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ABSTRACT: Within the realm of multimodal neural machine translation (MNMT), addressing the challenge of
seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a
pressing issue. We saw that discrepancies between textual content and associated images can lead to visual noise,
potentially diverting the model’s focus away from the textual data and so affecting the translation’s comprehensive
effectiveness. To solve this visual noise problem, we propose an innovative KDNR-MNMT model. The model combines
the knowledge distillation technique with an anti-noise interaction mechanism, which makes full use of the synthesized
graphic knowledge and local image interaction masks, aiming to extract more effective visual features. Meanwhile, the
KDNR-MNMT model adopts a multimodal adaptive gating fusion strategy to enhance the constructive interaction
of different modal information. By integrating a perceptual attention mechanism, which uses cross-modal interaction
cues within the Transformer framework, our approach notably enhances the quality of machine translation outputs. To
confirm the model’s performance, we carried out extensive testing and assessment on the extensively utilized Multi30K
dataset. The outcomes of our experiments prove substantial enhancements in our model’s BLEU and METEOR scores,
with respective increases of 0.78 and 0.99 points over prevailing methods. This accomplishment affirms the potency of
our strategy for mitigating visual interference and heralds groundbreaking advancements within the multimodal NMT
domain, further propelling the evolution of this scholarly pursuit.
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1 Introduction
In the realm of Natural Language Processing (NLP), the pursuit of machine translation stands as

a cornerstone, dedicated to the automated translation of textual content across diverse languages [1].
Among the myriad of NLP endeavors, multimodal neural machine translation (MNMT) appears particularly
significant, given its extensive utility in global communication, cultural exchanges, entertainment, and media
design. With the rapid advancement of deep learning and neural network technologies, the development of
efficient and correct machine translation systems has become an urgent research priority [2]. Our MNMT
model advances the frontier of translation technology by incorporating a variety of data streams, such as
images, videos, and audio. Empirical evidence from existing studies shows that the incorporation of added
visual information can significantly boost the efficacy of neural machine translation. Therefore, we are
actively exploring strategies to integrate multimodal data seamlessly, to enhance translation quality, a pursuit
that has become a central focus in the contemporary research landscape.
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In recent years, MNMT researchers have concentrated on crafting sophisticated multimodal fusion
frameworks [3] to bridge the semantic gap between images and their accompanying texts. However, the
challenge of visual noise has often been neglected. In practical scenarios, achieving a flawless alignment
between image content and pure textual data is highly challenging. Moreover, images and textual information
often show weak correlations, making visual noise a persistent concern [4]. The image information we
derive from analyzing the text is not necessarily all that the image represents. Redundant visual features can
make our recognition more difficult. As shown in Fig. 1, the overall message of the human-observed image
description is “brown dog is running after the black dog on the pebbles by the beach,” but the text provides
only the content message “brown dog is running after the black dog”. The resulting German translation is
“Der braune Hund rennt dem schwarzen Hund hinterher”. In this process, the focus of the translation should
be more on the “running” behavior of the “brown dog” and the “black dog” rather than on the environmental
message “pebbles, moss, and beach”. This extra environmental information is not what machine translation
is looking for. Redundant image information may lead to confusion of the translation focus, which in turn
affects the accuracy of the translation.

Figure 1: An example of “brown dog is running after the black dog.” It underscores the imperative to account for visual
noise within the translation model. In this scenario, the yellow color is the core content of the text description, while
the red color symbolizes the visual interference noise

In the realm of Multimodal Neural Machine Translation (MNMT), a critical challenge enhancing
the robustness of text-image integration. Researchers emphasize the critical need to find and filter out
discordant visual-textual information, a pivotal step for improving translation accuracy. The accuracy of
machine translation is significantly enhanced by a well-designed multimodal fusion strategy. To address this,
researchers have introduced a series of innovative approaches: (1) The integration of a multimodal attention
mechanism [5]. This mechanism enhances the effective integration of visual and textual features through
cross-modal attention and adaptive feature selection; (2) The adoption of a multimodal Transformer fusion
method [6]. By using the Transformer architecture to independently encode textual and visual features, it
eases their integration via a multi-modal cross-modal attention mechanism; (3) The development of a gated
fusion technique [7]. This technique ensures the alignment of textual semantic representations with their
visual equivalents, ensuring coherent fusion that propels the progress of MNMT.

While current models have indeed advanced the robustness [8] of MNMT systems, particularly in
their handling of noisy data, these efforts have centered on using visual information to refine conventional
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machine translation processes [9]. However, they have not considered the influence of visual noise within
the multimodal feature fusion architecture. Considering this oversight, our study introduces a pioneering
multimodal interaction fusion strategy that is anchored in the Transformer architecture [10], specifically
designed to combat the interference posed by visual noise. This strategy incorporates a bidirectional
knowledge distillation technique [11] to forge a foundational correlation between textual and visual data
within the visual Transformer encoder. Concurrently, we have implemented a masking occlusion mechanism
to develop an attention module adept at discerning graphic-image relationships, thereby enhancing the
extraction of pertinent visual features through the masking process. Furthermore, we have developed a
cross-modal gating mechanism to mitigate noise, ensuring the effective integration of multimodal features
within a sequence-to-sequence (seq2seq) framework [12]. This approach enhances the efficient fusion of
these features.

In contrast to traditional studies [13], our proposed approach for image-text fusion significantly
outperforms existing models in performance metrics. This method eases the integration of visual elements
that align closely with the image attributes. The KDNR-MNMT model proposed in this study is an innovative
improvement of the traditional multimodal neural machine translation framework, which consists of two
core components. The first part, shown on the right side of Fig. 2, is based on the traditional neural machine
translation framework and includes multiple encoding layers, decoding layers, and positional encoding.
The second part, shown on the left side of Fig. 2, consists of three modules with different functions,
namely, the bidirectional knowledge distillation module, the masking module, and the gating fusion module,
which work together to enhance the model performance. The result robustly proves the potency of our
multimodal engagement tactic for translating tasks. A thorough analysis of our experimental outcomes not
only corroborates that our model eclipses existing ultramodern methods within the MNMT domain, but
also underscores its substantial enhancement of machine translation performance. Moreover, we place a
premium on the interpretability of our model. Through a meticulous examination of the experimental data,
we further confirm the generalizability of our proposed technique, ensuring the model’s transparency and
reliability. The principal contributions of this research are three-pronged:

(1) We introduce a pre-training model designed to capture multimodal graphic features by integrating
global visual and textual features through a process of bidirectional knowledge distillation. Our findings
show that these synthesized multimodal graphic features are pivotal for supporting training stability.

(2) We present an innovative noise-robust multimodal fusion method that uses mask-obscured modal
relations. This technique integrates synthetic graphical elements with visually masked features, empowering
our model to extract pertinent details more efficiently and lessen the effects of visual noise.

(3) We have developed a gating system that employs a cross-modal interaction masking mechanism,
tailored for the representation and fusion of noise-resistant multimodal features within noisy contexts. This
system forms the backbone of our KDNR-MNMT model.

The next parts of this research are organized in the following manner: Section 2 offers an exhaustive
examination of pertinent literature concerning MNMT. In Section 3, we outline the overarching structure
of the suggested model, complemented by an in-depth description of its components. Section 4 underscores
the efficacy of the model and conducts an in-depth assessment of each part through a series of meticulous
experiments. Concluding with Section 5, which presents a comprehensive overview of the research findings.
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Figure 2: Overall flowchart of the KDNR-MNMT model

2 Related Work
Here, we start with a succinct summary of the prevailing scholarly progress on the MNMT platform as

presented in Section 2.1. Subsequently, in Section 2.2, we elaborate on knowledge distillation techniques to
synthesize information from different modalities. Moving forward to Section 2.3, we delve into the masking
occlusion strategy we have adopted, providing a theoretical validation of its reliability. To conclude this
section, we elucidate the gating mechanism we have developed in Section 2.4, highlighting its effectiveness
in the field of cross-modal fusion.

2.1 Multimodal Neural Machine Translation
Multimodal Neural Machine Translation (MNMT) fuses visual and textual data to improve the accuracy

and fluency of translation. The technique processes the source language text and the corresponding images
simultaneously through an encoder, which accurately captures key visual features with the help of an
attention mechanism and deeply fuses them with textual features. Subsequently, the decoder takes this
fused multimodal information into account when generating the target language text. This approach can
effectively capture more comprehensive and rich contextual information, thus enhancing the accuracy and
naturalness of the translation results. At the onset of machine translation inquiry, researchers predominantly
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concentrated on encoder-decoder frameworks predicated on recurrent neural networks, as supported by
seminal investigations [14–16]. Pioneers in this field, such as Zhao et al. [17], have integrated visual region
features with textual data by using object detection features and region-related attention mechanisms.
Nishihara et al. [6] presented a supervised cross-modal attention mechanism to harmonize textual and
pictorial elements. Song et al. [18] integrated a co-attentional graphic refresh module across the Transformer
encoder’s layers for the alignment of multimodal attributes. Additionally, Yao et al. [10] employed the
multimodal Transformer to harmonize visual and textual features. Yin et al. [4] introduced a graph-oriented
method for multimodal neural machine translation, enabling the extraction of multifaceted features via a
synchronized text-image attention system. Lin et al. [19] employed a selective filtering approach coupled
with a contextually adaptive capsule network to synthesize visual features. Despite these innovations, the task
stays challenging and resource-intensive due to constraints in the quantity and quality of labeled images.

Our study addresses this by aiming to perform machine translation with prior access to images, thereby
transcending data limitations. In summary of the challenges found, we propose a pioneering approach aimed
at boosting translation accuracy by incorporating image data at an early stage of the translation workflow,
thereby reducing the reliance on lots of high-quality annotated images. This approach not only bolsters
translation accuracy but also mitigates the costs associated with data collection and processing.

2.2 Knowledge Distillation Strategy
Caruana et al. [20] and Hinton et al. [21] pioneered the concept of Knowledge Distillation, a strategy

crafted to convey insights from an expansive and complex Teacher Model to a streamlined, high-performance
Student Model. The core principle of this method is to empower the Student Model to match the Teacher
Model’s efficacy, all the while diminishing the computational and memory demands, which results in model
streamlining and performance augmentation. Romero et al. [22] extended the applicability of knowledge
distillation by conveying wisdom from layers within the model’s intermediate representation. Yim et al. [23]
introduced a technique for knowledge acquisition that uses the flow of information between layers, achieved
by computing the interaction between the layer features. In the multimodal fusion domain, Gupta et al. [24]
pioneered the transfer of supervised knowledge between images of varying modalities. In contrast, Yuan
et al. [25] presented a symmetric distillation network tailored for text-to-image synthesis tasks.

Capitalizing on these pioneering investigations, we present an innovative knowledge distillation module
within this study, designed to address the issues of limited data availability and the high expenses associated
with annotation in the realm of multimodal machine translation. This research introduces our module, which
seamlessly amalgamates diverse modalities and yields more optimized translation results within constrained
data scenarios. By harnessing knowledge distillation techniques to craft multimodal attributes, our approach
transcends the limitations of sparse datasets.

2.3 Masking Strategy
Masking strategies are pivotal in the realms of machine learning and deep learning, particularly for

handling invalid or irrelevant input data and bolstering model generalization. These strategies have seen
extensive application across various domains, including NLP, image processing, and multimodal learning.
In the context of text-image fusion, masking strategies are instrumental in modulating the exchange of
information between different modalities. Song et al. [26] introduced a novel pre-training task for language
generation that employs a sequence-to-sequence masking technique. Li et al. [27] proved that by applying
masks to certain modalities, the model is guided to focus more intently on and integrate information from
other modalities, thus enhancing a comprehensive understanding of the context. Huang et al. [28] used
a masking technique to obscure extraneous details, encouraging the model to concentrate on extracting
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pertinent features from the contextual fabric, within a multilingual pre-training framework aimed at
achieving cross-linguistic representations. This method bolsters the model’s resilience and precision. The
method first utilizes the self-attention mechanism to process the initial text features and then combines these
features with image features to form graphic-text fusion features. Next, by evaluating the weight values and
zeroing the weight values lower than the preset threshold, this achieves masking occlusion and effectively
filters out the feature weights with low attention. Finally, the adjusted weight information is multiplied
with the fusion feature matrix to reduce redundant information and optimize the feature representation to
enhance the performance of multimodal neural machine translation.

The efficacy of masking strategies has been confirmed across a multitude of pre-training representation
learning endeavors. Building on this foundation, our current study delves into the potential of masking
strategies in addressing the challenge of noise-robust multimodal fusion in MNMT.

2.4 Cross-Modal Gating Mechanism
In this study, we introduce a pioneering gating mechanism that is instrumental in the realms of machine

learning and deep learning, specifically within the domains of sequential data handling and attention-
based modeling. This mechanism judiciously regulates the flow of information, deciding which feature
details to preserve or discard during model execution. Within the Transformer framework, our gating
mechanism skillfully orchestrates the allocation of attention, guiding the model to prioritize the pivotal
elements of feature data. Raffel et al. [29] pioneered the use of the gating mechanism in a text-to-text
framework, enhancing machine translation accuracy by limiting the integration of known information.
Expanding on this concept, Bao et al. [30] applied a specialized gating mechanism known as pseudo-masking
in pre-training tasks for language comprehension and generation, using it as a distinct gating technique.
Consequently, we have integrated learnable parameters that empower the model to self-optimize the gating
strategy throughout the training phase. This approach not only effectively mitigates overfitting but also
maximizes performance.

The incorporation of our gating mechanism bestows the model with enhanced flexibility and selectivity
in data handling, significantly boosting the overall efficacy and adaptability of the KDNR-MNMT model.
This advancement positions our research at the forefront of leveraging gating mechanisms to navigate the
complexities of multimodal neural machine translation.

3 Methodology
Here, we introduce our innovative approach for noise-resistant multimodal neural machine transla-

tion, which uses bidirectional knowledge distillation. This architecture incorporates the KDNR-MNMT
framework within the Transformer model, encompassing four distinct sub-networks: (1) cross-modal feature
encoder; (2) robust masked matrix image encoder; (3) cross-modal gated fusion module.

3.1 Cross-Modal Feature Encoder
Typically, we employ the conventional positional embedding layer to incorporate the input data. Let

x j = {x j
1 , ⋅ ⋅ ⋅ , x j

I} and v j denote the lengths of the source text and its accompanying image for a given data
pair j, I representing the length of the source text x j. Officially, the source sentence is represented by Ex

j ,
which includes both word and positional embeddings within a text embedding layer. Concurrently, the global
visual and segmented features are represented by EV

j ∈ RI×d1 and Ev
j ∈ Rm×m×d2 , which are derived from

visual feature extraction layers utilizing ResNet-101 [31].
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Initially, we employ straightforward average pooling to condense the array of word embeddings into
comprehensive textual features, as detailed by Li et al. [27]. Subsequently, the comprehensive textual features
are progressively introduced into a multimodal feature t generator, easing the computation and derivation
of enriched multimodal features m. See Eqs. (1) and (2):

t = 1
I

I
∑
j=1

Ex
j (1)

m = unpool (W t t) (2)

where the fully connected (FC) layer W t maps the aggregated textual features t into the image domain.
Subsequently, an averaging approach is applied to the lower-dimensional vectors, enabling the calculation
of more comprehensive multimodal feature maps. The dimensionality m ∈ RP∗2048 matches that of the final
convolutional layer’s output in the teacher model.

Within the multimodal encoding layer, we integrate multimodal features m with textual features t to
reconstruct the multimodal features as queries. See Eq. (3):

x̃ = [t; mW m] ∈ R(I+P)∗d (3)

where the P is the size of the multimodal feature. Looking at modal fusion from a graph-theoretic perspective,
each source language token can be viewed as a node in the graph. So, each part of a multimodal feature can
be viewed as a virtual token that is incorporated into the structure of the graph formed by the source tokens
for inter-modal fusion. Concurrently, the key and value vectors are kept being textual features t, with the
computation of the multimodal encoder layer detailed later. See Eq. (4):

Hl
x j
=Multihead (m, Ex

j , Ex
j ) = Concat (head 1

j , . . . , headM
j ) (4)

where M stands for the count of attention heads, Multihead (⋅) signifies the Multi-headed Attention
mechanism, and l = (0, ⋅ ⋅ ⋅ , 3) shows the index of the Transformer layer. Officially, the multi-head attention’s
resultant output is figured out in a later manner. See Eq. (5):

headc∈[1,M]
j =

n
∑
k=1

αi k (Ex
jkWV

j ,c) (5)

where n corresponds to the length of x j. Additionally, the weight coefficients αi k are derived through the
application of the softmax function. See Eq. (6):

αi k = softmax
⎛
⎜⎜
⎝

(x̃WQ
j ,c)(Ex

jk
WK

j ,c)
T

√
d

⎞
⎟⎟
⎠

(6)

where αi k stands for the attention matrix that integrates text and multimodal features through dot product
attention. W V

j ,c , W Q
j ,c and W K

j ,c denote the respective parameter matrices. Ultimately, a position-wise feed-
forward neural network is employed to refine the state of each position within the output sequence F l

x j
.

See Eq. (7):

Fl
x j
= FFN(Hl

x j
) (7)
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3.2 Masking Matrix Image Encoder
In the left-hand illustration of this section, we pay special attention to presenting the visual encoder

with a masking mechanism. To minimize the model’s parameter count, we opted for incorporating solely
one layer of the Transformer architecture within our image encoder’s design.

3.2.1 Legacy Transformer Encoder for Vision
Within the scope of this research, we use a pre-trained ResNet-101 model to decompose the spatial

characteristics of the segmented image, resulting in 49 distinct spatial regions, each represented by a 7 ×
7 × 2048-dimensional vector. Subsequently, these features were transformed by linear transformation into
a 49 × d feature matrix, where d is the dimensionality of the word embeddings. To set up the internal
correlation among the 49 image regions, we have used a conventional Transformer encoder to generate
contextual representations for these local spatial region features. This approach enriches the semantic
information available for multimodal feature fusion, denoted as Hv j . See Eqs. (8) and (9):

Hv j =Multihead (Ev
j , Ev

j , Ev
j) (8)

Fv j = FNN (Hv j) (9)

3.2.2 Cross-Modal Mask Masking Mechanisms for Vision
Motivated by the work of Li et al. [32], this section elaborates on the development of our cross-modal

visual encoder equipped with a masking part. To filter out extraneous visual data during the multimodal inte-
gration phase, we crafted an interactive cross-modal attention masking mechanism, illustrated in Fig. 3. This
approach initially eases the interaction between textual and visual attributes, then assesses the relationship
between the 49 regional characteristics and the textual data. See Eqs. (10) and (11):

Matrixv j = softmax
⎛
⎜⎜
⎝

Fv j × (Fl
x j
)

T

√
d

⎞
⎟⎟
⎠

(10)

Matrixx j = softmax
⎛
⎜⎜
⎝

Fx j × (Fl
v j
)

T

√
d

⎞
⎟⎟
⎠

(11)

where Matrixv j ∈ R49×n stands for the focus of the 49 regional features on each word of the corresponding
source text, while Matrixv j ∈ R49×n signifies the focus of each word in the source text on the 49 regions of
the associated image. Subsequently, we calculated Matrixv j and Matrixx j through an interactive process as
detailed below. See Eq. (12):

Mask j =Matrixv j ×Matrixx j (12)

where Mask j is a matrix that represents the correlation between 49 localized regions of an image and the
source sentence. This matrix generates a mask matrix based on the informational importance of the local
regions of the image and uses a predefined threshold probr to determine which image regions need to be
masked. See Eq. (13):

mr = {
1, probr ≥ p, (r = (1, 2, . . . , 49))
0, probr < p (13)
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where p is a scalar hyperparameter implemented to mask features from less important visual regions. Our
strategy is crafted to guarantee that each image prominently displays the visual region most pertinent to its
corresponding source text. Subsequently, we construct a masked knowledge matrix, where the image region
associated with m = 0 is set to False, and that with m = 1 is set to True. This binary masking technique allows
us to isolate and emphasize the relevant visual content.

Figure 3: Cross-modal interaction attention masking mechanism modules

We deploy a cross-modal visual code equipped with these masks to accurately extract and integrate valid
visual information, ensuring that our multimodal approach effectively captures the essence of both textual
and visual data for enhanced translation tasks. See Eqs. (14) and (15):

Ĥv j =Multihead-mask (Fv j , Fv j , Fv j) (14)
F̂ = FFN (Ĥv j) (15)

In this context, Multihead-mask (∗) refers to self-attention that incorporates masking information,
while Multihead-mask designed to drop weakly relevant visual details.

3.3 Cross-Modal Gating Fusion
In this section, we employ a cross-modal gating fusion technique to integrate textual features and extract

relevant visual features. Given that in the previous feature fusion process, we have utilized a bidirectional
knowledge distillation mechanism and a masking occlusion mechanism to achieve high-quality interaction
between visual and textual features, we can appropriately reduce the weight of textual features in the final
synthesis in the gating system. See Eqs. (16) and (17):

Ω = Sigmoid (WΩF̂v j +UΩFx j) (16)
Hg j = (1 −Ω)Fx j +ΩF̂v j (17)

where WΩ and UΩ represent trainable parameters of the model. The final output, denoted as Hg j is directly
input into the target sentence decoder (shown on the right side of Fig. 2) for predicting the translation.
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4 Experiments

4.1 Data
Dataset: In this research, we performed a comprehensive set of experiments using the Multi30K

dataset [33], a renowned human-annotated resource within the multimodal machine translation (MMT)
community. This collection associates each textual item with its matching JPG image from the Flickr30K
dataset, providing human-translated versions of the texts across English, German, French, and Czech
languages. The Multi30K dataset is designed with 29,000 samples distributed for training, 1014 for the
validation set, and 1000 reserved for the Test2016 segment, for each language pair within the dataset.
Additionally, for a comprehensive evaluation of our model, we performed assessments on both the Test 2017
and MSCOCO datasets, which each contribute an extra 1000 examples. Every textual entry in the Multi30K
dataset is complemented by a corresponding JPG image from the Flickr30k collection [34].

Data Preprocessing: We standardized the preprocessing of both source and target utterances using
the official Multi30K script, encompassing word list construction, application of byte-pair encoding (BPE),
and up to 10,000 merge operations. This process prepared the sentence pairs for our experiments. For the
visual part, we used a pre-trained ResNet-101 model to derive visual characteristics, resulting in a 2048-
dimensional vector encapsulating global information and 49 local spatial region vectors, with each vector
being 7 × 7 × 2048 in size. These comprehensive features offer a wealth of visual data for our multimodal
machine translation model.

Metrics: To comprehensively assess translation quality, we employ two main metrics: (1) the 4-gram
BLEU score [35], which measures the precision and fluency of translations by analyzing the overlaps of 4-
gram between the text produced by machines and the reference translations created by humans, thereby
reflecting the overall excellence of the translations; (2) The METEOR score [36], which considers the
precision and recall of translation segments, measuring the translation’s alignment with reference texts
to gauge its fluency and comprehensiveness. These metrics collectively offer a multifaceted assessment
framework for translation quality, ensuring a balanced view of accuracy and readability.

Parameter Settings: The architecture we propose is built upon the Transformer framework and consists
of just 4 layers each for the encoder and decoder stacks, ensuring that the model supports a low parameter
count. We assign a dimension of 128 to the hidden states for both the encoder and decoder, while the inner
layer of the feed-forward network is configured to have a dimension of 256. The learning rate is set up at
0.005, and we cap the maximum number of tokens at 4096. Additionally, the learning rate is adjusted over
a warm-up phase of 2000 steps, with a label smoothing parameter configured to 0.1. We employ the Adam
optimizer, using momentum parameters set to β1, β2 = (0.9, 0.98). We incorporate 4 attention heads in this
configuration and configure the dropout rate to 0.3 to prevent overfitting. The constraint dimension’s width
is configured at 5 units. Our KDNR-MNMT model undergoes training on an NVIDIA GTX 3090 GPU,
utilizing fp16 precision.

4.2 Results on the EN→DE Translation Task
As detailed in Table 1, we offer a comparative examination of our KDNR-MNMT model in conjunction

with existing state-of-the-art models for the task of translating from English to German (EN→DE). Our
model outperforms its peers significantly when measured by the critical BLEU and METEOR benchmarks,
essential indicators of translation excellence. Below, we will exhaustively summarize and compare the existing
models in several key areas.
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Table 1: Comparison results on Multi30k EN→DE task on BLEU (“B”) and METEOR (“M”) metrics

Multi30K EN→DE

Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR
Existing MNMT Systems

Fusion-conv [37] 37.0 57.0 29.8 51.2 25.1 46.0
VAG-NMT [38] – – 31.6 52.2 28.3 48.0

Del+Obj [39] 38.0 55.6 – – – –
DCCN [22] 39.7 56.8 31.0 49.9 26.7 45.7

GMNMT [4] 39.8 57.9 32.2 51.9 28.7 47.6
OVC+Lv [40] – – 32.4 52.3 28.6 48.0

WRA-guided [17] 39.3 58.3 32.3 52.8 28.5 48.5
Our Transformer-Based Systems

Transformers (NMT) [41] 40.96 58.35 32.59 51.21 29.16 48.37
Doubly-ATT [42] 41.44 59.08 33.15 52.34 29.22 48.41

Multimodal self-att [43] 41.50 58.52 32.51 51.33 29.10 48.48
Gated Fusion MNMT [44] 41.58 58.88 33.01 51.90 30.04 48.95
Mutual Information [45] 41.77 58.60 34.58 – 30.61 –

DLMulMix [46] 41.77 58.93 33.07 51.85 29.90 49.09
Our model 42.36 59.87 35.01 54.42 31.07 49.67

Comparison with Text-to-Text NMT: Our model outperforms the traditional Neural Machine Trans-
lation (NMT) baseline, with notably higher scores on the test set. This significant advancement not only
underscores the superiority of our enhanced model but also confirms the effectiveness of our MNMT
approach in using image data. By integrating a multimodal feature fusion strategy and an optimized model
architecture, our model surpasses conventional methods in enhancing both the precision and contextual
comprehension of machine translation. The KDNR-MNMT model excels in noise processing and filtering
visual information, ensuring robust performance in diverse visual contexts.

Comparison with Existing MNMT Systems: Our proposed KDNR-MNMT model has proved a
notable performance lead in our experimental series, proving its superiority over the current ultramodern
SOTA models. In the domain of translating from English to German, our model has nearly realized a 1.0-
point increase in both the BLEU and METEOR scores. This significant leap in performance is primarily
due to our approach’s ability to efficiently sift through the global image for key information while effectively
sidelining irrelevant visual noise. By employing this nuanced information filtering mechanism, we ensure
that the feature data presented to the decoder is both precise and valuable, thereby markedly elevating
the quality of multimodal neural machine translation. Armed with this refined information processing
strategy, the KDNR-MNMT model highlights its robust competence in navigating the intricacies of complex
multimodal environments for effective translation tasks.

Overall, our proposed approach has achieved substantial enhancements across all critical evaluation
metrics, outperforming the experimental outcomes of prior researchers and standing on par with the
current ultramodern SOTA methods. These impressive results underscore the robustness of our method. By
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integrating a bidirectional knowledge distillation mechanism, we adeptly distill pertinent visual information,
and by tactfully masking less relevant visual data, we guide the model to concentrate on the most valuable
content. Additionally, the gating mechanism we’ve integrated enhances the cross-modal feature fusion
process, making the model more streamlined and correct in managing multimodal data. The constructive
collaboration of these techniques not only bolsters the performance of the translation task but also paves
new avenues and research directions within the multimodal machine translation domain.

4.3 Results on the EN→FR Translation Task
To validate the resilience to noise and the broader applicability of our model, additional tests were

conducted on the Multi30K dataset for the translation task from English to French, as outlined in Table 2. The
key takeaways from our analysis are as follows: firstly, our proposed model garners substantial improvements
in the principal evaluation metrics over existing models, mirroring our findings in the English to German
(EN→DE) task. Secondly, our MNMT model outperforms the baseline NMT model, which relies solely on
textual data, by integrating image information, thereby confirming the model’s adeptness at using visual
cues to bolster translation quality. Ultimately, within the context of the robust NMT baseline for English-
to-French translation, our strategy has significantly outperformed the prevailing state-of-the-art (SOTA)
methodologies, demonstrating robust competitiveness. The results from the English-to-French translation
endeavor confirm the effectiveness and wide-ranging applicability of our introduced KDNR-MNMT model.

Table 2: Comparison results on Multi30k EN→FR task on BLEU (“B”) and METEOR (“M”) metrics

Multi30K EN→FR

Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR
Existing MNMT Systems

Fusion-conv [37] 53.5 70.4 51.6 68.6 – –
VAG-NMT [38] – – 53.8 70.3 45.0 64.7

Del+Obj [39] 59.8 74.4 – – – –
DCCN [22] 61.2 76.4 54.3 70.3 45.4 65.0

GMNMT [4] 60.9 74.9 53.9 69.3 – –
OVC+Lv [40] – – 54.2 70.5 45.2 64.6

WRA-guided [17] 61.8 76.3 54.1 70.6 43.4 63.8
Our Transformer-Based Systems

Transformer (NMT) [41] 60.33 75.64 53.45 71.57 43.61 65.72
Doubly-ATT [42] 60.94 75.99 53.63 71.56 44.78 65.35

Multimodal self-att [43] 61.44 75.77 54.56 71.62 44.59 65.08
Gated Fusion MNMT [44] 61.24 76.26 54.15 71.77 44.29 64.91

DLMulMix [46] 62.23 76.85 55.18 73.37 44.42 66.41
Our model 62.88 77.01 55.19 72.44 46.31 65.96
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4.4 Ablation Experiment
To confirm the performance of our suggested KDNR-MNMT model, we carried out an extensive

series of ablation studies covering both the English-to-German and English-to-French translation tasks. This
investigation encompassed an ablation analysis of the hyperparameter p, alongside a dissection of the various
model components, providing insights into their contributions to the model’s overall performance.

Ablation study of hyper-parameter p: To confirm the robustness against noise and the broader
applicability of our model, we performed an array of ablation studies targeting the machine translation
domain, placing particular emphasis on how the hyperparameter p’s threshold size impacts model efficacy. As
displayed in Table 3, our analysis investigated how the hyperparameter p influences the model’s translation
efficacy, with p being the boundary that regulates the potency of visual similarity weights. Here are our
findings: primarily, the data unequivocally show that our model perfects translation outcomes across many
datasets with the hyperparameter p set up at 0.02. Furthermore, the data reveals a pronounced decline in
BLEU and METEOR scores corresponding to incremental adjustments beyond or below the threshold p. We
attribute this occurrence to dual principal factors. Firstly, a reduction in threshold p results in visual data
capturing increased noise, which hurts model efficacy. Secondly, an elevation in threshold p results in the
omission of potentially beneficial visual data, so diminishing the model’s overall effectiveness.

Table 3: Ablation study on hyper-parameter (“p”) on the EN→DE and EN→FR tasks

Multi30K EN→DE Multi30K EN→FR

p Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

B M B M B M B M B M B M
p = 0 40.94 57.16 34.02 53.91 29.82 48.23 61.07 76.02 54.11 72.09 44.13 65.23

p = 0.01 41.22 57.97 34.53 53.87 30.42 49.14 62.16 76.03 55.02 71.93 44.71 66.19
p = 0.015 41.31 58.51 34.96 54.33 30.75 49.63 62.73 76.81 55.17 72.09 45.32 66.17
p = 0.02 42.46 58.93 35.01 54.42 31.07 49.67 62.88 77.01 55.39 72.44 46.31 65.96

p = 0.025 41.07 57.39 34.03 54.01 31.04 49.26 62.17 76.04 54.83 71.96 46.03 67.32
p = 0.03 40.33 58.15 33.46 53.29 30.19 48.81 62.02 75.74 54.67 71.98 45.44 66.19

Ablation Study of Different Components of the Model: To assess the performance of each constituent
part within our KDNR-MNMT model, we performed supplementary experiments and contrasted outcomes
against various models, as detailed in Table 4. Our findings are as follows: (1) Effectiveness of the Bidi-
rectional Knowledge Distillation Module: The experimental results show that removing the bidirectional
knowledge distillation module results in a decline in both BLEU and METEOR metrics. This confirms
that the bidirectional knowledge distillation module is an effective method for fusing multimodal features,
aimed at enhancing translation performance. (2) Evaluating the Masked Cross-Modal Visual Encoder: To
assess the module’s ability to enhance performance, we used a gating mechanism for the integration of
comprehensive visual and textual attributes. The experimental results prove that the model’s performance
decreases in the absence of the masking occlusion module. This result affirms our theory that the preemptive
exclusion of extraneous visual data, followed by the integration of diverse modalities, positively changes the
quality of translation results. (3) Effectiveness of the Novelly Designed Gating Fusion System: Compared
to traditional gating fusion modules, the novel gating method we designed eases more effective fusion of
cross-modal features.
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Table 4: Presents the results of an ablation study examining various model components across the English-to-German
and English-to-French translation tasks. KD_loss, NR_loss, and Gate_loss correspond to the experimental results of
removing the knowledge distillation module, the masking occlusion module, and the gated fusion module from our
model, respectively

Multi30K EN→DE Multi30K EN→FR

Module Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

B M B M B M B M B M B M
KDNR-MNMT 42.36 59.87 35.01 54.42 31.07 49.67 62.88 77.01 55.19 72.44 46.31 65.96

KD_Loss 42.27 59.03 34.76 54.11 30.46 48.23 62.18 76.37 54.76 71.68 45.97 65.04
NR_Loss 41.76 58.37 34.19 53.64 29.87 47.26 61.35 75.19 53.98 70.26 45.06 64.19

Gate_Loss 40.93 57.51 32.79 52.61 30.16 47.15 61.49 75.28 52.96 69.37 45.14 64.37

4.5 Case Study
As depicted in Table 5, our KDNR-MNMT model reaffirms the potency of an approach grounded in

knowledge distillation and anti-noise interaction. The model iteratively cuts visual noise through knowledge
distillation and masking occlusion, ensuring the best exploitation of feature information for machine
translation. Traditional MNMT and NMT models, while capable of accurately making the principal content
“schwarzer” from the image, struggle with the nuances such as “einen” and “im wasser,” which, despite their
minor visual presence, are pivotal for translation precision. We saw that visual noise inherent in the image
data disrupts the MNMT model’s functionality. Consequently, we engineered an encoder adept at getting
more efficient representations, culminating in enhanced translation accuracy. This shows that by employing
strategic two-way knowledge distillation and masking anti-noise interaction, our model can more effectively
manage visual information, thereby bolstering the precision of machine translation.

Table 5: An example of the specific differences between our KDNR-MNMT and the traditional model in terms of
EN→DE translation effects is given

src a black dog is retrieving a ball in water.
tgt ein schwarzer hund holt einen ball im wasser.

MNMT ein schwarzer hund holt einen bal unterwasser.
NMT ein schwarzer hund apportiert einen ball im wasser.
Ours ein schwarzer hund holt einen ball im wasser.

src the red car is ahead of the two cars in the background.
tgt das rote auto fährt vor den beiden autos im hintergrund.

MNMT das rote auto fährt vor allen anderen autos im hintergrund.
NMT das rote auto fährt vor zwei autos im hintergrund.
Ours das rote auto fährt vor den beiden autos im hintergrund.
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4.6 Results on the EN→Cs Translation Task
We provide an in-depth validation of the effectiveness of the proposed method on the English to Czech

(EN→CS) translation task, and the validation results are detailed in Table 6. Compared to all the control
benchmarks, our model still exhibits excellent performance, which further confirms the effectiveness and
generalizability of our model in dealing with different language pairs.

Table 6: Experiment results on Multi30K EN→CS task on BLEU and METEOR metrics

Multi30K EN→CS

Model Test2016 Test2018

BLEU METEOR BLEU METEOR
Transformer (NMT) [41] 32.70 32.34 27.62 29.03

Doubly-ATT [42] 33.25 32.28 29.12 29.87
Multimodal self-att [43] 33.12 32.01 28.75 29.51

Gated Fusion MNMT [44] 33.77 32.24 29.43 29.41
Our model 34.91 33.46 30.93 30.07

5 Conclusion
In this research, we introduce a pioneering approach to noise-resistant multimodal interaction fusion,

integrating bidirectional knowledge distillation with a cross-modal relation-aware masking mechanism,
tailored to mitigate noise in image features during multimodal fusion. Through comprehensive experi-
mentation and thorough analysis of three authorized translation tasks, we substantiate the efficacy of our
proposed KDNR-MNMT model, highlighting its marked performance superiority. Supplementary ablation
studies reinforce the significance of bidirectional knowledge distillation in extracting analogous features
and the strategic masking of irrelevant visual information, both of which positively influence the precision
of machine translation. Moving forward, our agenda includes the pursuit of more refined techniques for
noise elimination from visual data, with the goal of further enhancing the efficacy of multimodal machine
translation systems.
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