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ABSTRACT: Recommendation systems (RSs) are crucial in personalizing user experiences in digital environments
by suggesting relevant content or items. Collaborative filtering (CF) is a widely used personalization technique that
leverages user-item interactions to generate recommendations. However, it struggles with challenges like the cold-start
problem, scalability issues, and data sparsity. To address these limitations, we develop a Graph Convolutional Networks
(GCNs) model that captures the complex network of interactions between users and items, identifying subtle patterns
that traditional methods may overlook. We integrate this GCNs model into a federated learning (FL) framework,
enabling the model to learn from decentralized datasets. This not only significantly enhances user privacy— a significant
improvement over conventional models but also reassures users about the safety of their data. Additionally, by securely
incorporating demographic information, our approach further personalizes recommendations and mitigates the cold-
start issue without compromising user data. We validate our RSs model using the open MovieLens dataset and evaluate
its performance across six key metrics: Precision, Recall, Area Under the Receiver Operating Characteristic Curve
(ROC-AUC), F1 Score, Normalized Discounted Cumulative Gain (NDCG), and Mean Reciprocal Rank (MRR). The
experimental results demonstrate significant enhancements in recommendation quality, underscoring that combining
GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems.

KEYWORDS: Recommendation systems; collaborative filtering; graph convolutional networks; federated learning
framework

1 Introduction
The rise of the internet has resulted in an increase of user-generated data across many different plat-

forms, including e-commerce sites and other social media networks. The flood of data presents both obstacles
and potential for the creation of more customized and efficient systems, especially through recommendation
algorithms [1,2]. CF is an often-used technique in recommendation systems (RSs), employing user behavior
to suggest favored products or items [3,4]. Nevertheless, conventional CF approaches frequently encounter
challenges like data sparsity, cold-start difficulties, and scalability limitations.

Moreover, the majority of personalized RSs gather user data to improve the precision of suggestions.
Reference [5] presented recommendation systems that adaptively acquired user preferences, necessitating
the gathering of user input to effectively suggest movies.
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To further understand user information, references [6,7] explored a recommendation system utilizing
community detection methods from various perspectives, with reference [6] designing a movie recommen-
dation system based on personal information and rated movies using the k-clique method and NDCG.
Additionally, reference [8] deployed a model that combined deep learning to enhance the recommendation
system. Researchers have also been exploring graph algorithms, including GCNs, which are gaining attention
due to their ability to handle complex user-item interaction graphs.

GCNs have become a powerful method for handling graph-structured data, offering a new perspective
on CF methodologies [9]. GCNs model users and items as nodes in a graph, with edges indicating interac-
tions/connections or similarities, thus capturing complex interaction patterns that other traditional methods,
such as matrix factorization or nearest neighbor, often miss. GCNs excel by propagating information across
the graph structure, thus improving node representations with contextual information from adjacent nodes.
However, integrating GCNs into real applications poses significant privacy and data ownership challenges.
Traditional approaches require consolidating all data in a single repository, increasingly at odds with
contemporary data protection regulations such as GDPR (General Data Protection Regulation) in Europe,
CCPA (California Consumer Privacy Act) in California, and global consumer privacy expectations [10]. This
situation sets the stage for FL, an innovative machine learning paradigm that trains models across multiple
decentralized devices or servers, which retain local data samples without transferring them [11].

This research proposes an architecture that combines GCNs and FL for CF in RSs. The contribution of
our recommendation is as follows:

• Enhance Recommendation Quality: By utilizing the expressive potential of GCNs to comprehend
complex user-item interaction patterns more effectively than traditional CF methods and by integrating
user demographic and movie features to provide more personalized recommendations, particularly
for new users through a distributed learning approach that minimizes data transfer and optimizes
local computation. This research is essential for improving recommendation systems and illustrating
a practical use of GCNs inside a privacy-preserving distributed learning framework. Furthermore, we
want to address the cold-start problem inherent in conventional recommendation models.

• Personalization: By integrating user demographics and item content, we want to provide personalized
recommendations and address the cold-start challenges for users and items. Consequently, we aim to
investigate how FL and Graph Convolutional Networks (GCNs) may preserve or improve the predictive
accuracy of centralized models while ensuring user privacy, thus defining a new benchmark for future
research in privacy constraint-based recommendation systems based on graph-structured data.

• Enhance Privacy: By ensuring that personal interaction data remains within the user’s device, thus
complying with stringent privacy standards.

The structure of this article is prepared as follows. The paper starts with the overall recommendations
and introduction of the fundamentals of each component for study in Sections 1 and 2. Section 3 introduces
the methodology and details of the study. Section 4 experiments with the process described in Section 3. The
details of the baseline are also presented in Section 4. Sections 5 and 6 present the ablation study and the
conclusion, respectively.

2 Related Work

2.1 Collaborative Filtering Techniques
CF is fundamental in RSs and is traditionally divided into memory-based and model-based approaches.

Memory-based CF predicts user preferences using user-to-user or item-to-item correlations from the inter-
action matrix. Although these methods are simple and robust in dense data scenarios, they incur substantial
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computational costs in real-time due to continuous recalculations as new data is integrated. Model-based
CF, primarily via matrix factorization, mitigates scaling challenges by representing interactions inside latent
factor spaces. A further effective method in recommendation systems, notably enhanced by Koren, Bell, and
Volinsky, involved decomposing of the interaction matrix into lower-dimensional representations [12].

Moreover, researchers presented Bayesian Personalized Ranking (BPR) [13], which modifies matrix
factorization to prioritize ranking over rating prediction, significantly improving the efficacy of CF in implicit
feedback contexts. Additional advancements, such as Alternating Least Squares (ALS) [14], have advanced
model-based CF by employing efficient parallelizable optimization methods to boost scalability. To overcome
these restrictions, current research has investigated alternative models that integrate the advantages of both
memory-based and model-based techniques, with the objective of improving recommendation accuracy and
scalability while reducing the effects of data sparsity and cold start issues.

2.2 Graph-Based Collaborative Filtering
In CF, another effective method was applied to Graph RSs. Graph-based methodologies surpass con-

ventional techniques by representing user-item interactions as a bipartite graph, augmenting collaborative
filtering by capturing higher-order connections [15]. Graph Laplacian Regularization techniques improve
recommendation efficacy by smoothing node properties throughout the graph; nevertheless, they frequently
neglect subtle intra-graph patterns [16]. The advent of GCNs has transformed this paradigm by consolidating
neighborhood information to acquire advanced node representations. Neural Graph Collaborative Filtering
(NGCF) employs higher-order connections to disseminate user-item interactions throughout the graph,
enhancing node representations [17]. Recent developments in graph methodologies, such as LightGCN,
compress the graph convolution procedure by removing feature transformations and non-linear activations,
emphasizing efficient neighborhood aggregation [18]. This simplification reduces computing requirements
while improving performance.

Additionally, GraphSAGE introduced inductive node embedding by sampling and aggregating local
neighborhood features, proving invaluable in large-scale systems where new nodes frequently emerge [19].
Moreover, due to the ability to handle more complex user-item interactions, Huang et al. [20] designed
a model that extended into a dual light graph convolution network for discriminative recommendation
(Dual-LightGCN). The author proposed a model that filtered out items disliked by users to ensure more
discriminative recommendations. The model has been divided into two bipartite subgraphs of the original
user-item interaction graph. It applied a movie lens dataset with Precision, Recall, and F1 Score metrics to
verify the proposed model.

2.3 Federated Learning in Recommendation Systems
FL arose in response to privacy concerns, wherein models are trained locally on user devices, and

only updates (model parameters) are shared centrally, guaranteeing that user data remains inside the local
environment [21]. The utilization of FL in RSs is comparatively early. Initial studies suggested a federated
CF approach that retains user embedding locally to ensure privacy [22]. This strategy encounters problems,
including communication costs from frequent parameter exchanges between devices and central servers
and significant data heterogeneity that prevents model convergence and generalization across varied user
groups [23].

FedRec has further progressed the implementation of FL in RSs by proving that federated models
may attain accuracy equivalent to centralized models [24]. They highlighted novel issues intrinsic to
federated methodologies: (1) Communication Expenses: Regular updates between the server and clients
elevate network congestion, especially in extensive systems with millions of users [25]. Additionally, (2)
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Model Convergence: Local models may diverge considerably, requiring effective aggregation procedures
to guarantee optimal performance of the global model [26]. (3) Restricted Data Access: Decentralized
algorithms are unable to completely utilize global data, which may diminish suggestion quality, particularly
for cold start users or infrequent items [27]. Recent research has concentrated on surmounting these
obstacles. FedPer [28] utilized a personalization-based approach that distributes a common global model
among users while customizing a subset of parameters for individual, hence improving adaptability to
local data [29]. Similarly, Hierarchical FL [30] presented a multi-tier federated framework that reduces
communication expenses by consolidating updates at local cluster levels prior to transmission to the global
server, hence enhancing scalability for larger networks.

Additionally, initiatives such as Secure Federated Matrix Factorization [31] investigated privacy-
preserving methods using homomorphic encryption to ensure that model updates remain encrypted, thus
boosting the security of user data during the training phase. Incorporating advanced graph neural network
architecture becomes essential as we delve deeper into enhancements for federated recommendation systems.
This leads us to explore how GCNs, skilled at capturing complex relational data, can be integrated with the
privacy advantages of FL [32].

2.4 Integration of GCNs with Federated Learning
The integration of GCNs with FL for recommendation systems represents an underexplored yet very

promising area [33,34]. GCNs can capture complex relationships and dependencies between users and items
within a graph structure, significantly benefiting CF tasks. However, merging GCNs with FL presents new
challenges due to the complex nature of graph operations and the decentralized approach of FL [35].

FedGNN pioneers the application of FL principles to graph neural networks for social network
recommendations. Using graph structure and node embeddings within a federated setting, FedGNN makes
recommendations while ensuring user data privacy [36]. However, this strategy is specifically designed for
social networks where interactions primarily occur between users and may not extend effectively to broader
collaborative filtering scenarios such as user-item interactions in e-commerce or media services. Combining
GCNs with FL presents a fundamental challenge regarding communication overhead for resource-intensive
high-dimensional graph embeddings. Thus, FedGraphNN tackles this by improving the communication
process with a compression technique and lowering the size of the shared updates. Nevertheless, compression
might result in information loss, affecting the model’s capacity to accurately represent complex relationships
in graphs [37].

Using GCNs in FL-based recommendation systems presents various difficulties: Graph partitioning
limits the GCNs’ capacity to understand worldwide interactions by allowing users in a federated environment
to access only a local view of the graph. Though methods like graph sampling and local graph aggregation
have been proposed to solve this restriction, their investigation in FL environments is still lacking. Graph
learning protecting privacy: Using graph-based approaches in FL raises further privacy concerns as the graph
structure may expose private data. Differential privacy and safe multi-party computation are developed to
protect user privacy during training [38]. Their inclusion into GCNs, however, dramatically raises computing
requirements and may affect model accuracy.
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3 Methodology

3.1 Problem Statement
Collaborative Filtering (User-Item Interaction Graph)

We give a scenario of a movie recommendation system where G = (V , E) is a graph representing user-
item (movie) interactions. The set of nodes V is partitioned into two disjoint subsets: users U and items I,
such that V = U ∪ I. The edges E ⊆ U × I represent observed interaction between users and items within
the system. We use the term “items” to represent the movies in the database collection. Moreover, these
interactions can be clicks, watches, views, and duration, which are kinds of implicit feedback (interactions
that are not explicit ratings but inferred preferences). Users (U) and Items (I) refer to nodes with an
individual user or movie available in the recommendation systems.

CF is an effective method in recommendation systems; however, it encounters challenges when a first-
time user joins the system without a previous interaction history. Thus, the system does not deliver items that
align with the preference of the target user, and this problem is called a Cold-Start Problem [39]. There are two
prevalent types of cold-start scenarios: (1) User Cold-Start happens when a subset. Ucol d ⊂ U of users who
are new to the system and have no previous interactions. As a result, the system struggles to provide movie
recommendations that match their tastes. (2) Item Cold-Start occurs similarly with new movies, indicated as
a subset Icol d ⊂ I of items (movies) with no interactions, which impedes the system’s ability to recommend
these movies effectively.

The cold-start problem undermines the effectiveness of traditional collaborative filtering recommen-
dation systems, which rely heavily on historical interaction data for accurate predictions. The goal is to
predict unobserved user-item interactions, including those involving cold-start users and items (movies),
by developing significant representations through a GCN model. Additionally, knowledge is consolidated
in a federated framework across decentralized datasets maintained by various clients, thus preserving data
privacy without requiring centralized data storage.

3.2 Proposed Model Architecture
This section introduces the architecture of our proposed model. The entire mechanism illustrated

in Fig. 1 is briefly described in Sections 3.2.1 to 3.2.5.

3.2.1 Data Loading and Preprocessing
We begin with the MovieLens 1M dataset [40], which comprises approximately one million ratings

from 6040 users on 3900 movies. This dataset offers a rich source of user-item interactions essential for
collaborative filtering in our recommendation system. (1) To efficiently construct the graph and facilitate
indexing in our GCN model, we remap the original user and movie IDs to a continuous range starting from
zero, optimizing processing. This remapping aids in referencing nodes in matrices and tensors during model
training and inference. (a) User IDs: We assign new IDs to users, ranging from 0 to the number of users
minus one. For example, with 6040 users, their new IDs range from 0 to 6039. Then (b) Item IDs: We assign
new IDs to movies ranging from 0 to the total number of movies minus one. With 3900 movies, their new
IDs range from 0 to 3899. Next, (2) User Feature Processing: To enrich user representations and increase
the model’s understanding of user preferences, we process demographic features: (a) Gender: We encode
gender using label encoding. For example, ‘Male’ is encoded as 0 and ‘Female’ as 1. (b) Age: We utilize one-
hot encoding for different age groups. Each age group is represented by a unique position in a binary vector,
where the user’s age group is marked as 1, and all others as 0. (3) Occupation: Occupations are encoded
using one-hot encoding, where each profession is given a unique position in a binary vector. This allows the
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model to differentiate users based on their professional backgrounds. For movies, we extract features based
on their genres to characterize each item. Genres: Movies often belong to multiple genres. We separate the
genre information (e.g., ‘Action∣Adventure’) and apply one-hot encoding to represent the presence of each
genre in a movie. Each genre is assigned a position in a binary vector, with a 1 indicating the genre’s presence
in the movie. This feature extraction helps the model understand the content attributes of each movie.
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Figure 1: The architecture of the proposed model

3.2.2 Graph Construction with User and Item Features
A graph is constructed to represent the interactions between users and movies, incorporating the

processed features. For each interaction, like watching a movie, two bidirectional connections are established:
(1) From User to Item: An edge is drawn from the user node to the movie node. (2) From Item to User:
Conversely, an edge is drawn from the movie node back to the user node. Unique indices are assigned to
item nodes to maintain distinctiveness, with offsets applied to item indices.

Subsequently, a unified feature matrix combining user and item features is created: (1) The user feature
matrix and the item feature matrix are merged into a single matrix, representing all nodes in the graph, where
each row corresponds to either a user or an item. (2) As users and items may possess different feature sets
(e.g., users may have features like age and gender, while items may have genres), consistency is ensured by
adjusting feature counts. In the case of an imbalance in feature amounts, 0 will add as padding to the set with
fewer features, ensuring uniform vector lengths are essential for model processing.
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3.2.3 GCNs for Implicit Feedback CF
GCNs utilize an interactive feature propagation scheme to generate accurate embeddings for users and

items Z in the collaborative filtering task. GCNs usually stack multiple convolution layers to capture high-
order features, effectively enhancing their representation ability. Furthermore, the GCNs model is designed
to handle implicit feedback tasks. We use two GCN layers. The propagation rule for each layer l is defined
as follows:

H(1) = ReLU(D̂−
1
2 ÂD̂−

1
2 H(0)W(0)) (1)

where Â = A+ I refers to the adjacency matrix with self-loop added (I is the identity matrix) and D̂ is the
diagonal degree matrix of Â and W(l−1) is the learnable weight matrix of layer l − 1. H(l) is the matrix of
node embedding at layer l . In the first GCN layer (l = 1), we input node features. H(0) by computing

H(1) = ReLU(D̂−
1
2 ÂD̂−

1
2 H(l−1)H(0)W(0)) (2)

which means that the first layer aggregates features from immediate neighbors (including self-loops) and
transforms them into a new feature space using the weight matrix W(0). The ReLU (Rectified Linear Unit)
activation introduces non-linearity, enabling the model to capture complex patterns. In the second GCN
layer (l = 2), node embeddings from the first layer H(1) are computed by

H(2) = D̂−
1
2 ÂD̂−

1
2 H(1)W(1) (3)

This second layer further propagates and transforms the features, capturing higher-order neighborhood
information. No activation function is used here, maintaining the embeddings in a continuous space for
subsequent tasks. The final node embeddings Z = H(2) represent the learned representations for users
and items.

We aim to predict the likelihood of user-item interactions without explicit ratings to handle Implicit
Feedback. Using Negative Sampling to create a balanced dataset, our model addresses this by pairing users
with items they have not interacted with (negative samples). For each positive interaction (user u has
interacted with item i), we randomly sample a set number of items that u has not interacted with, treating
these as negative samples. This approach is crucial for training when the model learns to distinguish between
preferred and non-preferred items. Next, in Link Prediction, for each user-item pair (u, i), we extract
embeddings from zu and zi . We then concatenate these embeddings to form hui = [zu ∣∣zi]. And compute
ŷui Using the link prediction module.

For model training, we use the weighted binary cross-entropy loss function to determine the loss for all
samples by

L = −(yui log ( ŷui) + (1 − yui) log(1 − ŷui)) (4)

where yui = 1 i f (u, i) indicates a positive interaction; yui = 0 for negative samples. Additionally, we apply
to instances where we need to balance weight loss between positive and negative samples.

L = −(w+yui log ( ŷui) +w− (1 − yui) log (1 − ŷui)) (5)

which represents w+and w−, referring to weights assigned to positive and negative samples, respectively. We
set w+Higher to prioritize the accurate prediction of positive interactions.
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3.2.4 Setup of Federated Learning Framework
In recognition of the importance of user privacy, we adopt a FL framework to ensure privacy and

simulate a decentralized data environment. We distribute the dataset (Movielens) among multiple simulated
clients: (1) Users are divided into K disjoint subsets. Each client k holds data corresponding to users in U ,
including their interaction and demographic features. The setup mimics real-world scenarios where data
is distributed across different devices. Each client performs local training (Local Training on Client) on its
subset of data: (1) Initialization: It is when clients initialize their local models with global model parameters.
θt at round t. Then, (2) clients train their models using the same GCN architecture and loss function
during the local updates model. The process of local training involves multiple epochs over the client’s data.
(3) Model Updates: After local training, clients obtain updated model parameter θ(t+1)

k . Next, for model
aggregation, at the server, the global model is updated by aggregating the client’s local models as

θ(t+1) =
K
∑
k=1

nk

ntotal
θ(t+1)

k (6)

where nk is the number of samples at client k and ntotal is the total number of samples across all clients.
This weighted averaging ensures that clients with more data have a proportional influence on the global
model. Which is then updated global model parameter (Global model update) θ(t+1) are then distributed
back to clients for the next round of training. This process continues interactively for the predefined number
of rounds until it converges.

3.2.5 Recommendation Generation
With global model trains, we generate personalized recommendations for each user. Fig. 2 illustrates

the recommendation generation flow. These processes start with learned embeddings from the GCNs model
to predict which items (movies) a user is likely to interact with, even if they have not previously interacted
with them. (1) Embedding Computation: The objective is to obtain vector representations (embeddings)
for all users and items that capture their characteristics and relationships learned during training. We
use the trained GCNs model to compute embeddings for each user, reflecting their preferences based on
past interactions and demographic features. Similarly, we compute embeddings for each movie (item),
incorporating information about their attributes, like genres. (2) Candidate Item Selection: To identify
movies a user has not seen or interacted with, we ensure that recommendations are included with new
and relevant content information. We construct a list of candidate movies for each user by excluding those
they have already interacted with during the training phase. This list represents potential recommendations
that the user might find interesting. Then, (3) Interaction Predictions: We estimate the likelihood that a
user will interact with each candidate movie. For this, each user and candidate movie pair combine their
embeddings to create a feature representing the potential interaction. We input this combined feature into
a prediction function that outputs a score indicating how likely the user is to enjoy or engage with the
movie. The higher score determines the high probability of the user liking the movie. Next, (4) We conduct
a recommended list of K (top K recommendation) to select the most suitable movies to recommend to each
user based on the predicted interaction score probabilities. The process is to rank all candidate movies for
each user in descending order of their predicted scores; we then select the top K movies for this ranked list
to recommend to the user. Finally, to handle the cold-start scenarios, we integrate the user’s demographic
features (age, gender, occupation) to generate their embedding. By quickly comparing these features with
those of existing users, the model can infer preferences and recommend movies accordingly. Moreover, we
use movie attributes (genres) to create their embeddings, allowing the model to predict which users might
be interested in these new movies based on their preferences for similar attributes.
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Figure 2: Recommendation generation flow

4 Experiments

4.1 Dataset and Implementation Setup
We use a real-life dataset called Movielens, which comprises 1 million ratings from 6000 users on about

4000 movies, including the user demographic information and movie genres. We have divided the Movielens
dataset into 80% for training and 20% for testing to conduct a recommendation test on cold-start users and
items. Additionally, in Federated scenarios, the client’s data is distributed across n simulations clients; in our
study, we choose 10 simulation rounds. Adapting to accurate simulation, we tune hyperparameters such as
embedding dimensions, learning rates, dropout rates, and weight decay, saving the configurations that yield
the best performance.

4.2 Performance Metrics
In this study, we select six measures to validate the ranking performance of our recommendation

model, each chosen for its ability to reflect different aspects of model performance in the context of a movie
recommendation system using the Movielens dataset. The setup metrics include Precision, Recall, F1 Score,
NDCG, MRR, and ROC-AUC score.

• Precision evaluates the model’s accuracy in making positive predictions, determining how many
recommended items are relevant to the users.

• Recall measures the fraction of relevant items the model successfully retrieves out of all available relevant
items. The result of high recall is essential in ensuring that users are exposed to a comprehensive list of
items that might interest them, thereby enhancing user engagement.

• F1 Score provides a balance between precision and recall, which provides a single metric that conveys
the overall accuracy of the recommendation system when both the false positives and false negatives
carry a significant but equivalent weight between precision and recall.

• NDCG focuses on the quality of rankings, especially at higher ranks, assessing the model’s ability to
identify relevant items and rank them in the order of their relevance. This metric decision is particularly
pertinent in environments where the top-listed recommendations may significantly impact user choice.

• MRR is a specialist in the model’s effectiveness in ranking items, focusing on the rank of the first
relevant recommendation. The measure is significant in use cases where the first impression is crucial,
such as in online streaming services where the first few recommendations must effectively capture the
user’s interest.

• ROC-AUC assesses the model’s capability to discriminate between classes effectively. High ROC-AUC
values indicate that the model is excellent at distinguishing between relevant and non-relevant items, a
crucial capability in ensuring user trust and satisfaction.



2050 Comput Mater Contin. 2025;83(2)

For baseline models, we compare four metrics, including NDCG, Recall, Precision, and MRR, due
to the limitations of the provided baseline libraries. The choice of these metrics allows us to focus on
the practical aspects of recommendation systems—ensuring users receive both accurate and relevant
content recommendations.

4.3 Results of the Proposed Methodology
Table 1 presents our model’s recommendation results at K = 5, K = 10, and K = 20. There is a performance

difference between different evaluation metrics across several measures in our recommendation model.

Table 1: Performance results of recommendation

Our model ROC-AUC NDCG Precision Recall F1 Score MRR
K = 5 0.4914 0.2186 0.282 0.2058 0.237 0.3636
K = 10 0.7303 0.1975 0.479 0.4792 0.479 0.3817
K = 20 0.8140 0.1802 0.470 0.8760 0.612 0.3890

First, the ROC-AUC values increase as the recommended items increase from 0.4914 at K = 5 to 0.7303
at K = 10 and finally to 0.8140 at K = 20. This trend suggests that the model better distinguishes relevant items
as more items are recommended.

Second, NDCG, which evaluates the ranking quality (i.e., how well the top-ranked recommendations
match the most relevant items), decreases from 0.2186 at K = 5 to 0.1802 at K = 20. This drop indicates that
the model struggles to keep the most relevant items at the top of the list when the list length increases.

Precision, measuring the fraction of the relevant recommended items, rises from 0.282 at K = 5 to 0.479
at K = 10, then dips slightly to 0.470 at K = 20. Meanwhile, recall, which measures what proportion of all
truly relevant items are successfully recommended, improved significantly, especially at K = 20, reaching
0.8760. The result suggests that as we recommend more items at K = 20, the model captures a larger share of
the relevant items overall, though its precision decreases slightly because we also include a small fraction of
non-relevant items in those recommendations.

The F1 Score, which combines the balance of precision and recall, peaks at 0.612 at K = 20. Mean
Reciprocal Rank (MRR), which measures how highly the first relevant item is ranked, also improves across
the different K values, reaching 0.3890 at K = 20. These improvements in such metrics imply that the model is
increasingly able to recognize and correctly identify relevant items as more recommendations are provided.

However, declining NDCG scores across higher K reveal a significant area for further Research, as the
system could not satisfy all the evaluation metrics provided and the model’s ranking process. Thus, enhancing
the model’s ability to place the most relevant items at the highest point of the recommended list is critical
for increasing its utility in real-world situations. Fig. 3 visually represents the performance metrics described
in Table 1.
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Figure 3: Performance metrics of recommendation systems

Fig. 4 illustrates the training loss metrics in a FL context with 10 clients. The graph on the left depicts
the training loss across 200 epochs for each client, demonstrating a steady and swift reduction in losses for
all users, signifying successful model convergence. The graph illustrates the mean training loss for all clients
across 20 federated rounds, demonstrating a significant decrease in loss that stabilizes after approximately
7 rounds. The results indicate a strong FL system in which all clients attain comparable enhancements
in model correctness, illustrating the system’s effectiveness in minimizing overall error rates within a
decentralized training framework.

Figure 4: Training loss over epochs for each client and average training loss of clients

Discussion on Precision Trend
In many conventional RSs, precision typically decreases dramatically as K grows because adding more

items often means including more irrelevant ones. To effectively handle implicit feedback, our model
employs a negative sampling strategy. For each positive interaction (where a user engages with an item), we
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randomly sample a set number of items the user has not interacted with, treating them as negative samples.
This approach balances the dataset and helps the model distinguish between preferred and non-preferred
items better. Moreover, our study prioritizes these positive interactions as the basis for generating recom-
mendations. The embeddings acquired from these interactions faithfully reflect user preferences, therefore
guaranteeing that objects like those already used get better ranking scores. Please refer to Section 3.2.5 for
the specifics on the recommendation generating procedure.

4.4 Baseline Detail and Performance Results
In this section, we compare our method against the following baselines: (1) NGCF [17], which enhances

traditional matrix factorization by integrating neural networks to model complex, non-linear user-item
interactions; (2) LightGCN [18]; (3) DeepFM, a hybrid recommendation model combining factorization
machines (FM) and deep neural networks (DNN) [41]; and (4) BPR [13]. Table 2 presents a baseline
performance comparison. We used the default hyperparameters originally set by the authors for a fair
comparison. Moreover, most of the models were sourced from libraries, and we did not change any
parameters; all remained the same as initially set by the authors.

Table 2: Performance result of baselines

Models NDCG Recall Precision MRR
NGCF 0.1855 0.1597 0.1297 0.3547

LightGCN 0.1589 0.1342 0.1112 0.3154
DeepFM 0.1809 0.1552 0.1292 0.3433

BPR 0.1933 0.1671 0.1352 0.3633
Proposed model 0.1802 0.8760 0.4700 0.3890

Among the recommended K items, our system achieves its best result at K = 20, excelling in recall,
precision, and MRR. Additionally, it outperforms LightGCN in NDCG but falls short of the other three
models (BPR, NGCF, DeepFM). While most models show robust performance in MRR, precision and
recall are generally low, except for our proposed model, which attains a high recall of approximately
0.876, indicating a strong match between the recommended relevant ranks (positives) and user preferences.
Furthermore, our model performs well in recall and precision compared to the other four baseline models,
as illustrated in Table 2 and the performance visualization in Fig. 5.

The integration of GCN within the CF framework in our proposed method effectively captures more
complex, non-linear user and item relationships. This, in turn, allows the system to predict user preferences
more accurately, increasing the likelihood that recommended items are both relevant (improving precision)
and cover a more significant portion of relevant items (improving recall). While existing baselines (e.g.,
NGCF, LightGCN) also leverage graph structures or neural components, our model refines how user–item
information is incorporated and propagated—especially regarding integrating other advanced FL models—
which enhances overall robustness, security, and performance.

Since we intentionally kept all default parameters for the baseline models, these models may remain
unadapted to the dataset’s complexity or lack sufficient model capacity. In contrast, our model has been
tuned to emphasize metrics such as recall and precision. By carefully aligning model hyperparameters and
loss functions to capture relevant items more accurately, we achieve higher performance on these metrics.
Additionally, our proposed method is trained to distinguish between relevant and irrelevant items more



Comput Mater Contin. 2025;83(2) 2053

effectively than the baseline methods through effective handling between positive and negative sampling
strategies and user preference distribution. Consequently, the model is more likely to retrieve items of true
interest and exclude those of lower relevance, boosting recall (by returning more positive hits) and precision
(by ensuring higher relevance among returned items).

Figure 5: Proposed model and baseline model comparison

5 Ablation Study of Proposed Model
This section evaluates the effectiveness of our recommendation system compared to centralized train-

ing, considering the influence of FL. Another objective is understanding the trade-offs between model
accuracy and user privacy. We conduct further experiments using both centralized and federated training
methods. Both setups aim to maintain the consistency of the model architecture and hyperparameters to
ensure a fair comparison. The new setup consists of the embedding dimension (128), learning rate (0.001),
number of rounds (20), dropout (0.5), weight decay (1e− 5), and negative sampling ratio (1.0) were uniformly
set. The model was trained on the full dataset without data partitioning in centralized training. We simulated
10 clients for FL, each holding a subset of the user-item interaction data.

Result and Analysis: In centralized training, the model accessed the entire dataset throughout the
training process. The model could potentially identify more complex patterns and correlations by leveraging
the full spectrum of user-item interactions. In the FL setup, the data was partitioned among 10 clients, and
the model was trained collaboratively without necessitating the provision of raw data by clients. Each client
trained the model using local data and then transmitted updated model versions to a central server for inte-
gration. On all metrics, the federated approach slightly underperforms the centralized model. For instance,
the federated model values about 0.3750, whereas the centralized model values around 0.7931. Compared
to the centralized approach, the federated paradigm reduces performance slightly. While federated training
offers benefits like privacy and localized computations, it might face challenges in matching the predictive
performance of centralized approaches, potentially due to data distribution variances or limited model
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updates from each client. The results indicate a trade-off between maintaining data privacy and achieving
optimal model performance. Fig. 6 illustrates the comparison of performance metrics between federated and
centralized training.

Figure 6: Comparison of centralized training and federated learning

6 Conclusion and Future Perspectives
Integrating FL and GCNs into CF significantly advances recommendation systems, emphasizing user

privacy and enhancing system performance. This approach employs GCNs to dissect complex relational
data and FL to maintain data locality, effectively addressing privacy and sovereignty concerns. Furthermore,
the system alleviates issues inherent in traditional collaborative filtering by improving prediction accuracy.
It supports privacy-centric processing of sensitive data and provides personalized recommendations [42]
using diverse data sources, all while ensuring user privacy is protected [43]. Additionally, our approach has
demonstrated better performance compared to existing benchmarks.

Despite these developments, our results in the ablation study show that centralized training approaches
still outperform federated models in numerous performance criteria, including accuracy, recall, and preci-
sion. This scenario draws attention to a possible trade-off whereby a slight decrease in model performance
might offset the advantages of more privacy and data protection in FL. Still, especially in privacy-
centric processing and user-centric personalizing, the federated approach has clearly shown benefits over
conventional techniques.

Future research will improve scalability, apply homomorphic encryption [44], handle non-IID data,
fit dynamic graphs, and provide cross-domain recommendations by other advanced privacy-preserving
technologies. Also, to make the model of FL and GCNs more valuable and practical, it would be better to
work on creating new ways to measure privacy, speed, and personalization with shared context. It is also
necessary to include more real-world datasets to improve the results of the recommendations.
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