data with
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context and entity-level augmentations to utilize the unique characteristics of NER tasks. Bernal et al. [23]
pointed out that LLMs perform worse than traditional pre-trained language models in few-shot biomedical
relation extraction tasks. Zhang et al. [24] observed that even with instruction tuning, LLMs’ performance
in certain IE tasks still struggles to surpass that of pre-trained language models.

2.3 Causal Invariant Learning
Causal invariant learning is a common approach used to address domain adaptation and domain

generalization problems in cross-domain transfer learning. Domain generalization is crucial for learning
domain-invariant causal knowledge. Tang et al. [25] proposed a scene graph generation framework based
on causal reasoning. By constructing causal graphs, they extracted counterfactual causal relationships to
eliminate the impact of biases. However, this method did not consider the biases implied by cross-cultural
differences. Lin et al. [26] categorized biases into intra-domain and cross-domain types. They proposed
constructing causal models using a hierarchical Bayesian deep model to calculate causal effects and eliminate
both intra-domain and cross-domain biases through causal intervention. To address selection bias and
distributional bias in data, Ren et al. [8] developed a framework for covariance and variance optimization
to learn the causal relationships between features and targets, minimizing covariance to obtain causal effects
and resolve data bias issues between NER and relation extraction. Yang et al. [10] replaced contextual
information with causal intervention to uncover the primary causal relationships in data from a causal
reasoning perspective. Cao et al. [27] suggested using structural causal models as analytical tools to identify
hidden potential risks in exploratory tasks, thus reducing data biases.

3 Problem Definition
Assuming an input sequence X = {x1 , x2, . . . , xn}, where n is the sequence length and each xi represents

a token in the input sequence, the corresponding output sequence is Y = {y1 , y2, . . . , yn}, where each yi is
the predicted outcome for xi . Each predicted outcome is defined over a real category set, and it is selected
from the real category set of the input sequence X. In this paper, a domain D generally consists of two parts:
a feature space X and a marginal probability distribution P(X), if two domains exist, they may have different
feature spaces or different marginal probability distributions. This paper considers a source domain DS , a tar-
get domain DT . The method defines the source domain dataset as DS = {(xs1 , ys1), (xs2 , ys2), . . . , (xsn , ysn)}
where xsi ∈ XS is an instance and ysi is its label. For CD-NER task, using the data from the source domain
DS , can train a predictive model backbone. The goal is to acquire knowledge that can be generalized across
multiple domains and apply it to the target domain data set DT , ensure that the model, given an input
sequence, can maximize the conditional probability distribution of the label sequence:

P(y ∣ x; θ) =
T
∏
t=1

P(yt ∣ xt , y(1∶t−1); θ) (1)

4 Model
CD-LM based on causal graph structures. The method constructs causal graphs to capture cross-

domain invariant causal representations between the feature representations of text sequences and the
labeled sequences, thereby improving the performance of LLMS in target domain entity recognition. As
shown in Fig. 2, the model first introduces a feature fusion module to obtain label structure information
between the source domain and the target domain. By employing GCN alignment techniques, the model
acquires cross-domain invariant structural information. Subsequently, the model utilizes causal learning to
capture potential causal relationship features within text sequences and enhances them into cross-domain
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invariant causal graph representations. Through counterfactual strategies, the model proactively adjusts and
evaluates the causal effects among features, eliminating the confounding factors caused by entity bias, and
ensuring the reliability and consistency of causal relationships. This approach allows the model to accurately
capture the causal structures within text sequences. Finally, using prompts and LLMs, the model enhances
its ability to represent cross-domain invariant features, thereby improving the learning and prediction of
causal relationships in text. This enhancement boosts the detection accuracy of entity information across
different domains.

Figure 2: Overall framework of CDLM

4.1 Semantic Feature Fusion Module
Due to potential mismatches between the labels in the source domain and the target domain datasets,

models trained on the source domain cannot be directly applied to the target domain. The differences in label
distribution necessitate adjustments and adaptations in the target domain. The method need to calculate the
probability distribution of mapping the target domain labels to the source domain labels p(ys ∣ yt = y). In
this study, the method refer to the method by Zheng et al. [28], where the predictions of the source model for
all samples of entity types in the target domain are averaged. The specific calculation formula is as follows:

p(ys ∣ yt = y) = ∣D y
T ∣
−1 ∑
(xt , yt)∈D

y
T

softmax ( fs(xt)) (2)

Here, ys and yt represent the labels in the source domain and the target domain, respectively, fs
represents the pre-trained language model back given the source domain dataset Ds , corresponds to
backbone in Fig. 2, ∣D y

T ∣ represents the number of training samples with true labels in the target domain.
Subsequently, a source domain graph GS(VS , ES) is constructed, where the graph nodes Vs represent entity
labels and the edges, represent semantic similarity. Entity labels with similar semantic features will have
similar probability distributions. Based on this characteristic, the proposed node representation of in the
graph is given by:

t y
s = [p (y(1)s ∣ yt = y) , . . . , p (y(i)

s ∣ yt = y)] (3)

t y
s ∈ R∣ys ∣ represent the original semantic feature representation of each graph node, i.e., the node’s

original, unprocessed or transformed feature representation in the graph, ∣ys ∣ is the number of entity labels
in the source domain. It is necessary to normalize the original semantic feature representation to obtain
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more accurate data. This paper adopts the Wasserstein distance [28] as the distance function to calculate the
distance between nodes. Therefore, the edges can be represented as:

t y
s =

t y
s ⋅ ∣yt ∣2

∑y1 , y2 Wp (t
y1
s , t y2

s )
(4)

where, t y
s represents the linguistic feature representation of each node after normalization. The function

is used to calculate the Wasserstein distance between any two nodes y1 and y2. In the process of graph
construction, an edge is added between two nodes only if the distance Wp (t

y1
s , t y2

s ) is smaller than a threshold
value δ. After constructing the source domain graph, in order to further enhance the relationships between
labels, a mechanism based on label-guided attention is employed to strengthen the effect of deterministic
labeling. Specifically, given a sentence X in the target domain with the actual label sequence, where X =
{x1 , x2, . . . , xn}, each word vector wi ∈ Rd can be generated from the previous model. Here d represents the
dimensionality. By employing this mechanism, the nodes in the source domain graph t y

s are replaced with
probability distributions based on the label li . The detailed formula is as follows:

q j = h jWp + bp (5)

li = ∑
j

exp (q jCT
i ) (wi Wp + bp)

∑ j exp (q jCT
i )

(6)

where Wp and bp represent the weight and bias, respectively, wi represents the original embedding of the
j-th token in the sentence, and ci represents the randomly initialized label embedding. After constructing the
label-based source domain graph, a semantic and label fusion method is employed. This method integrates
the learned graph structure embedding into the context of each word in the sentence. Subsequently, a Graph
Convolutional Network is used for message passing to aggregate the semantic and similarity features between
nodes. This process enhances the actual embedding representation of labels. The detailed formula is as
follows:

l = GCN(l) (7)

where l represents the aggregated node representation of specific labels. This aggregated representation of
specific labels is integrated into the context of the target domain to blend the relevant knowledge features
from both the source and target domains. This process facilitates the learning of semantic similarity features
from the source domain and combines them with the features of the target domain. Consequently, it results
in an enhanced contextual semantic representation in the target domain. The detailed formula is as follows:

wi = wi +
⎛
⎜
⎝

∑i exp (qT
j l i) l i

∑k exp (qT
j l i)

⎞
⎟
⎠

W p + bp (8)

where wi represents the token embedding of the i-th token after label fusion. W p and bp denote the
corresponding projection weight and bias, respectively. To ensure that the semantic features of the fusion
model are more accurately focused on the correct entity types, a BCE loss function is employed. The specific
loss calculation is as follows:

Lfusion = BCE (Linear ([wi , . . . , wi]) , Y) (9)
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where [;] represents the concatenation operation, Y represents the ground truth label of the sentence.
Through the loss calculation this approach not only accurately learns the relevant entity information from
both the source and target domains but also effectively integrates the entity information from both domains.

4.2 Causal Learning and Counterfactual Modules
This paper constructs a structural causal model to describe the causal learning module within the

CDLM. In NER tasks, a causal graph can be used to represent the causal relationships among different
variables. This graph is represented by a Directed Acyclic Graph, where node I represents the fused semantic
features generated by the text sequence in the target domain, which is composed by fusing together the
semantic features output from the target domain and the graph structure constructed in the source domain.
Node E represents focusing only on entity semantic features in the target domain, node C represents focusing
only on confounding factors in the target domain, node P represents representing prior knowledge in
the target domain, node D represents domain information in the target domain, and node Y represents
the output of labeling. Specifically, the causal graph is illustrated in Fig. 3: where Fig. 3a represents shows
an example of entity bias, Fig. 3b depicts the causal relationship between the variables and Fig. 3c shows
a counterfactual operation. Specifically, (a) illustrates an example of entity bias. The name “Ludwig van
Beethoven” is easily associated with a “concert hall”, but not all musicians are related to a “concert hall”,
and not every instance of “Ludwig van Beethoven” should be identified as a Musician; it could also be
classified as a Person. In the causal graph illustrated in (b), domain information D (such as the entity type
musician rather than person), prior knowledge P represents the fused semantic features from the previous
step, entity information E (such as Ludwig van Beethoven), predicted label Y (such as the type musician),
and confounding factor C represents the confounding factor introduced by entity bias. Specifically, as shown
in Fig. 3a, the name “Ludwig van Beethoven” can be easily associated with “concert hall”, but not all musicians
are associated with “concert hall” is associated with “concert hall” and not every instance of “Ludwig van
Beethoven” should be recognized as a musician, and therein lies the influence of confounding factors.

Figure 3: Causal model diagram

Since the input text I consists of entity information E and confounding factors C, it includes causal
paths I → E and I → C. In the generation process, the feature Y is directly influenced by entity information
E, confounding factors C, prior knowledge P, and domain knowledge D. Therefore, it can be represented
by the causal paths P → Y , E → Y , C → Y and D → Y . The paths P → Y , C → Y and D → Y may affect the
generation results and introduce issues such as linguistic bias, irrelevant bias, and entity bias. Based on the
causal graph, it is possible to assess the causal relationships between the context and the entity. Setting the
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input feature as i, entity information as e, confounding factors as c, prior knowledge as p, and domain feature
as d, the expression for the generated feature Y can be represented as:

Yp ,e ,c ,d = P(Y ∣ do(P = p), do(E = e), do(C = c), do(D = d)) (10)

where the do-operator is the back-door criterion. To more accurately calculate the direct causal effect of
entity information E on the output Y, a method of controlling variables is employed. First, the total direct
causal effect after counterfactual reasoning is calculated. This is represented using the English letters directly:

Etotal = Ye ,c , p ,d − Ye∗ ,c∗ , p∗ ,d∗ (11)

Here, e∗, c∗, p∗, d∗ are represented in the counterfactual scenario to simulate the baseline state of each
variable in the absence of intervention. To further obtain the direct causal effect of E, excluding the influence
of prior knowledge, confounding factors and domain feature, the calculation can be expressed using the
following formula:

Er pd = Ye∗ ,c , p ,d − Ye∗ ,c∗ , p∗ ,d∗ (12)

By controlling the variable E = e∗, the potential causal relationships of E can be completely excluded.
By comparing the baseline states and non-baseline states of c, p, d and c∗, p∗, d∗ for the baseline states, the
direct impact of these three variables on the output Y can be directly estimated. Therefore, the direct causal
effect of the entity feature E on Y can be obtained as follows:

Etotal − Er pd = Ye ,c , p ,d − Ye∗ ,c , p ,d (13)

This difference represents the effect of entity feature E on Y when R, P and D are held constant,
considering only the impact of E on Y. This allows for the direct calculation of the causal effect of E on Y,
excluding the potential confounding effects introduced by r, p, d.

As shown in Fig. 3c, a counterfactual operation is demonstrated, which directly calculates the direct
causal effect of entity feature E on y. Specifically, in the counterfactual process, by cutting off the edges,
and thus the connection between different nodes, the node E is re-assigned a value so that the value of
node E no longer relies on the influence of the parent node I, and this intervening operation can be called a
counterfactual. Counterfactual is to reflect “what is the difference in the result for different variables”. And
the idea of counterfactual can guide the model to think: what is the key information that determines the
output of the entity in the target domain? Specifically, a counterfactual represents a modification of a value
such as X to speculate on the possible outcomes of Y. The formula is as follows:

P(Y = y ∣ do(X = x′)) = ∑
z

P(Y = y ∣ X = x′, Z = z) ⋅ P(Z = z) (14)

where do(X = x′) means that we modify the value of X to x′, and Z denotes the external factors affect-
ing X and Y, such as confounders and domain characteristics. By constructing hypothetical scenarios,
counterfactual analysis can assess the impact of input variables on the output results, thereby enhancing
the interpretability and reliability of the model, especially in the context of feature transfer and complex
interactions. This paper employs both explicit and implicit counterfactual strategies.

Explicit Counterfactuals: Explicit counterfactuals involve direct intervention or control operations to
transform specific variables into counterfactual scenarios, thereby evaluating the direct effect of particular
features on dependent variables. To clearly ascertain the impact of specific entity information, a masking
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operation is performed on feature vectors. By observing the changes in the model’s prediction results after
masking out real entity information, the effect can be evaluated. The masking operation involves creating a
mask vector M, and then using the Hadamard Product (element-wise multiplication) to obtain the feature
vector w∗i after masking. The specific formula is as follows:

w∗i = wi ⊙M (15)

This method focuses on masking entity information to more clearly observe changes in the model output
in the absence of such information. The specific processing workflow can be represented by the following
calculation formula:

P(y j ∣ wi) = P(y j ∣ w∗i ) − α ⋅ P(y j ∣ wi) (16)

where i represents the text representation after being masked, w∗i and wi represent the probability represen-
tation of the j-th token. The bias used to represent the distance between the content of the generated real
entity information and the original text.

Implicit Counterfactuals: Implicit counterfactuals utilize latent variable models or generative models to
simulate hypothetical scenarios and capture potential causal relationships. Specifically, in each understand-
ing module, the cross-attention mechanism dynamically divides the input into two disjoint parts (i.e., real
entity information u and other information including r, c and d). The decoding module then processes these
parts separately for counterfactual training. In the decoding module, the probability of generating token yi
can be represented as P(y j ∣ e) and P(y j ∣ c).

To ensure that the generative model reduces dependence on important labels, the method introduce a
consistency loss:

Le = −
∣y∣

∑
i=1

log (1 − P(yi ∣ e)) (17)

where y represents the predicted result of the entity, is used to increase the probability of generating labels
when focusing on unrelated tags:

Lcrd = −
∣y∣

∑
i=1
[log P(yi ∣ c) + log P(yi ∣ r) + log P(yi ∣ d)] (18)

4.3 Prompt Module
This section proposes a causality extraction module for LLMs consisting of three components: causality

discovery, voting discussion iteration, and counterfactual reasoning. The following is the specific design:
Given a set of causal variables X = {x1 , x2, ⋅ ⋅ ⋅ , xn} and an outcome set Y = {y1 , y2, ⋅ ⋅ ⋅ , yn} containing

explanations of the causal variables, LLMs play the role of multiple domain experts to perform causality
discovery based on this variable set and outcome set, identifying causal statements denoted as S = {⟨xi →
yi⟩}, where ⟨xi → yi⟩ denotes that xi leads to yi . The part of the prompt is: Please identify all the words or
phrases in this text that may be causally related. You do not need to analyze or make judgments about the
specific causal relationships involved in these words or phrases, but simply focus on extracting expressions
that may indicate or imply a causal relationship. These might include words or phrases describing cause and
effect, influence, result, action, correlation, etc.

Given a text I and a set of dependent variables X, LLMs based on a full understanding of the set
of dependent variables X, combine information from multiple domains D to analyze and find the direct
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causal relationship between the set of dependent variables X, without the need to look for indirect causality,
which can be directly inferred from the direct. The part of the prompt is: Read carefully for possible causal
relationships between this text and the one I’ve provided, extracting words or phrases with direct causal
relationships based on your expertise and making sure that each causal chain accurately represents a direct
causal relationship between the two variables, rather than an indirect association.

S = LLM(X , I, D) (19)

where S = {⟨xi → y j⟩, ⋅ ⋅ ⋅ , ⟨xi → y j⟩ ∣ xi , y j ∈ X , Y}. After extracting the causal statements in LLMs, multi-
ple sets of causal pairs are obtained S′ = ⟨xi → x j⟩, based on causal pairs, the constraint T can be specified
as follows:

T = {xi → x j ∣ (xi , x j) ∈ S′} (20)

With the multiple constraints M derived from the current causality discovery phase, multiple rounds
of expert voting are conducted to go through to verify the reasonableness of the direct causality, and in case
of conflict, multiple rounds of expert discussion are conducted, where the experts will vote individually on
the issue and give specific opinions until all the experts’ opinions are agreed upon. The part of the prompt
is: Read this text carefully and score the results, evaluating the results in terms of accuracy, relevance, and
domain adaptation, each on a scale ranging from 1 to 5 (1 being the worst and 5 being the best), with specific
explanations. Specifically, the output of the LLMs is combined with the scoring-based approach in each round
of discussion:

y′ = arg max
y∈Y

P(y ∣ x , M) (21)

Finally, model integrates background knowledge with the final causal structure and uses counterfactual
reasoning to validate its response, avoiding hallucination. Counterfactual reasoning involves generating an
alternative answer, comparing it to the original, and checking for contradictions. If inconsistencies are found,
the model evaluates the alternative and refines its response; otherwise, it outputs the original answer.

4.4 Objective Optimization and Optimization Algorithms
Finally, the overall loss of the model can be expressed as:

L = Lfusion + λ1 ∗ Le + λ2 ∗ Lcrd (22)

where Lfusion represents the binary cross-entropy loss during the feature fusion process, and Lcrd are the
losses for the causal relationship extraction task and the general relationship extraction task, respectively. By
adjusting the weight coefficients λ1 and λ2, the influence of these two loss items on the total loss of the model
can be balanced. Specifically, λ1 corresponds to the weight for Le , and λ2 corresponds to the weight for Lcrd.
This approach not only balances the contributions of the two loss components but also enables the model to
effectively focus on extracting causal relationship information, thereby improving overall performance.

5 Experiments
To demonstrate the effectiveness of the method proposed in this paper, the method conducted tests on

five English datasets as well as a dedicated cross-domain dataset. The experimental results were analyzed from
five different perspectives, including ablation studies, parameter testing, case studies, LLMs model analysis,
and further extended experiments.
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5.1 Datasets
This study utilizes six publicly available datasets, including CoNLL-2003 [29], BioNLP13PC [30],

BioNLP13CG [30], MIT-Restaurant [31], MIT-Movie [31], and Cross-NER [32]. The CoNLL-2003 English
dataset is derived from the Reuters corpus. The BioNLP13PC dataset originates from the BioNLP 2013
Shared Task, focusing on extracting pathway information from biomedical literature, while the BioNLP13CG
dataset is dedicated to extracting information related to cancer genetics. The MIT-Movie dataset serves as a
benchmark for enhancing text processing capabilities in the movie domain, and the MIT-Restaurant dataset
is a training and testing corpus for semantic labeling in the restaurant domain. The Cross-NER dataset
includes five distinct domains (politics, natural science, music, literature, and artificial intelligence), each
featuring unique entity types. For ease of understanding, in the following we replace the dataset with a more
concise form, shortening BioNLP13PC to PC, BioNLP13CG to CG, MIT-Restaurant to Res, and MIT-Movie
to Mov. In addition, the different domains of Cross-NER will be abbreviated differently: the politics domain
will be abbreviated as Pol, natural science as Sci, music as Mus, literature as Lit, and artificial intelligence
as AI.

5.2 Experimental Settings
For this study, the adopted approach is based on the pre-trained language modeling framework on

BERT [33]. The adopted LLM is based on LLaMA3.1-8B and GPT-3.5-Turbo-0125. After several iterations of
parameter tuning, the following optimal experimental parameters are selected: stochastic gradient descent is
chosen as the optimizer, the learning rate is set to 0.0001. The batch size is set to 8, and the hidden layer size is
set to 768. To prevent overfitting, the dropout rate is set to 0.5. The evaluation metrics used are consistent with
those used in previous studies, and the micro-F1-score is adopted as the main evaluation metric. This metric
combined precision and recall across all categories to provide a more comprehensive assessment of model
performance. The final result is the average of five independent runs to ensure robustness and reliability.
Given the diverse characteristics of these datasets, this study designs the experiments to validate the proposed
method’s effectiveness in two main parts. In the first part, the CoNLL-03 dataset is used as the baseline dataset
for CD-NER, with experiments conducted on the PC, CG, and Cross-NER target datasets. The second part
of the experiment aims to explore the few-shot cross-domain transfer capabilities based on the CoNLL-03
dataset, selecting Cross-NER, Res and Mov as the target datasets to test the transferability.

5.3 Baselines
To validate the effectiveness of the proposed model, comparative experiments were conducted against

related models on different datasets. Coach [34]: Liu et al. first detect whether tokens are slot entities to
learn general patterns and then classify the slot entities, which improves the prediction accuracy in specific
domains. LANER [9]: Hu et al. enhance the relationship between labels and tokens through multi-task
learning, improving the transferability of label information and facilitating mutual promotion of NER tasks
between source and target domains. NNShot [35]: Yang et al. train an NER model on the source domain as
a feature extractor and then classify features using nearest neighbors. StructShot [35]: Building on NNShot,
this method introduces structured information to enhance the model’s recognition capability. LST-NER [28]:
Zhang et al. model label relationships as probability distributions, constructing a label graph for cross-
domain NER tasks in scenarios where the label sets of the source and target domains differ. LightNER [36]:
Chen et al. improve the overall performance of NER tasks in resource-constrained environments by
incorporating prompts during model training. TemplateNER [37]: Ma et al. transform NER into a large
language model task through template-free prompt tuning techniques, enhancing NER performance in few-
shot scenarios. CP-NER [38]: Chen et al. propose using frozen pre-trained language model parameters



2820 Comput Mater Contin. 2025;83(2)

and cross-domain prompt techniques to integrate knowledge from multiple domains, enhancing NER
performance in the target domain and preventing performance degradation due to insufficient data from a
single domain.

5.4 Results
The experimental results on various commonly used cross-domain datasets are presented in

Tables 1–3, where CDLM(LLaMa) in the table represents LLM using the LLaMA3.1-8B model and
CDLM(GPT) represents LLM using the GPT-3.5-Turbo-0125 model. The bold font indicates the top
performance in the comparative experiments, the italicized font_indicates the second-best results, and a
dash—indicates the absence of experimental results. Overall, the proposed CDLM outperforms the baseline
models in both resource-rich and resource-scarce domains. Compared to state-of-the-art models, it also
demonstrates significant improvements across multiple datasets and domains. The method adopted a model
architecture similar to LST-NER as the foundational framework. Although LST-NER is based on a single-task
framework and its performance is inferior to the multi-task LANER in several aspects, as well as showing a
significant gap when compared to prompt-based models like LightNER and CP-NER, the modified CDLM
demonstrates significant improvements across various dimensions.

Table 1: Experimental results of the CrossNER dataset (%)

Method Pol Sci Mus Lit AI PC CG
Coach 61.50 52.09 51.66 48.35 45.15 — —

LST-NER 70.44 66.83 72.08 67.12 60.32 87.12 82.48
LANER 71.65 69.29 73.07 67.98 61.72 — —

LightNER 72.78 66.74 72.28 65.17 35.82 — —
CP-NER 73.41 74.65 78.08 70.84 64.53 — —

CDLM(LLaMa) 74.12 73.41 79.32 71.23 64.44 88.91 84.55
CDLM(GPT) 74.37 73.62 80.01 71.25 64.90 89.33 85.32

Note: Bold values indicate the best performance, while underlined values indicate
the second-best performance.

Table 2: Experimental results for few-shot scenarios (K = 20) (%)

Method Pol Sci Mus Lit AI Mov Res
TF-NER 60.15 61.22 65.38 61.26 45.23 40.12 38.53
NNShot 60.93 60.67 64.21 61.64 54.27 — —

StructShot 63.31 62.95 67.27 63.48 55.16 — —
TemplateNER 63.39 62.64 62.00 61.84 56.34 — —

LST-NER 64.06 64.03 68.83 64.94 57.78 57.83 58.26
CDLM(LLaMa) 65.42 66.78 70.86 66.12 59.12 60.75 63.12

CDLM(GPT) 65.71 67.08 71.39 67.02 59.27 61.06 63.74

Note: This table shows experimental results for few-shot scenarios with K = 20.
Bold values indicate the best performance, while underlined values indicate the
second-best performance.
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Table 3: Experimental results for few-shot scenarios (K = 50) (%)

Method Pol Sci Mus Lit AI Mov Res
TF-NER 58.42 64.55 62.45 62.31 48.58 41.28 40.55
NNShot 66.33 63.78 67.94 63.19 59.17 — —

StructShot 67.16 64.52 70.21 65.33 59.73 — —
TemplateNER 65.23 62.84 64.57 64.49 56.58 — —

LST-NER 68.51 66.48 72.04 66.73 60.69 61.25 63.58
CDLM(LLaMa) 69.32 68.53 74.53 68.21 61.35 64.03 65.71

CDLM(GPT) 69.65 69.12 75.09 68.63 61.59 64.41 66.07

Note: The table shows the experimental results for few-shot scenarios with K = 50.
Bold values represent the best performance, while underlined values indicate the
second-best performance.

Notably, when compared to the multi-task LANER, the CDLM exhibits substantial enhancements across
the five domains of the CrossNER dataset. For instance, it achieves an increase of 2.47% in the Pol domain
and 4.12% in the Sci domain, which effectively validates the efficacy of the proposed method. This method
leverages the pre-trained language model’s capability to effectively identify causal relationships between
entities and contexts. It also utilizes the extensive corpora within the LLM to provide contextual support and
deepen understanding, addressing potential limitations of LLMs in comprehending and generating content
based on causal relationships. Furthermore, the proposed method does not require additional training for the
LLM, thereby fully harnessing the LLM’s inherent capabilities. It is adaptable to various types of LLMs and can
optimize their performance across different datasets without altering the model architecture or parameters.
In terms of training time and resource consumption, the method significantly underperforms CP-NER, yet
achieves comparable results and exhibits notable improvements in certain domains, such as a 0.71% increase
in the Pol domain and a 0.68% increase in the Mus domain. Moreover, in entirely different medical and
biological datasets, the results are promising. For instance, on the medical PC dataset, the method shows a
1.79% improvement over the baseline framework, and a 2.07% improvement on the biological CG dataset.
Hence, the experimental comparison results indicate that the proposed method demonstrates significant
advantages in multiple dimensions. Additionally, the method also shows remarkable advantages in terms of
resource consumption and training time.

To further validate the effectiveness and robustness of the proposed method, few-shot experiments were
conducted on specific CrossNER, Res and Mov datasets in low-resource environments. The experimental
results are presented in Tables 2 and 3.

The experimental results demonstrate that the proposed model consistently outperforms the baseline
models in a small sample environment, with significant improvements observed under settings of K = 20
and K = 50. The method presented in this paper not only effectively leverages the rich semantic knowledge
of LLMs but also addresses the issue of spurious correlations in LLMs through causal semantic relationships.
This approach yields substantial improvements not only on the CrossNER dataset but also in scenarios
where the source and target domains are entirely different. Specifically, compared to the best experimental
results, the model achieves an average increase in F1-score by 1.73% and 1.50% under K = 20 and K = 50
sample settings, respectively. Furthermore, in the source and target domains (Res and Mov), where there are
significant differences in domain and labels, the F1-scores for Res and Mov increase by 2.92% and 4. 83% at
K = 20, and by 2.78% and 2.13% at K = 50, respectively. These results clearly indicate that the model effectively
utilizes semantic features derived from causal relationships to enhance the rich semantic knowledge of LLMs.
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By integrating features from both the source and target domains and identifying causal relationships between
features, the model effectively mitigates the issue of spurious correlations between entities and context. This
approach enhances the accuracy and reliability of the model in handling complex semantic tasks.

6 Experimental Analysis
In this subsection, the method selected the ConLL03 → CrossNER experimental setup, with the LLM

used being LLaMA3.1-8B, to conduct a detailed analysis of the results from three perspectives: ablation
experiments, parameter analysis, and case studies.

6.1 Ablation Analysis
To validate the effectiveness of each module, ablation experiments were conducted on the ConLL03 →

CrossNER setup. The results are presented in Table 4. Where, -Ly represents the removal of causal module
information including E, C and R. It can be observed that the average F1-score decreases by 2.10% across
different domains, with the highest decrease of 3.84% in the Sci domain. This indicates that the causal
relationships between different entities and the physical world are crucial for the overall model performance.
Removing this information diminishes the model’s ability to verify and distinguish between different
entity types and relationships. Consequently, this reduction negatively impacts the model’s comprehensive
performance in domain-specific tasks. Similarly, -Lr represents the removal of feature module information.
It is evident that the F1-score decreases by 1.57% on average across different domains, with the AI domain
experiencing the highest reduction of 1.85%. This suggests that the integration of feature information
provides effective data sources and real-world factual information, enhancing the model’s adaptability and
generalization capabilities across various domains. It also contributes to the overall performance of the model
in cross-domain tasks.

Table 4: Ablation experiment (%)

Domain Pol Sci Mus Lit AI
CDLM 74.12 73.41 79.32 71.23 64.44

-Ly 72.31 69.57 77.85 70.13 62.17
-Lr 73.48 72.12 78.33 70.87 62.59

Note: This table shows the results of the ablation exper-
iment across different domains. CDLM represents the
full model, while -Ly and -Lr represent ablations.

6.2 Parameter Analysis
To investigate the impact of the parameters λ1 and λ2 of the causal learning module on the experiment,

the method set different parameters and conducted multiple trials. In the causal intervention and coun-
terfactual modules, the loss function Loss is composed of Le and Lcrd, where λ1 represents the weight of
factual information, and λ2 represents the weight of prior knowledge and complex causal relationships. The
values for λ1 and λ2 were set to [0.2,0.4,0.6,0.8,1]. As shown in Fig. 4, when λ2 is fixed, the increase in the
value of λ1 increases with the proportion of factual information, leading to an increase in the corresponding
weight within the entire feature representation. At this point, it can be seen that as the weight of factual
information increases, the model’s ability to discriminate specific tasks improves accordingly, indicating that
factual information can effectively enhance the model’s accuracy and generalization capability. However, λ1
is excessively large, the model may become overly reliant on factual information, neglecting prior knowledge
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and complex causal relationships, leading to a decrease in overall performance. Similarly, if λ1 is too small,
the model cannot effectively utilize factual information, resulting in insufficient performance. Therefore,
λ1 = 0.6 and λ2 = 0.6 as the optimal parameters for this set of experiments.

Figure 4: The values corresponding to different λ1 and λ2

6.3 Case Analysis
This study presents an in-depth case analysis by selecting representative sentences from various fields

within the CrossNER dataset to elucidate the challenges and countermeasures in cross-domain tasks. The
uniqueness of cross-domain tasks lies in the uncertainty and diversity of terminologies and labels across
different domains. For instance, as demonstrated in Table 5, the term “Experts” might be labeled as “Person”
in certain fields, while in others, it could be labeled as “Scientist”. Such label uncertainties exacerbate the
complexity of model processing and contribute to significant domain bias issues.

Table 5: Prediction comparison of different models in different fields

Input sentence LightNER CP-NER CDLM
Ludwig van Beethoven
was performing at the
grand concert hall in

Vienna.

Ludwig van
Beethoven (Person)

was performing at the
grand concert hall in

Vienna.

Ludwig van
Beethoven (Person)

was performing at the
grand concert hall in

Vienna.

Ludwig van
Beethoven (Musician)
was performing at the
grand concert hall in

Vienna.
In 1991, John Preskill
and Kip Thorne bet

against Stephen
Hawking...

In 1991, John Preskill
(Person) and Kip

Thorne (Person) bet
against Stephen

Hawking (Person)...

In 1991, John Preskill
(Person) and Kip

Thorne (Person) bet
against Stephen

Hawking (Person)...

In 1991, John Preskill
(Scientist) and Kip

Thorne (Scientist) bet
against Stephen

Hawking (Scientist)...

In order to further analyze the predictive effectiveness of the model for different entity types, we
performed a fine-grained analysis of the PC dataset, in which the main entity types in the PC dataset
are Simple-chemical (CHEM), Gene-or-gene-product (GGP), Cellular-component (CCP) and Complex,
respectively.

Table 6 shows the main experimental results, and it can be seen that compared with the LLM-based
CP-NER method, CDLM improves its performance on several entity types, which once again validates the
effectiveness of this paper’s method. In addition, CDLM still achieves good performance even on CCP entity
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types with less data volume, which further proves that CDLM has greater improvement even when facing
the long-tail problem of data distribution.

Table 6: Fine-grained analysis (%)

Entity CP-NER CDLM
CCP 88.22 88.64
GGP 87.82 88.76

CHEM 88.86 89.62
Complex 88.02 89.58

Existing models often struggle with effectively identifying and distinguishing information from various
unknown domains in cross-domain tasks. Although these models can accurately identify entity information,
they exhibit a high degree of domain specificity in determining entity types, making generalization to unseen
domains challenging. The method proposed in this paper leverages the extensive corpus of LLMs to integrate
information from both source and target domains by exploiting cross-domain invariances. By incorporating
causal learning, the model’s capability to adapt to new domain entity information is further enhanced,
resulting in more accurate predictions and entity type classifications. The model undergoes training and
validation on multi-domain data, showcasing its robustness and effectiveness in CD-NER.

7 Large Model Analysis

7.1 Experimental Analysis
To evaluate the generalization capability of the LLMs, commonly used few-shot NER datasets were

employed for testing, including ConLL-2003 and FewNERD. In Fig. 5, the main experimental results are
summarized. Due to the high costs associated with using the ChatGPT API, Ma et al. [39]’s research was
referenced for a comparative analysis of ChatGPT and InstructGPT results. The experimental findings
indicate that in few-shot scenarios, the LLM performs exceptionally well in both 1-shot and 5-shot settings,
significantly outperforming methods based on pre-trained language models. This superior performance is
attributed to the LLM’s extensive corpus and powerful generalization capabilities. However, as the number of
samples increases, the performance curve gradually declines. This demonstrates the LLM’s high sensitivity to
small sample sizes and complex label information, indicating a challenge in fully leveraging limited training
data to achieve accurate NER.

Figure 5: LLM experiment
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7.2 Why LLM’s Performance in Sequence Annotation Tasks Is Not Satisfactory
Through the above experiments, the performance deficiencies of LLM in sequence labeling tasks were

analyzed, focusing on the following three key aspects: 1. Insufficient Utilization of Annotations: Compared
to domain-specific models, LLMs gain limited benefits from increased training samples and label types,
manifesting in two main constraints: (1). Effective Sample Capacity: The effective sample capacity is restricted
by the model’s maximum input length, leading to performance saturation before reaching the sample capacity
limit. (2). Label Type Increase: An increase in label types results in fewer examples per label, limiting the
LLM’s ability to understand complex label interactions. This reduces the efficacy of annotations, as the LLM
cannot leverage the expanded training data as effectively as domain-specific models. 2. Unfamiliarity with
Task Format: LLMs are not sufficiently familiar with the highly flexible task formats typical in sequence
labeling tasks, which impacts their contextual learning ability. The complex format of sequence labeling
tasks, combined with a lack of relevant tasks in instruction-tuning datasets, makes it difficult for LLMs to
accurately understand and execute these tasks. This unfamiliarity hampers the LLM’s ability to handle diverse
and intricate task structures. 3. Inadequate Contextual Understanding: LLMs exhibit limitations in handling
complex contextual relationships and long-distance dependencies, affecting their performance in sequence
labeling tasks. The model struggles to fully comprehend subtle contextual cues within the text, leading to
insufficient labeling accuracy. These limitations hinder the LLM’s ability to parse and understand nuanced
information, which is crucial for precise sequence labeling.

8 Conclusion
In this paper, we propose leveraging causal relationships to enhance the CD-NER capability of LLMs.

This approach mitigates domain-specific biases and enhances the model’s adaptability to diverse tasks.
Specifically, cross-domain feature fusion representations are improved by effectively incorporating causal
relationships between entities and their contexts. Experimental results validate the model’s effectiveness,
demonstrating superior performance across various domains and providing novel insights for future
research. Despite its robust performance, the model still has some limitations. Future work will focus on
enhancing rapid adaptation to new domains by optimizing cross-domain feature integration, and optimizing
model algorithms by analyzing information such as the computational complexity of the model. There is also
significant value in introducing simpler baseline methods that provide models with more flexible adaptability
and higher computational efficiency. At the same time, exploring how to effectively fine-tune the causality
of techniques using parameters is critical to better capture and utilize domain-specific features, which will
further enhance the ability of models to handle a variety of complex tasks.
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Nomenclature
LLMs Large Language Models
CD-NER Cross-Domain Named Entity Recognition
NER Named Entity Recognition
NLP Natural Language Processing
EB Entity Boundaries
LB Label Boundaries
IE Information Extraction
GCN Graph Convolutional Network
CD-LM Cross-Domain Language Model
BCE Binary Cross Entropy
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