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ABSTRACT: The rapid development and widespread adoption of Internet technology have significantly increased
Internet traffic, highlighting the growing importance of network security. Intrusion Detection Systems (IDS) are
essential for safeguarding network integrity. To address the low accuracy of existing intrusion detection models in
identifying network attacks, this paper proposes an intrusion detection method based on the fusion of Spatial Attention
mechanism and Residual Neural Network (SA-ResNet). Utilizing residual connections can effectively capture local
features in the data; by introducing a spatial attention mechanism, the global dependency relationships of intrusion
features can be extracted, enhancing the intrusion recognition model’s focus on the global features of intrusions, and
effectively improving the accuracy of intrusion recognition. The proposed model in this paper was experimentally
verified on the NSL-KDD dataset. The experimental results show that the intrusion recognition accuracy of the intrusion
detection method based on SA-ResNet has reached 99.86%, and its overall accuracy is 0.41% higher than that of
traditional Convolutional Neural Network (CNN) models.
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1 Introduction
Internet continues to develop and become more widespread, network security has become increasingly

important in modern society. As technology advances, various intrusion techniques are continuously
updated. Traditional network security technologies struggle to counter the malicious intrusions posed
by new network viruses and fail to meet the demands of contemporary societal development. Intrusion
detection technology is a crucial safeguard for network security, necessitating the development of new
methods to enhance detection effectiveness. With the recent advancements and maturation of deep learning
technologies, they have provided fresh perspectives for the research and development of intrusion detection
systems. Deep learning-based intrusion detection has emerged as a prominent topic and trend in research.

Intrusion detection systems (IDS) can be categorized into two main methods: anomaly detection and
misuse detection technologies [1]. In 1980, Anderson et al. [2] first introduced the concept of computer
security threat monitoring and surveillance. Traditional machine learning techniques have been utilized in
intrusion detection for several decades. In 1986, Dorothy Denning from Georgetown University and Peter
Neumann from SRI developed the first real-time intrusion detection expert system which was a rule-based
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and statistical intrusion detection expert system [3], capable of auditing and analyzing log files and host access
information using naive Bayes and decision tree methods to detect abnormal behavior and prevent human
intrusions. Wang et al. [4] proposed an intrusion detection algorithm utilizing a single-class Support Vector
Machine (SVM) combined with a Gaussian mixture model, which enhanced the detection rate. Ali et al. [5]
introduced a bagging algorithm that integrates data analysis techniques with four robust machine learning
ensemble methods, effectively reducing Mean Square Error (MSE) and Mean Absolute Error (MAE).

In the rapidly evolving era of big data, new forms of attacks emerge daily. Traditional machine learning
methods are shallow learning models that lack the ability to autonomously learn features and do not
adequately meet current requirements. These methods continue to face challenges, including unsatisfactory
feature extraction results and low detection accuracy. The advancement of deep learning offers significant
potential for the field of intrusion detection. References [6–10] indicate that deep learning algorithms,
including Auto Encoders (AE), CNN, Recurrent Neural Networks (RNN), Long Short-Term Memory
networks (LSTM), and Generative Adversarial Networks (GAN), have been extensively applied in intrusion
detection. Lee et al. [11] proposed a network anomaly detection model utilizing a stacked sparse AE and
CNN, trained in a semi-supervised manner. This model extracts new feature vectors using SSAE and detects
network anomalies with DeepCNN. Zhao et al. [12] proposed an intrusion detection method that employs
semi-supervised federated learning through knowledge distillation, combining convolutional neural net-
works to extract deep-level features. This approach achieves improved detection performance and reduced
communication overhead. Deore et al. [9] proposed an intrusion detection model based on a RNN classifier
for feature reduction, integrating correlation and information gain via the RNN algorithm. Yang Xiaowen
et al. [13] proposed a network intrusion detection model that integrates CNN-BIGRU (Convolutional Neural
Network-Bi-directional Gated Recurrent Unit) with an attention mechanism, outperforming ensemble
models in network traffic feature extraction. Nonetheless, challenges remain in balancing datasets and
detection rates of the models. Wang et al. [14] proposed a spiral convolution LSTM fusion model for network
intrusion detection, employing a method that incorporates spiral convolution, a double-layer LSTM network,
and a classifier through one-hot encoding and normalized preprocessing of the dataset. Alrayes et al. [15]
introduced an intrusion detection system based on CNN and a channel attention mechanism, achieving an
accuracy of 99.728% on the NSL-KDD dataset and significantly enhancing the performance of intrusion
detection. To address the issue of low accuracy in multi-class classification within intrusion detection,
Sun Hongzhe et al. [16] proposed proposed the Attention-BiTCN (BiDirectional Temporal Convolutional
Network) model, which effectively extracted the deep and global temporal characteristics of network traffic
data through the two-way sliding window method and attention mechanism, and significantly improved the
multi classification performance.

As deep learning technologies continue to advance rapidly, a growing number of sophisticated methods
are being applied to intrusion detection. In particular, Transformer models, Graph Neural Networks
(GNNs), and Generative Adversarial Networks (GANs) have shown remarkable performance in a variety
of tasks, presenting novel strategies for enhancing intrusion detection systems. Initially developed for
natural language processing tasks, the Transformer model has achieved widespread Notice as a result of its
powerful Aptitude for model long-range dependencies. In recent years, researchers have started exploring the
application of Transformers to intrusion detection tasks, aiming to fully leverage critical patterns in network
traffic and thereby improve detection accuracy and robustness. Wu et al. [17] proposed a Robust Transformer-
based Intrusion Detection System (RIDS) that reconstructs feature representations to balance dimensionality
reduction with feature preservation in imbalanced datasets. It uses positional embedding techniques to link
sequence information across features and leverages the Transformer model to derive low-dimensional feature
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representations from high-dimensional raw data. The approach was tested on the CICIDS2017 and CIC-
DDoS2019 datasets, with the results highlighting notable improvements in both accuracy and efficiency
for intrusion detection. Safi et al. [18] leveraged the parallel processing capabilities of Transformer neural
networks to accelerate the learning process, thus improving the detection rate of malicious attacks. Graph
neural networks excel at processing graph-structured data. In intrusion detection tasks, network traffic data
exhibits graph-structured features, with each packet represented as a node and the links between nodes
representing their relationships. Graph neural networks capture the relationships between nodes, enhancing
the recognition ability of intrusion detection systems for complex patterns. Friji et al. [19] proposed a
framework based on GNNs that uses the graph structure to classify communication flows by assigning
malicious scores, offering a new direction for research in intrusion detection systems. GANs offer a novel
solution for enhancing data diversity and generating challenging intrusion samples. By training a generator
and discriminator, GANs can generate samples resembling real attack behaviors, effectively enhancing the
training data of intrusion detection models and improving their generalization and resilience to interference.
Seo et al. [20] proposed a GAN-based Intrusion Detection System (GIDS) that accurately detects attack types
using known training data and utilizes randomly generated fake data to identify unknown attacks, achieving
an average accuracy of 98%. This study shows that GANs can enhance the adaptability of detection systems
when confronting unknown attack types.

In summary, to tackle the current network security challenges in the network environment, along
with the low accuracy and high false alarm rates associated with traditional networks, Building on existing
research, this article proposes an intrusion detection method that combines a spatial attention mechanism
with residual neural network fusion. By incorporating a spatial attention mechanism, the model dynamically
focuses on regions of the input data that are most relevant to the task. By assigning varying weight values to
different spatial positions, the model enhances its ability to capture key information while suppressing the
influence of irrelevant or redundant data, thereby effectively improving the accuracy of the network intrusion
detection system.

2 Related Work
Currently, deep learning has increasingly been utilized in the field of intrusion detection, becoming a

mainstream approach that significantly enhances the protection capabilities of intrusion detection systems.
The method proposed in this article is based on the fusion of a spatial attention mechanism and a residual
neural network. The spatial attention mechanism is integrated into the deep residual network to learn the
temporal correlations of network data and improving its focus on intrusion traffic features.

2.1 Convolutional Neural Network
CNN is a type of neural network inspired by biological research, characterized as a deep feedforward

network with a convolutional structure. CNNs mimic the biological visual system by inputting images into
the network and extracting their features. By employing local connections and weight sharing, the network
becomes easier to optimize and reduces the risk of overfitting.

Convolutional neural networks are widely utilized in image and text processing, effectively extracting
features from images. CNN primarily extracts features from input data, utilizing them for classification,
detection, and recognition tasks. In the realm of intrusion detection, the challenge is fundamentally a
classification problem, where multi-classification models trained via supervised learning are applied to
network traffic data for prediction.
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2.2 Deep Residual Neural Network
Similar to RNNs, CNNs also experience issues such as the vanishing gradient problem and network

degradation. This limitation prevents the model from being sufficiently deep and results in a small number
of training parameters, which in turn hinders the achievement of higher accuracy. In 2016, He et al. [21]
proposed residual neural networks to tackle the “network degradation phenomenon” that occurs during
training. By introducing a deep residual learning framework, the issues of vanishing and exploding gradients
associated with increased network depth have been significantly mitigated.

The residual module allows the network to maintain performance as depth increases by stacking layers
(identity mappings) on top of a shallow network. Residual neural networks primarily consist of basic residual
blocks that utilize “shortcut connections” to compute weights and threshold partial derivatives during model
backpropagation. This connection method reduces the complexity of model training, and its structure is
illustrated in Fig. 1. ResNet learns residual functions, which at that time acted as identity mappings without
introducing additional parameters or computational complexity when residual functions were ineffective.
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Figure 1: Residual module structure

2.3 Spatial Attention Mechanism
In recent years, spatial attention mechanisms have made significant advancements in computer vision,

particularly excelling in image recognition and object detection tasks. The spatial attention mechanism
creates attention maps by analyzing the spatial positioning of features, applying convolution operations
to emphasize important spatial information, and assigning appropriate weights. The channel attention
mechanism differs from the spatial attention mechanism in that the latter prioritizes spatial location over
feature data. The spatial attention mechanism dynamically focuses on regions within the input data most
relevant to the task by assigning varying weights to different spatial positions. This approach sharpens
the model’s ability to discern key details while minimizing the prominence of features that are irrelevant
or pleonastic.

A key challenge in intrusion detection tasks is the prevalence of redundant information and noise in
network traffic. Spatial attention mechanisms can dynamically adjust feature map weights, automatically
focusing on critical features associated with intrusion behavior, thereby enhancing detection accuracy.
While the application of spatial attention mechanisms in computer vision has made notable progress, as
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demonstrated in reference [22], where spatial attention mechanisms are used to fuse multi-scale features and
capture information across different levels, thereby fully integrating low and high-level features to enhance
segmentation performance. Reference [23] employs a spatial attention mechanism to focus on key regions,
enhancing anomaly detection tasks, and combines LSTM to develop a network intrusion detection method
that significantly improves system performance in complex attack scenarios. Xu et al. [24] proposed the
unsupervised model of tssan, which effectively extracts temporal and spatial features by combining the
temporal spatial attention mechanism, and significantly improves the detection performance of rare attack
types by extracting common features from unlabeled data.

In this study, it incorporated the spatial attention mechanism into intrusion detection tasks, combining
it with a residual neural network to boost the model’s focus on key features in network traffic. The advantages
of this method in improving detection accuracy and reducing false alarm rates were validated through
experiments. The thought process of spatial attention mechanism is as follows:

Firstly, the input feature map F with a size of H ×W × C is subjected to channel dimension global max
pooling and global average pooling, resulting in two H ×W × 1 feature maps;

Secondly, The results obtained through global max pooling and global average pooling are concatenated
by channels to obtain feature sizes of H ×W × 2;

Finally, perform a 1 × 1 convolution operation on the concatenated result to obtain the spatial attention
weight matrix Ms through the activation function.

The spatial attention weight matrix Ms can be expressed as:

Ms(F) ∈ RH ,W (1)

Generate feature maps using pooling methods in the channel dimension:

Fs
avg ∈ R1×H×W (2)

Fs
max ∈ R1×H×W (3)

In summary, the calculation formula for spatial attention is as follows:

Ms(F) = σ ( f 1×1 ([AvgPool(F); MaxPool(F)])) = σ ( f 1×1 [F2
avg; F2

max]) (4)

3 Proposed Model
Traditional convolutional neural network algorithms reduce model complexity by utilizing hierarchical

feature sharing to extract traffic characteristics from the network. As the depth of the network increases, the
model may overfit, resulting in a drop in performance. This article presents an intrusion detection system
based on CNNs, integrating deep residual networks and spatial attention mechanisms to construct the SA-
ResNet model. This model not only prevents degradation and loss of accuracy but also enhances adaptability
by processing global dependencies in sequential data through the spatial attention mechanism, resulting in
improved training accuracy.

The intrusion detection architecture based on SA-ResNet constructed in this article mainly consists
of four parts: data preprocessing, Res-CNN feature extraction, spatial attention mechanism, and output
module, as shown in Fig. 2.
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Figure 2: Based on the SA-ResNet intrusion detection model structure

(1) Data Preprocessing: Employ one-hot encoding to preprocess the data, ensuring it meets the input
requirements of the neural network.

(2) Res-CNN Feature Extraction: Extract features from the input data by constructing a residual
convolutional neural network.

(3) Spatial Attention Mechanism: After the residual neural network calculates the weights, the data is
processed in the spatial attention mechanism module for further calculation and optimization.

(4) Output: Following the operations of the convolutional residual and attention modules, the outputs
from the residual convolution and self-attention modules are combined and processed, followed by
adaptive average pooling. Finally, the integrated data is mapped from the previous feature space to the
sample label space for classification by the classifier, outputting the data as a five-class classification
task through an activation function.

3.1 Data Preprocessing
Data preprocessing is a critical step in developing an intrusion detection system, primarily aimed

at preparing data for testing and training. However, the intrusion detection dataset cannot be utilized
immediately after downloading; preprocessing is necessary to address quality issues within the dataset. The
format of the processed dataset facilitates effective transmission of data to the neural network.

Network intrusion detection involves classifying traffic within a network, as computers can only process
numerical data. The original data traffic must be preprocessed to transform it into a format suitable for input
into a neural network, based on its characteristics. Subsequently, deep learning methods are employed to
extract features for training, culminating in the classification of various types of abnormal traffic.

This article employs one-hot encoding to transform all discrete features into numerical representations.
For instance, class labels and network types are digitized, as illustrated in Table 1.

The varying ranges of values for different features can impact the deep learning process, leading to
uneven contributions from certain features to the results. Consequently, a standard normalization technique
is utilized to preprocess the dataset, guaranteeing that the values of each feature are confined within the [0,
1] range. This normalization aligns all data to a uniform order of magnitude, thereby minimizing the impact
on model training results. The normalization formula is expressed as follows:

x′ = x −min(x)
max(x) −min(x) (5)
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Table 1: Numerical processing

Class label Code
Normal [1,0,0,0,0]
Probe [0,1,0,0,0]
Dos [0,0,1,0,0]
U2R [0,0,0,1,0]
R2L [0,0,0,0,1]

3.2 Feature Extraction Based on ResNet-CNN
This article develops an intrusion detection model based on SA-ResNet, comprising five convolutional

layers and two residual connections. The convolution kernel size for each layer is set to three, with both
the stride and padding set to one. Considering the size characteristics and output requirements of the
preprocessed data, the network data undergoes activation and regularization through the activation function
for each convolutional layer. In addition to basic convolution operations, the extraction of features also
incorporates the application of activation functions. Introducing activation functions enhances the network’s
ability to express non-linear relationships, enabling it to learn more complex functional dependencies.
Through non-linear transformations, the network can capture and represent additional dimensions and
features of the input data, thereby improving its feature representation capabilities. Common activation
functions include the ReLU, Sigmoid, and Tanh functions. This article selects the ReLU activation function
for processing the neural networks.

This model incorporates two residual connections. The first residual connection links the outputs of the
second and fourth layers, while the second connects the outputs of the fifth layer with the spatial attention
mechanism module. The introduction of residual connections allows the network to connect across layers,
facilitating gradient propagation to shallower layers. This enhances feature extraction, accelerates network
training, and improves model accuracy.

The following provides a brief overview of the calculation steps involved in convolution during the
feature extraction process:

(1) Assuming the input of the convolutional layer is, where is the feature quantity at time j. If the output of
the i-th convolutional layer is, then the corresponding output of the j-th convolutional kernel is. The
output of the input processed by the i-th convolution kernel of the convolutional layer is:

x l
j = s (∑

i
xn−1

i ∈ M X l−1
i

j ∗W l
i j + bl

j) (6)

(2) The pooling layer performs statistical calculations on the feature maps generated by the convolutional
layer to preserve the most effective information in the network traffic data. The general form of
sampling is:

x i′
j = s (βi−1

j D (x i−1
j + bi

j)) (7)

Among them, D is the sampling function and the βi−1
j is the weight.
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3.3 Spatial Attention Mechanism Module
Our proposed spatial attention mechanism is not a mere replication of existing methods but an

adaptation that analyzes the specific spatial position information of network traffic features. By conducting
a thorough analysis of network traffic data, we have identified key spatial dependencies that traditional
attention mechanisms may overlook. Our mechanism assigns varying weight values to different spatial
positions based on a novel learning algorithm that identifies and emphasizes the most critical areas for
intrusion detection. Assigning different weight values to various spatial positions boosts the model’s capacity
to grasp essential details while diminishing the impact of unrelated or repetitive information, thus enhancing
the model’s predictive efficiency and precision.

To capture the spatial relationships between features, a convolution operation is first performed on the
input feature map. Next, the softmax layer normalizes the local features extracted from the convolutional
layer, associating each feature with a weight and converting each element’s value into a probability between
0 and 1. Finally, the output of the softmax layer is multiplied by the input feature values to obtain a weighted
feature map. The structure of the spatial attention mechanism is illustrated in Fig. 3.

Conv

Layer

Channal-refined

Feature Convolution Weighet feature map

Conv

Layer

Channal-refined

Feature Convolution Weighet feature map

SoftMax

Figure 3: Spatial attention mechanism

3.4 Output Module
(1) Adaptive average pooling
The input data for the fully connected layer is a one-dimensional array of scalar feature values, where

each element represents an input feature corresponding to a neuron. It functions as a classifier within
the neural network, mapping the learned distributed feature representations to the sample label space for
classifying network attacks.

(2) Fully connected layer
After extracting data features, the spatial dimensions of the features are reduced. The connections in the

convolutional layer are local, and the range of extractable features depends on the size of the convolutional
kernel. The fully connected layer aggregates the global information from these simplified features into
a compact form, maximizing the sharing of all nodes, and enabling the model to capture higher-level
relationships among features in the entire input data.

The input data for the fully connected layer is a one-dimensional array of scalar feature values, where
each element represents an input feature corresponding to a neuron. It functions as a classifier within
the neural network, mapping the learned distributed feature representations to the sample label space for
classifying network attacks.

(3) Activation function layer
The activation function is crucial in neural networks, as it introduces nonlinear properties and

overcomes the limitation of relying solely on linear feature transformations in feature extraction. This enables
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neural networks to learn and represent more complex patterns and relationships, facilitating the capture of
nonlinear features in the data.

Selecting the appropriate activation function is essential for the training and effectiveness of neural
networks, as various activation functions can address distinct problems. In binary classification problems,
the Sigmoid activation function is typically employed to map output values between [0, 1]. In multi-class
classification problems, the Softmax activation function is commonly utilized. The Softmax activation func-
tion is applied to the output of the fully connected layer to obtain probabilities for multi-class classification,
transforming raw data into a probability distribution for the output classes. The Softmax multi-class classifier
assigns the probability of each class sample to its corresponding output node, and the generation process is
illustrated in the following equation:

Si =
exp (ωT

c Zi)

∑N
j=1 exp (ωT

j Zi)
(8)

Among them, Si is the output of the classifier, ω = {ωT
1 , ωT

2 , ⋅ ⋅ ⋅ , ωT
N}. T is the trainable parameters

for the classifier, ωc is parameters for Class C samples, Zi is output after bidirectional feature fusion, c ∈
{1, 2, ⋅ ⋅ ⋅ , N} indicate the category to which it belongs, N is the total number of categories.

This model employs the Softmax activation function to classify input data into five categories: Normal,
DoS, Probe, U2R, and R2L attack types. The output layer consists of five neurons, each representing the
probability of the input belonging to a specific class, with the class exhibiting the highest probability being
identified as the predicted class.

4 Experiment and Result Analysis
In this section, we provide a comprehensive evaluation of the model based on performance indicators

and the configuration of hyperparameters for model optimization. To evaluate the model proposed in this
article, experiments were conducted in an environment equipped with an Intel Core i7-9700 CPU, Radeon
RX550 GPU, 32 GB of RAM, and a 64-bit Windows 11 operating system. Simulation experiments were
performed using PyTorch 2.0 and Python 3.9.

4.1 Experimental Dataset
The KDD-CUP99 dataset, widely used as a benchmark in intrusion detection but suffers from various

data quality issues, including missing values, inability to directly process discrete features, class imbalance,
excessive features, and inconsistent feature scales. These issues can result in significant errors in evaluation
results. Such problems hinder researchers from accurately evaluating model performance in experiments and
limit the dataset’s applicability. The NSL-KDD dataset improves upon by removing redundant and duplicate
records, simplifying feature structures, and reasonably adjusting data distribution. These improvements
make the design of the training and testing sets more balanced, establishing the dataset as a more effective
benchmark for intrusion detection methods.

This study uses the NSL-KDD dataset for experiments, which comprises 125,937 records. The dataset
size is moderate, making it suitable for model training and evaluation. The experiment employs a 10-fold
cross-validation method. The dataset is divided into 10 equal parts, with 70% used for model training and
30% for testing. This segmentation method ensures a rational distribution of training and testing data while
reducing the risk of overfitting.
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4.2 Evaluation Metrics
To ensure transparency, readability, and an intuitive understanding of the model’s performance, we

include the definitions and formulas of key evaluation metrics: accuracy, precision, recall, and F1 score. This
not only contextualizes the improvements introduced by our model but also serves as a reference for readers
from various backgrounds. The calculation methods for these metrics are detailed below:

Accuracy (Acc) is defined as the percentage of correctly identified data out of the entire dataset:

Acc = TP + TN
TP + TN + FP + FN

(9)

Precision (Pre) refers to the proportion of data with positive predicted results that are actually positive:

Pre = TP
TP + FP

(10)

Recall denotes the proportion of genuine positive data among all the data that has been predicted as
positive:

Recal l = TP
TP + FN

(11)

F1 is a weighted average of precision and recall:

F1 = 2TP
2TP + FN + FP

(12)

TP (True Positive) signifies the count of normal data points correctly identified by the model; TN (True
Negative) represents the number of abnormal data points that are accurately classified; FP (False Positive)
indicates instances where normal data is wrongly labeled as abnormal; FN (False Negative) corresponds to
abnormal data points that are incorrectly classified as normal.

4.3 Experimental Parameter Settings
The experiments described in this article were performed in a consistent hardware and software

environment. The processed dataset was split into a training set and a test set, maintaining a ratio of 7:3. To
prevent overfitting, the dataset is proportionally divided into distinct subsets for each experiment. In this
study, the model comprises five network layers, with a dropout rate of 0.2, a learning rate of 0.001, and a
total of 100 iterations. The experimental results are illustrated in Figs. 4 and 5, with Fig. 4 depicting accuracy
convergence and Fig. 5 depicting loss rate convergence. The blue line indicates convergence in the training
set, while the red line indicates convergence in the validation set.
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Figure 4: Convergence of model accuracy

Figure 5: Convergence of model loss rate

4.4 Hyperparameter Optimization
This article uses search-based hyperparameter optimization methods to arrange and combine optional

hyperparameters, to conduct experimental testing to obtain the best-performing hyperparameters. The
article mainly lists the selected activation functions, batch sizes, and optimizers.

Activation functions: Common activation functions encompass Sigmoid function, ReLU function,
Tanh function, and Softmax function. This article uses three of the most commonly used activation functions
for comparative experiments, namely Sigmoid function, ReLU function, and Softmax function.

Batch size: The number of samples selected for one training session is called batch size, and different
batch sizes can affect the convergence speed and effectiveness of the model. In this experiment, 32 and 64
were used as batch sizes for hyperparameter search.



3346 Comput Mater Contin. 2025;83(2)

Optimizer: Common optimizers include stochastic gradient descent (SGD), Adagrad, Momentum,
Adam, RMSProp, etc. Different optimizers may have differences in the way and speed of updating parame-
ters, so this article uses three of the most commonly used optimizers for comparative experiments, namely
stochastic gradient descent (SGD), Adagrad, and Adam.

This article conducts comparative experiments by selecting different activation functions, optimizers,
and batch sizes to achieve optimal performance. Table 2 demonstrates the performance for each combination
of hyperparameters. The experimental results show that when the activation function is ReLU, the optimizer
is Adam, and the batch size is 64, the accuracy, precision, and F1 score of the hyperparameter selection in
this group are the highest, but the recall score is 0.24% lower than the combination of Softmax, Adam, and
batch size of 32. Considering the need to optimize the overall performance of the model, this paper chooses
ReLU as the activation function, Adam as the optimizer, and a hyperparameter combination with a batch
size of 64.

Table 2: The influence of different hyperparameters on model accuracy

Activation function Optimization Batch size Accuracy Precision Recall F1
ReLu SGD 32 99.24 99.21 99.75 99.48
ReLu SGD 64 97.64 99.56 98.56 99.06
ReLu Adam 32 99.71 99.88 99.05 99.46
ReLu Adam 64 99.86 99.94 99.61 99.82
ReLu Adagrad 32 99.24 99.08 98.37 98.72
ReLu Adagrad 64 99.55 99.46 98.91 99.18

Sigmoid SGD 32 99.42 98.76 97.91 98.83
Sigmoid SGD 64 99.38 98.97 98.57 98.77
Sigmoid Adam 32 99.67 99.08 99.60 99.34
Sigmoid Adam 64 99.73 99.71 99.7 99.70
Sigmoid Adagrad 32 97.60 97.56 95.62 96.58
Sigmoid Adagrad 64 97.65 97.99 95.19 96.57
Softmax SGD 32 99.62 99.37 99.24 99.30
Softmax SGD 64 99.15 98.17 99.19 98.68
Softmax Adam 32 99.80 99.56 99.85 99.70
Softmax Adam 64 99.82 97.57 99.64 99.61
Softmax Adagrad 32 99.11 97.89 99.69 98.29
Softmax Adagrad 64 96.18 93.79 99.80 92.27

4.5 Ablation Experiment
To analyze the efficacy of the proposed SA-ResNet model in a quantitative manner, ablation experi-

ments were conducted on the rebalanced dataset. During these experiments, the residual neural network
module and the spatial attention mechanism module were systematically removed, while ensuring that the
parameters of the replacement model remained consistent.

Fig. 6 presents the results of our ablation study, which systematically evaluates the contribution of
each component of the SA-ResNet model. The results demonstrate that the incorporation of our tailored
residual blocks and the adapted spatial attention mechanism significantly outperforms the baseline CNN
model across all evaluation metrics. Specifically, the recall rate improvement by 0.6% and the substantial
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enhancement in F1 score underscore the effectiveness of our proposed enhancements. The CNN+ResNet
model outperforms the single CNN model in accuracy, precision, and F1 score. However, CNN+ResNet
model has a lower recall score than the single CNN model due to the extensive feature set required for
training the residual neural network. The results indicate that the CNN with the spatial attention mechanism
(CNN+SA) scored the lowest among the four evaluation metrics. Building upon the CNN+ResNet model,
a spatial attention mechanism module is integrated. By concentrating on relevant data features, the spatial
attention mechanism enhances the recall rate by 0.3% compared to the CNN+ResNet model and significantly
outperforms other models in the remaining three evaluation metrics, thus validating the effectiveness of our
model. The proposed SA-ResNet model achieves an accuracy of 0.9986, a recall rate of 0.9961, and an F1
score of 0.9982.
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Figure 6: Results of ablation experiment

4.6 Performance Comparison Analysis Experiment
This article compares the performance of the proposed method with six existing deep learning algo-

rithms on the NSL-KDD dataset across various aspects. As shown in Table 3, the accuracy of the proposed
model is as high as 99.86%, which is 2.8% higher than that of the Spiral Convolution-LSTM (SCL) Model.
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Additionally, the accuracy of the model reaches 99.94%, 2.86% higher than that of the SCL Model. However,
compared to Attention-BiTCN, the recall rate is 0.09% lower. Although the model has some shortcomings
in recall rate, its use of residual structures and the learning of deeper features lead to better performance in
accuracy, precision, and F1 score. This indicates that the model is more effective at avoiding false positives.
Compared to existing deep learning models like TCN and Artificial Neural Networks (ANN), this article
employs spatial attention mechanism modules to enhance the model’s ability to capture key information
while suppressing the influence of irrelevant or redundant information. This allows the model to better
identify the characteristics of malicious traffic, thereby improving recognition accuracy.

Table 3: Comparison of methods

Method Accuracy Percision Recall F1
Res-CNN-SRU [7] 98.79 95.34 95.04 95.19

SCL-Model [14] 97.06 97.08 97.06 97.07
BiTCN [16] 99.7 99.69 99.70 99.69
ANN [25] 94.69 99.69 78.92 75.45
TCN [26] 99.35 99.36 99.35 99.35

GRU-RNN [27] 99.13 99.05 99.08 99.06
Ours 99.86 99.94 99.61 99.82

Overall, the feature extraction model proposed in this paper demonstrates greater comprehensiveness
and accuracy for network data traffic intrusion detection on this dataset, resulting in strong detection
performance and significant application value.

5 Conclusion
To address the low accuracy of network attack detection in existing intrusion detection models, this

paper proposes a method that integrates a SA-ResNet model. The primary contribution of this article is
the incorporation of a spatial attention mechanism into the residual neural network, allowing the model to
dynamically focus on the most relevant areas within the input data. This enhancement improves the model’s
ability to capture key information, enabling better detection of network intrusion traffic characteristics
and overall network performance. The proposed model incorporates residual structures, which effectively
mitigate the vanishing gradient problem, prevent overfitting, and enhance the network’s convergence
speed. Compared to other intrusion detection methods, this paper demonstrates superior model prediction
accuracy, providing valuable insights for the field of intrusion detection. While the SA-ResNet model has
shown superior performance in accuracy and F1 score, there is room for improvement in recall rate. Future
work will focus on further optimizing our spatial attention mechanism to better capture the nuances of
network traffic data, Additionally, we plan to explore the generalization ability of our model to different
network environments and attack vectors, ensuring its robustness and applicability in diverse scenarios.
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