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ABSTRACT: Face Presentation Attack Detection (fPAD) plays a vital role in securing face recognition systems against
various presentation attacks. While supervised learning-based methods demonstrate effectiveness, they are prone to
overfitting to known attack types and struggle to generalize to novel attack scenarios. Recent studies have explored
formulating fPAD as an anomaly detection problem or one-class classification task, enabling the training of generalized
models for unknown attack detection. However, conventional anomaly detection approaches encounter difficulties
in precisely delineating the boundary between bonafide samples and unknown attacks. To address this challenge, we
propose a novel framework focusing on unknown attack detection using exclusively bonafide facial data during training.
The core innovation lies in our pseudo-negative sample synthesis (PNSS) strategy, which facilitates learning of compact
decision boundaries between bonafide faces and potential attack variations. Specifically, PNSS generates synthetic
negative samples within low-likelihood regions of the bonafide feature space to represent diverse unknown attack
patterns. To overcome the inherent imbalance between positive and synthetic negative samples during iterative training,
we implement a dual-loss mechanism combining focal loss for classification optimization with pairwise confusion
loss as a regularizer. This architecture effectively mitigates model bias towards bonafide samples while maintaining
discriminative power. Comprehensive evaluations across three benchmark datasets validate the framework’s superior
performance. Notably, our PNSS achieves 8%–18% average classification error rate (ACER) reduction compared with
state-of-the-art one-class fPAD methods in cross-dataset evaluations on Idiap Replay-Attack and MSU-MFSD datasets.
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1 Introduction
Face recognition is widely used due to its low cost, accessibility and specificity [1], but it is vulnerable

to presentation attacks (PAs), such as photo prints, video replays, and 3D masks. The growing sophistication
of these attacks poses serious challenges to the security and reliability of face recognition systems. Face
Presentation Attack Detection (fPAD) is crucial for protecting these systems [2], as it must distinguish
between bonafide and attack presentations.

In recent years, researchers have used handcrafted feature-based methods or deep learning techniques
to address the attack detection task, which is typically framed as a supervised binary classification problem
and thus requires large-scale datasets [3,4]. However, these methods often rely heavily on known attack
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types during training, leading to poor generalization performance when encountering unknown attacks at
the testing stage. To mitigate these challenges, Domain Adaptation (DA) [5] and Domain Generalization
(DG) [6] methods have been explored. DA reduces the discrepancy between labeled source domains
and unlabeled target domains, while DG learns a shared feature space between known and unknown
domains [7,8].

Despite their benefits, DA and DG rely on fully labeled source domains and attempt to cover all attack
types, which is impractical. As an alternative, fPAD can be formulated as a one-class classification problem,
where anomaly detection is used to identify spoofing as outliers [9,10]. This approach assumes bonafide
face features are compact, while attack features vary significantly, allowing models to be trained using only
bonafide samples and treating any deviations as attacks. However, the key challenge is accurately defining the
decision boundary between bonafide faces and unknown attacks without explicit access to attack samples
during the training stage.

Although factors like acquisition and sample variability introduce uncertainty, bonafide face images
tend to cluster in feature space. Based on this, we make two assumptions: (1) bonafide face images follow a
Gaussian distribution, and (2) there exists a boundary between bonafide and unknown attacks.

To address these challenges, we propose a novel Pseudo Negative Sample Synthesis (PNSS) strategy that
generates pseudo-negative samples from the low-likelihood regions of the bonafide feature space. By simu-
lating unknown attack samples, PNSS enables the model to learn a compact and robust decision boundary
between bonafide and attack classes without relying on real attack data during training. Experimental results
demonstrate that PNSS significantly outperforms existing methods, achieving notable reductions in error
rates on public datasets.

The main contributions of this paper are summarized as follows:

• We introduce a novel anomaly detection-based fPAD framework, only using bonafide face images as
positive samples.

• We propose a novel pseudo negative sample synthesis strategy that synthesizes negative samples from
the low likelihood region of positive feature space.

• Extensive experiments on three datasets demonstrate that our method achieves remarkable improve-
ments over existing one-class fPAD methods.

2 Related Work

2.1 Face Presentation Attack Detection Methods
Face Presentation Attack Detection (fPAD) methods have evolved through two stages: traditional

methods and deep learning-based methods. Traditional approaches rely on hand-crafted features, such as
LBP [11], SIFT [12], SURF [13], and HOG [14], combined with classifiers like LDA (Linear Discriminant
Analysis) and SVM (Support Vector Machine) to distinguish between bonafide and spoof samples.

The rise of deep learning has enabled the use of CNNs (Convolutional Neural Networks) [15,16] and
Vision Transformers (ViTs) [17], which improve performance by automatically extracting discriminative
features. Auxiliary cues like depth maps [18], frequency domain features [19], reflection maps [20], and
rPPG (Remote photoplethysmography) signals [21] further enhance accuracy. To mitigate overfitting and
improve generalization, Domain Adaptation (DA) and Domain Generalization (DG) techniques have been
proposed [5,6]. However, two-class-based methods heavily depend on known attack types during training,
limiting their ability to generalize to unseen scenarios. This reliance on labeled attack data also leads to
challenges in handling the diversity and complexity of real-world attacks.
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One-class learning approaches aim to overcome these limitations by training exclusively on bonafide
samples and treating deviations as anomalies. For instance, Baweja et al. [9] employed Gaussian-distributed
pseudo-negatives, but their oversimplified assumptions limited the diversity of generated samples. Similarly,
OC-SCMNet [22] refined decision boundaries using static latent cues, which are less effective in dynamic
and complex real-world scenarios. Hyp-OC [23] enhanced feature compactness but did not address the need
for diverse and representative pseudo-negative samples.

Our proposed PNSS method directly addresses these limitations by synthesizing pseudo-negatives from
low-likelihood regions of the bonafide feature space. This approach avoids the oversimplified Gaussian
assumptions of Baweja et al. [9] and the static cues of OC-SCMNet [22]. Unlike Hyp-OC [23], PNSS ensures
diversity in pseudo-negative samples, aligning them with real-world attack scenarios. By defining more
compact and robust decision boundaries, PNSS significantly improves its ability to detect unknown attacks.

2.2 Anomaly Detection Methods
Anomaly detection aims to identify abnormal samples that deviate significantly from the norm, often in

the presence of covariate or semantic shifts. In the context of fPAD, anomaly detection methods are closely
related to one-class classification, where models are trained exclusively on bonafide data, and deviations
are treated as attacks [24]. Oza et al. [25] utilized an autoencoder-regularized CNN to learn compact
feature embeddings for one-class classification, while Perera et al. [26] proposed a dual-minimax probability
machine to effectively handle unknown impostors.

In the specific domain of fPAD, Boulkenafet et al. [27] initially compared one-class and two-class
classifiers, demonstrating the potential of anomaly detection. Subsequently, Baweja et al. [9] employed
Gaussian-distributed pseudo-negative samples to refine decision boundaries, while Huang et al. [22] intro-
duced OC-SCMNet, leveraging latent spoof cues for enhanced classification accuracy. Du et al. [28] proposed
Virtual Outlier Synthesis (VOS), a method that dynamically generates synthetic outliers to improve the
generalization of the model to diverse types of attacks.

Despite their promising results, these methods have notable weaknesses. Gaussian-based pseudo-
negative sampling methods, such as those proposed by Baweja et al. [9], often fail to generate diverse and
representative negative samples due to their reliance on simplistic Gaussian distribution assumptions. This
results in an inadequate representation of the real-world variability of attacks. While VOS [28] dynamically
generates synthetic outliers to improve generalization, it is not specifically tailored for fPAD tasks and may
not capture the complexities of attack scenarios encountered in face presentation attacks. These limitations
hinder the ability of these methods to generalize effectively to new and unseen attacks, which is a critical
challenge in fPAD.

PNSS overcomes these limitations by synthesizing pseudo-negative samples directly from the low-
likelihood regions of the bonafide feature space. This approach ensures that the generated samples are
relevant to the task and diverse enough to better represent the variety of real-world attacks. By addressing
the issues of sample diversity and task-specific relevance, PNSS significantly improves generalization to
unknown attack types, outperforming previous methods in real-world scenarios.

3 Proposed Method
Inspired by the existing out-of-distribution detection and fPAD methods [9,28], we propose a deep

fPAD method based on anomaly detection with pseudo negative sample synthesis (PNSS). In this section,
we will first introduce our network framework in Section 3.1, then introduce the pseudo negative sample



3100 Comput Mater Contin. 2025;83(2)

synthesis strategy in Section 3.2. The loss function for model training is described in Section 3.3. And we
offer PyTorch-like pseudocode of our methods in Section 3.4.

3.1 Overall Framework
In the framework, as shown in Fig. 1, training set only includes bonafide face images {xi}N

i=1 (xi ∈
[0, 255]3×H×W ) where N is the size of training set and H ×W is the spatial size. We use a traditional CNN
as feature extraction backbone ω, and these images are fed into ω and get {ω(xi)}N

i=1 (ω(xi) ∈ Rd ), where
d is the dimension of the extracted feature. We define all ω(xi) as positive set Sb f and sample some virtual
outliers Spn from the feature space (b f is short for bonafide and pn is short for pseudo negative). Then Sb f
and Spn are concatenated and fed into the classifier ϕ to train the attack detector.

Figure 1: The framework of our proposed method. Input data x only includes bonafide face images in one batch,
then a backbone network ω is used to extract image feature ω(x) as positive samples (in red). We generate pseudo
negative samples (in green) from the low likelihood region of a Gaussian Distribution modeled by positive samples.
Then concatenate all samples and feed them into Classifier ϕ to train an MLP network optimized by �pc and � f l . Note
�pc is only calculated from positive samples

3.2 Pseudo Negative Feature Synthesis
Our goal is to synthesize negative samples Spn from the feature space. Ideally, Spn should help ϕ learn

a compact boundary between known bonafide faces and unknown attacks. We assume that the positive
samples Sb f forms a multivariate Gaussian distribution:

p(ω(xb f )) =N (μ, Σ), (1)

where ω is backbone, xb f is the bonafide images, μ is the mean of positive samples and Σ is the
covariance matrix.
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We compute the empirical mean μ and Σ of positive distribution Sb f :

μ = 1
Nb f

Nb f

∑
i=1

ω(xi), (2)

Σ = 1
Nb f

Nb f

∑
i=1
(ω(xi) − μ)(ω(xi) − μ)⊺, (3)

where Nb f is the number of bonafide face images in one iteration.
To generate unknown attack features for training stage(with bonafide face features) and get the compact

boundary between bonafide face and various unknown presentation attacks, we propose a strategy to
synthesize pseudo negative samples using the positive multivariate Gaussian distribution. Specifically, as
shown in Fig. 1, we sample the pseudo negative samples from the ε-likelihood region of the following
distribution:

Spn = {spn ∣
1

(2π)d/2∣Σ∣1/2
exp(− 1

2
(spn − μ)⊺Σ−1(spn − μ)) < ε} , (4)

where Spn represents the sampled negative features of presentation attacks (PAs), and ε is a small threshold
that ensures the training of a compact boundary for the positive samples. The ε-likelihood region refers
to areas of the feature space where the likelihood of a bonafide face sample occurring is very low. These
low-likelihood regions are considered to be representative of potential unknown attacks.

Although ε can theoretically be infinitely small, in practice, we sample T points from the Gaussian
distribution and select the k-th minimum likelihood as the pseudo-negative samples. The assumption is
that when k is fixed, a larger T results in a smaller effective ε, leading to pseudo-negative samples closer to
the low-likelihood regions of the bonafide distribution. This enables the model to establish a more compact
decision boundary between bonafide faces and unknown attacks.

3.3 Loss Function
Since in one iteration, the selected k, the number of pseudo negative samples, may not equal the number

of positive samples, we use the following focal loss [29] during training to deal with the class imbalance
problem:

� f l(p) = −(1 − p)γ log(p), (5)

where p is the estimated probability and γ is focusing parameter.
Following [9], we employ pairwise confusion loss [30] to remove identity-specific information from

bonafide images. This loss helps the model generalize better by encouraging the features of different bonafide
samples to be more distinct from each other:

�pc = ∑
i
∑
j≠i
∣ωi − ω j ∣22, (6)

where ωi represents the feature of image xi . This loss term is computed exclusively on bonafide images, with-
out including the pseudo-negative samples. The goal is to ensure that features of bonafide samples become
less correlated, thus reducing the chances of the model learning identity-specific features. This helps the
model focus on more general characteristics that differentiate bonafide presentations from unknown attacks.
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The overall loss function is a linear combination of focal loss and pairwise confusion loss as follows:

� f inal = λ1�pc + λ2� f l , (7)

where λ1 and λ2 are coefficients of �pc and � f l , respectively.

3.4 Pseudocode
Algorithm 1 presents the PyTorch-like pseudocode of PNSS:

Algorithm 1: Pseudocode of PNSS, PyTorch-like
# f: backbone
# h: classification mlp
# minibatch bonafide face images x
for x in loader do

# bf: features of bonafide faces
# m_vec: mean of bf
# cor_vec: covariance matrix of bf
bf = f(x)
m_vec =mean(bf)
cor_vec =mm((bf - m_vec).t(), bf - m_vec)/len(bf)
sampler =MV_Normal(m_vec, cor_vec)
# get negative samples from the low likeli-hood region of bonafide face distribution
_buffer = sampler.rsample((sample_num,))
prob_density = sampler.log_prob(_buffer)
_, index = tc.topk(-prob_density, k)
negative = _buffer[index]
L = lambda_1 * L_pc + lambda_2 * L_fl
# back-propagate
L.backward()
update(f, h)

end for

4 Experiment

4.1 Experimental Setting
Datasets
Three public databases are used to test our method, including Oulu-NPU [31], MSU-MFSD [32], and

Idiap Replay-Attack [33].
Idiap Replay-Attack: This dataset consists of 50 volunteers and 1300 videos, evenly distributed across two

attack types: print attacks using photos on A4 paper and replay attacks displayed on iPhone/iPad screens.
Videos were recorded under controlled conditions with variations in lighting and device quality. The main
challenge lies in distinguishing real faces from spoofing materials, as replay attacks utilize high-resolution
screens and print attacks maintain detailed photo textures, requiring robust feature extraction to handle these
subtle differences.
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MSU-MFSD: This dataset includes 35 volunteers and 380 videos, recorded using two cameras with
different resolutions, covering both low-resolution and high-resolution devices. Spoofing attacks include
print photo and screen replay attacks, with balanced distribution across devices. The primary challenge
comes from variations in video quality due to camera resolution and attack material fidelity, such as
inconsistent print quality and screen refresh rates, testing a model’s adaptability to noisy inputs.

Oulu-NPU: This dataset consists of 55 volunteers and nearly 5000 videos, recorded under three environ-
mental conditions: indoor, outdoor, and dark, using six mobile phones with diverse camera specifications.
The dataset is balanced across attack types, including high-resolution photo and screen replay attacks, and
introduces significant variability in lighting, device quality, and environmental complexity. These factors
make it notably more challenging than other datasets, especially for generalization in both in-domain and
cross-domain scenarios.

Evaluation metrics To compare our method with previous work, our method is evaluated using the
following metrics: Average Classification Error Rate (ACER) [2], which is calculated by Attack Presentation
Classification Error Rate (APCER) [2] and Bonafide Presentation Classification Error Rate (BPCER) [2].
They are defined as follows:

APCER = FP
FP + TN

, (8)

BPCER = FN
FN + TP

, (9)

ACER = APCER + BPCER
2

, (10)

where TP, TN, FP, FN are True Positive, True Negative, False Positive, and False Negative, respectively.
Implementation Details
We use MTCNN [34] to detect faces, which are then cropped and resized to 256× 256 for uniform input

size. Data augmentation includes random horizontal flipping and normalization with mean and standard
deviation derived from the VGGFace dataset.

We adopt VGGFace [35], a pre-trained VGG16-based model, as the feature extractor. Specifically, the
fc6 layer output is used as the face feature representation. The models are implemented in PyTorch [36] and
trained on an NVIDIA A100 GPU using mixed precision for efficiency. The optimizer is Adam with a learning
rate of 1 × 10-4 and a weight decay of 5 × 10-4. In Eq. (5), the focal loss parameter γ is set to 2. In Eq. (7), λ1
and λ2 are set to 3 and 1, respectively, balancing the contributions of different loss terms.

The training uses a batch size of 80 for training and 160 for testing. The model is trained for 40
epochs with an α value of 0.8. White noise with a standard deviation of 1.0 is applied during training to
enhance robustness.

4.2 Experimental Comparison
4.2.1 Comparison with Other Methods

Six baseline methods are chosen for comparison:

(1) OC-CNN [10]: One-Class CNN synthesizes samples from a Gaussian distribution centered at the
origin as pseudo negative samples and trains a classifier with bonafide face samples, as shown in Fig. 2a.
The distribution of OC-CNN is N(0, I ⋅ σ 2).
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(2) Adaptive Mean Estimation [9]: Baweja et al. assume that the attacked images are very similar to
bonafide images used during training. So images from PAs and bonafide faces are very close to each
other in the feature space. So that we proposed the pseudo negative features sampling strategy from
a shifted Gaussian distribution with adaptive mean estimation. Concretely, in an iteration, the mean
μ∗ of the Gaussian distribution is αμol d + (1 − α)μnew , where μol d is adaptive mean of previous
batch and μnew is empirical mean of current batch. The distribution of Adaptive Mean Estimation is
N(μnew , I ⋅ σ 2).

(3) OC-SVM [37]: One-Class Support Vector Machine (OC-SVM) classifies normal samples and potential
abnormal samples by creating hyperplane in high-dimensional space. OC-SVM is implemented using
the Sklearn library with default parameters.

(4) SVDD [38]: Support Vector Data Description (SVDD) creates a hypersphere to wrap most normal
samples to achieve anomaly detection. SVDD is implemented using the LibSVM library.

(5) MD [39]: Mahalanobis distance (MD) can be used for anomaly detection. Calculate the boundary
threshold from the data center with normal data, and then judge whether the position of a point from
the center of the data set exceeds the threshold. If it exceeds the threshold, it is determined as an
abnormal point. MD is implemented using the Sklearn library.

(6) OC-GMM [40]: The Gaussian mixture model can be regarded as a model composed of k single
Gaussian models, and the k sub models are the hidden variables of the mixture model.

(7) OC-SCMNet [22]: One-Class Spoof Cue Map estimation Network (OC-SCMNet) uses a novel
approach that leverages Spoof Cue Maps (SCMs) and a memory bank to generate and explore latent
spoof features. This method aims to improve the decision boundary between live and spoof samples
by guiding the feature learning process using pseudo spoof cue maps, which are synthesized from the
latent feature space.

Figure 2: Graphical illustration of the popular statistical one-class methods. The green circle represents the target data,
the red dotted cross represents the unknown data, and the blue green dotted line represents the decision boundary of
each method

Among the seven baseline methods, OC-CNN, Adaptive Mean Estimation, and OC-SCMNet are more
related to our method. The main difference for us is that our method generates pseudo samples from the low
likelihood region of the original bonafide face distribution, while comparative method use a new distribution
to model unknown attacks.

To provide a comprehensive evaluation of the proposed PNSS method, we summarize the experimental
results across intra-testing and cross-testing scenarios in Table 1. This table highlights the average ACER
performance of different methods under both testing conditions, providing a overview before delving into
the detailed results in the following subsections.
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Table 1: Summary of average ACER results for intra-testing and cross-testing

Method Intra-testing AVG (%) Inter-testing AVG (%) Overall AVG (%)
OC-CNN [10] 40.34 32.06 36.20

Adaptive mean estimation [9] 26.39 33.69 30.04
OC-SCMNet [20] 21.47 34.66 28.07

PNSS (Ours) 16.47 26.84 21.65

Note: Bold values denote the best performance.

The results in Table 1 demonstrate the effectiveness of the proposed PNSS method in addressing domain
generalization challenges in face presentation attack detection. PNSS achieves the lowest ACER scores in
both intra-testing (16.47%) and cross-testing (26.84%), resulting in an overall ACER of 21.65%. This superior
performance highlights its ability to generate diverse and representative pseudo-negative samples, which
enhance robustness to domain shifts and improve generalization to unseen attack scenarios. These results
validate PNSS as a reliable approach for practical applications across diverse environments.

In the following subsections, we provide detailed results for each testing scenario. Section 4.2.2 presents
the intra-testing results on three datasets, while Section 4.2.3 discusses the inter-testing performance across
six domain pairs.

4.2.2 Intra-Testing
In intra-testing, we follow the protocol used in [9], where the models are trained using only bonafide

presentation image data and evaluated on the test set with both bonafide images and attacked images. The
identities of training set and test set are non-overlapping. As shown in Table 2, the proposed PNSS achieves
competitive performance in three datasets. In Idiap Replay-Attack and MSU-MFSD, our method achieves
the best results and reduces about 8%–18% ACER over other methods.

Table 2: Intra-testing results (ACER(%)) of one-class fPAD methods on three benchmark datasets

Method Idiap Replay-Attack MSU-MFSD Oulu-NPU
OC-SVM [37] 31.14 – 47.56

SVDD [38] 32.96 – 47.52
MD [39] 31.75 – 45.19

OC-GMM [40] 30.10 – 46.96
OC-CNN [10] 35.99 39.22 45.80

Adaptive mean estimation [9] 20.74 28.20 30.24
OC-SCMNet [22] 14.70 27.22 23.49

PNSS (Ours) 6.67 8.93 33.80

Note: Bold values denote the best performance, while underlined values indicate the second-best.

The models most similar to our method are OC-CNN [10], Adaptive Mean Estimation [9], and OC-
SCMNet [22]. As shown in Fig. 2, OC-CNN synthesizes samples from a Gaussian distribution centered at
the origin as pseudo negative samples, while Adaptive Mean Estimation synthesizes samples from a shifted
distribution among batches. OC-SCMNet utilizes Spoof Cue Maps (SCMs) and a memory bank to generate
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potential spoof features, thereby expanding the decision boundary. However, these methods generate pseudo
negative samples or features with limited diversity, which may not effectively represent all attack types.

Our method does not estimate the parameters of the pseudo negative distribution, and uses the low
likelihood samples from bonafide face feature space as pseudo negative samples to obtain a more compact
boundary. As shown in PyTorch-like pseudocode of Section 3.4, the clear differences between the three
methods are the strategy of negative sample synthesis. Fig. 3 gives the visualization of the feature distributions
on Idiap Replay-Attack dataset via t-SNE where Fig. 3a and b are distribution representation of PNSS and
Adaptive Mean Estimation [9], respectively. The green points represent bonafide face image data, red points
represent PAs data and blue crosses represent the pseudo negative samples. Some blue crosses overlapped
with red points in Fig. 3a, which are noises for model training due to their wrong label. Only few blue crosses
overlap with red points in Fig. 3b, demonstrating the pseudo negative samples are consistent with the PAs in
practical. The results show that the negative sample synthesis strategy of PNSS is more accurate and effective
compared with Adaptive Mean Estimation [9].

Figure 3: Visualization of the feature distributions on Idiap Replay-Attack dataset via t-SNE. The green points represent
bonafide face image data, red points represent attack presentation data and blue crosses represent the pseudo negative
samples used for estimating attack in bonafide world. (a) and (b) are visualization for PNSS and Adaptive Mean
Estimation [9]

To evaluate PNSS, we visualize feature distributions on the MSU-MFSD and OULU-NPU datasets using
t-SNE. In Fig. 4, pseudo-negative samples effectively separate bonafide and attack samples in the controlled
MSU-MFSD dataset. In Fig. 5, despite the higher variability in OULU-NPU, pseudo-negative samples
maintain clear boundaries, demonstrating PNSS’s robustness and adaptability across diverse domains.

4.2.3 Inter-Testing
Inter-testing is a challenging scenario since the model faces distribution shifts caused by various factors

between source domains and target domains. To evaluate the generalization capability of our method, we
conduct experiments on Idiap ReplayAttack (denoted as R), MSU-MFSD (denoted as M) and OuluNPU
(denoted as O). A-B means that train on dataset A and teston dataset B. As shown in Table 3, the proposed
PNSS method achieves the lowest ACER in the M-O, O-M, and O-R scenarios, highlighting its strong
generalization capability across diverse datasets. Although PNSS does not attain the best performance
in the M-R and R-M scenarios—where OC-CNN and OC-SCMNet exhibit slightly better results—PNSS
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still secures the second-best outcomes, as indicated by the underlined values in the table. This consistent
performance across multiple scenarios underscores the robustness of PNSS. The success of PNSS can be
attributed to its effective use of a compact boundary between positive and negative samples, enabling it to
generalize well even in cross-dataset testing where the training and testing sets differ significantly.

Figure 4: Visualization of feature distributions on MSU-MFSD dataset

Figure 5: Visualization of feature distributions on OULU-NPU dataset

Table 3: Cross-testing results (ACER(%)) of one-class fPAD methods on three benchmark datasets

Method M-R R-M M-O O-M R-O O-R
OC-CNN [10] 18.16 38.23 35.99 34.01 38.76 35.21

Adaptive mean estimation [9] 39.38 39.82 33.99 30.40 34.09 32.83
OC-SCMNet [22] 44.05 14.70 41.71 33.58 40.66 32.92

PNSS (Ours) 21.87 15.31 31.05 26.62 38.04 23.19

Note: Bold values denote the best performance, while underlined values indicate the
second-best.



3108 Comput Mater Contin. 2025;83(2)

As shown in Table 3, the proposed PNSS achieves progress in both M-R and R-M scenarios compared
with other two methods. And we get the best performance on R-M, MO, O-M, and O-R settings. We believe
this is because of the great representation ability of CNN and the compact boundary between positive samples
and negative samples.

4.3 Ablation Study
In this subsection, we will exploit the effect of the combined loss in Eq. (7). Then we study the effect of

the number of pseudo negative samples. Finally, we investigate the effect of the ratio β of pseudo negative
samples against all samples from the distribution of bonafide face features.

Effect of the combined loss function. To evaluate the effect of the combined loss, we conducted
experiments on the Idiap Replay-Attack dataset, as shown in Fig. 6. We fix the number of positive samples
and negative samples to 32 and 16 in one batch. The results indicate that class imbalance significantly affects
model accuracy. Using focal loss achieves an ACER of 9.97%, which outperforms cross-entropy. Adding the
pairwise confusion loss further reduces ACER by approximately 3% for both losses. We also tested different
values of the focusing parameter γ in focal loss (Fig. 7), with γ = 2 yielding the best performance, improving
results over cross-entropy with γ = 1.5. Additionally, an ablation study on the coefficients λ1 and λ2 in the
loss function (Table 4) shows that their combination significantly impacts ACER. Setting λ1 = 3 and λ2 = 1
achieves the best performance with an ACER of 6.67%.
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Figure 6: The impact of each item in combined loss
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Figure 7: The impact of ratio γ

Effect of pseudo negative samples number. To investigate the effect of the number of pseudo negative
samples, we do experiments on Idiap Replay-Attack, where varying the number in {2, 4, 6, 8, 16} and fix the
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ratio β to 1:2000. As shown in Fig. 8, increasing the number of samples can significantly improve the ability
of the model.

Table 4: Ablation study results for loss function coefficients λ1 and λ2. The metric ACER (%) and total loss � f inal are
reported

Coefficient of �pc (λ1) Coefficient of � f l (λ2) Total loss (� f inal ) ACER (%)
λ1 = 1 λ2 = 1 � f inal = �pc + � f l 9.12
λ1= 1 λ2= 2 � f inal = �pc + 2 ⋅ � f l 7.12
λ1 = 1 λ2 = 3 � f inal = �pc + 3 ⋅ � f l 14.53
λ1 = 1 λ2 = 4 � f inal = �pc + 4 ⋅ � f l 11.51
λ1 = 2 λ2 = 1 � f inal = 2 ⋅ �pc + � f l 12.02
λ1 = 3 λ2 = 1 � f inal = 3 ⋅ �pc + � f l 6.67
λ1 = 4 λ2 = 1 � f inal = 4 ⋅ �pc + � f l 7.63

Note: Bold values denote the best performance.
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Figure 8: The impact of the number of pseudo negative samples

Effect of β. Since the threshold ε can be infinitesimally small, to study the effect of ε, we set the number
of pseudo negative samples as 16 and vary β in {1:200, 1:500, 1:1000, 1:2000}. A smaller β corresponds a
smaller ε. As shown in Fig. 9, with the ratio β going down, a more compact boundary is learned to distinguish
bonafide from PAs.

5 Discussion
The proposed PNSS method effectively detects unknown presentation attacks by leveraging pseudo-

negative samples, achieving superior generalization to unseen attacks without relying on labeled attack
data. Its dynamic synthesis of pseudo-negative samples enhances robustness across domains, addressing key
limitations of traditional methods.

However, challenges remain in real-world scenarios, where factors like varying lighting, diverse devices,
and complex backgrounds may affect performance. Sophisticated attack techniques, such as 3D masks or
video replays, also require further exploration. Furthermore, existing datasets may not fully represent real-
world complexities, highlighting the need for more diverse and representative benchmarks.

Despite these challenges, PNSS provides a solid foundation for addressing unknown attacks, with
potential for further improvements in robustness and real-world applicability.
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Figure 9: The impact of ratio β

6 Conclusion
This paper presents a pseudo-negative sample synthesis (PNSS) framework for one-class face pre-

sentation attack detection. Our approach addresses the boundary definition challenge through two key
contributions: (1) Generation of representative negative samples from low-likelihood regions in the bonafide
feature space, and (2) a dual-loss training paradigm combining focal loss for class imbalance with pairwise
confusion loss regularization to prevent model bias. Extensive evaluations on Idiap Replay-Attack, MSU-
MFSD, and other benchmarks demonstrate superior cross-dataset generalization, achieving 8%–18% average
classification error rate (ACER) reductions compared to state-of-the-art methods.

Future investigations should focus on three directions: lightweight architecture integration for edge
deployment, multi-modal feature fusion against advanced attacks, and adaptive sample synthesis for evolving
threats. These developments will facilitate practical implementation in resource-constrained scenarios while
maintaining detection robustness.
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