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ABSTRACT: In recent years, decomposition-based evolutionary algorithms have become popular algorithms for
solving multi-objective problems in real-life scenarios. In these algorithms, the reference vectors of the Penalty-Based
boundary intersection (PBI) are distributed parallelly while those based on the normal boundary intersection (NBI)
are distributed radially in a conical shape in the objective space. To improve the problem-solving effectiveness of
multi-objective optimization algorithms in engineering applications, this paper addresses the improvement of the
Collaborative Decomposition (CoD) method, a multi-objective decomposition technique that integrates PBI and
NBI, and combines it with the Elephant Clan Optimization Algorithm, introducing the Collaborative Decomposition
Multi-objective Improved Elephant Clan Optimization Algorithm (CoDMOIECO). Specifically, a novel subpopulation
construction method with adaptive changes following the number of iterations and a novel individual merit ranking
based on NBI and angle are proposed., enabling the creation of subpopulations closely linked to weight vectors and the
identification of diverse individuals within them. Additionally, new update strategies for the clan leader, male elephants,
and juvenile elephants are introduced to boost individual exploitation capabilities and further enhance the algorithm’s
convergence. Finally, a new CoD-based environmental selection method is proposed, introducing adaptive dynamically
adjusted angle coefficients and individual angles on corresponding weight vectors, significantly improving both the
convergence and distribution of the algorithm. Experimental comparisons on the ZDT, DTLZ, and WFG function sets
with four benchmark multi-objective algorithms—MOEA/D, CAMOEA, VaEA, and MOEA/D-UR—demonstrate that
CoDMOIECO achieves superior performance in both convergence and distribution.

KEYWORDS: Multi-objective optimization; elephant clan optimization algorithm; collaborative decomposition; new
individual selection mechanism; diversity preservation

1 Introduction
Multi-objective Optimization Problems (MOP) refer to optimization problems involving more than

two conflicting objective functions. Assuming the optimization problem is a minimization problem, MOP
is typically represented as:

minmize F (x) = ( f1 (x) , . . . , fM (x))T

sub ject to x ∈ Ω
(1)
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where M represents the objective variables, D is the number of decision variables, F = (f 1,. . ., f M)T is
the objective vector, x = (x1,. . ., xD) is the decision vector, and Ω is the D-dimensional decision space.
Multi-objective algorithms can generally be divided into three main categories based on the techniques
they use to handle multiple objectives: dominance-based multi-objective optimization algorithms, perfor-
mance indicator-based multi-objective algorithms, and decomposition-based multi-objective optimization
algorithms. A brief overview of representative methods for each category is provided below.

Dominance-based multi-objective algorithms utilize Pareto-based fitness allocation strategies to iden-
tify all non-dominated individuals from the current evolutionary population. Murata et al. [1] introduced a
new Multi-objective Genetic Algorithm (MOGA). During the execution of the MOGA algorithm, a Pareto
optimal solution set is maintained, where a certain number of individuals are preserved as elites and passed
to the next generation. Zitzler et al. [2] introduced SPEA2, which includes fine-grained fitness assignment,
density estimation, and a novel archive truncation method to enhance the balance and diversity of the non-
dominated solution set, achieving a more optimal Pareto front. Deb et al. [3] proposed NSGA-II, which
reduces computational complexity through fast non-dominated sorting and us-es crowding distance and
elitism to maintain population diversity. It optimizes the population by using non-dominated rank and
crowding distance, ensuring the generation of Pareto optimal solutions. Erickson et al. [4] proposed NPGA,
which explores global information about the Pareto optimal front through population diversity and contin-
uously improves individual fitness through evolutionary operators, thereby obtaining a set of well-balanced
optimal solutions. Yicun Hua et al. [5] introduced a clustering-based adaptive MOEA (CAMOEA) aimed
at solving multi-objective problems (MOPs) with irregular Pareto fronts. The core concept of CAMOEA is
to adaptively generate a set of cluster centers that guide the selection process in each generation, promoting
diversity while accelerating convergence. Gao et al. [6] proposed an algorithm for adaptively adjusting the
balancing tendency, which is based on efficient non-dominated sorting to improve the distribution of the
population. However, this type of approach generally lacks a robust diversity maintenance mechanism, often
leading to poor distribution of the non-dominated solution set. Additionally, as the dimensionality continues
to increase, the dominance relationship becomes unclear, selection pressure decreases, and the problem of
insufficient selection pressure reappears, meaning this issue has not been fundamentally resolved.

Performance indicator-based multi-objective algorithms generally rely on performance metrics to guide
the search process and select optimal solutions. Representative algorithm developments are as follows:
Wang et al. proposed the hypervolume Newton method for solving unconstrained bi-objective optimization
problems with objective functions [7]. For a given MOP, a deterministic numerical optimization is carried out
by the Newton-Raphson method to maximize the hypervolume index. Phan et al. [8] proposed and evaluated
an indicator-based EMOA (R2-IBEA), which uses a binary R2 indicator. This indicator adaptively adjusts
the positions of reference points according to the distribution of individuals in the current generation within
the objective space, helping to determine the dominant relationship between any two given individuals.
Li et al. [9] proposed a multi-indicator algorithm based on stochastic ranking (SRA), which employs
stochastic ranking techniques to balance the search biases of different indicators. Zhengping Liang et al.
proposed a new MaOEA based on a boundary protection indicator (MaOEA-IBP) [10], developing a worst-
case elimination mechanism grounded in the indicator and boundary protection strategy to improve the
equilibrium of population convergence, diversity, and coverage. Peng et al. proposed a MaOEA (A Many-
Objective Evolutionary Algorithm Based on Dual Selection Strategy, MaOEA/DS) [11]. A new distance
function is designed as a diversity index, and a point congestion strategy based on the distance function is
proposed to further enhance the ability of the algorithm to distinguish the optimal solutions overall.

The strength of performance indicator-based multi-objective evolutionary algorithms lies in their
independence from Pareto dominance for exploring the objective space. However, their drawback is the
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high computational cost, which severely limits the application of these algorithms in high-dimensional
objective spaces. Zhang et al. [12] introduced a decomposition-based multi-objective evolutionary algorithm
(MOEA/D), which converts multi-objective problems into a set of single-objective subproblems using
weight vectors. This approach significantly reduced the computational complexity of existing multi-objective
algorithms and demonstrated good convergence, attracting considerable attention from scholars. Hui Li
et al. [13] proposed a new implementation of MOEA/D based on DE operators and polynomial mutation
(MOEA/D-DE), introducing two additional strategies to maintain population diversity. Ke et al. [14]
combined MOEA/D with ant colony optimization (MOEA/D-ACO), using the positive feedback mechanism
of pheromones to gradually converge toward high-quality solutions. In 2017, Xiang et al. [15] proposed
a new MaOEA algorithm based on vector angles, VaEA, which achieves a balance between convergence
and diversity. De Farias et al. [16] introduced MOEA/D-UR, a MOEA/D variant that updates as needed.
This method employs an improvement detection metric to decide when to adjust the weight vectors while
partitioning the objective space to enhance diversity. Wang et al. proposed a metric-based reference vector-
adjusted MOEAs for the inconsistency between the reference vector distribution and the PF shape in
MOEA/D [17]. It can be seen that decomposition-based MOEAs generally achieve better convergence when
solving multi-objective problems. However, the weight vector setting makes these algorithms sensitive to the
shape of the Pareto front, and their alignment with the true front can still be improved. Compared to the
other two approaches, decomposition-based methods are currently the most widely utilized technique for
solving multi-objective problems.

With the advancement of science and technology, various multi-objective problems are encountered in
real life, such as robot path planning, industrial scheduling, and knapsack problems. Through mathematical
analysis, these can be viewed as multi-objective optimization problems. Multi-objective optimization algo-
rithms are currently an effective approach to solving these types of problems, comprising two aspects: first,
the core evolutionary algorithm, and second, the multi-objective handling techniques. The former iteratively
evolves to obtain optimal solutions, while the latter preserves these optimal solutions. In light of this, to
further enhance the problem-solving capability of multi-objective optimization algorithms in engineering
problems, this study focuses on two aspects: the core evolutionary strategy and the multi-objective frame-
work, as outlined below: (1) Algorithmic evolution strategies can effectively solve multi-objective problems,
so the merits of algorithmic evolution strategies are crucial to the optimization effect of multi-objective
problems. Extensive experimental research has shown that compared to various evolutionary methods
such as Genetic Algorithm and Differential Algorithm, the Elephant Clan Optimization Algorithm [18]
exhibits certain advantages. Therefore, it will serve as the core evolutionary strategy for the multi-objective
optimization algorithm. (2) Currently, multi-objective algorithms generally adopt decomposition-based
multi-objective handling techniques. Experimental research indicates that in 2022, Wu et al. [19] proposed a
Collaborative Decomposition (CoD) environmental selection method, which combines the advantages of the
penalty-based boundary intersection (PBI) and normal boundary intersection (NBI) methods. This allows
the multi-objective algorithms formed by CoD to achieve good convergence and distribution. Therefore,
this paper selects CoD-based environmental selection and aims to improve it based on the characteristics
of multi-objective optimization, constructing a Collaborative Decomposition Multi-objective Elephant Clan
Optimization Algorithm with the Elephant Clan Optimization Algorithm as the core evolutionary strategy.

2 Elephant Clan Optimization Algorithm
In nature, elephant populations are organized into male herds and family groups led by matriarchs,

who use their learning and memory abilities to find suitable survival resources and undertake long-distance
migrations. Inspired by these behaviors, Jafari et al. proposed the Elephant Clan Optimization (ECO)
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algorithm in 2021. In the ECO algorithm, each individual represents the position of an elephant within
the clan, and the fitness value of the algorithm represents the survival resources available at that position.
The algorithm is divided into three stages: initialization and population division, individual updating of the
population, and individual replacement within the population. The pseudocode for the ECO algorithm is
shown in Algorithm 1.

Algorithm 1: ECO
Input: optimisation problem dimension: D; number of communities: Nc; number of members per commu-
nity: Ne; number of mates available: Nm; scaling factors: α, β; maximum number of iterations: Maxiter
Output: optimal solution and its fitness value
01. Initialize of variables (Nd, Nc, Ne, Nm, α, β, Maxiter).
02. Individual elephant Xi

0 positions were initialised according to Eq. (2) and the herd was divided into
Nc-1 family herds as well as 1 male elephant herd.

Xi
0 ( j) = Xmin ( j) + rand × (Xmax ( j) − Xmin ( j)) (2)

03. Calculate the fitness value of each individual in each colony (each colony contains a total of Ne =
N/Nc individual elephant)
04. While it < = Maxiter do
05. In each family group, the individual elephant with the best fitness value is the matriarch of the family
group updated according to Eq. (3), and the other individual elephants are members of the group updated
according to Eq. (4).

X it+1
FC i ,M ( j) = X it

FC i ,M ( j) + r × β × [X it
Best ( j) − X it

FC i ,M ( j)] (3)
X it+1

FC i ,m ( j) = X it
FC i ,m ( j) + r × α × [X it

FC i ,M ( j) − X it
FC i ,m ( j)] (4)

where X it
FC i ,M and X it

FC i ,m represent, respectively, the matriarch of the female elephant in the i (i = 1 ⋅ ⋅ ⋅ Nc −
1)th family herd XFC i and the m (m = 1 ⋅ ⋅ ⋅ Ne)th herd member after sorting at iteration; r is a random
number uniformly distributed over a range of [0, 1]; X it

Best ( j) represents the jth dimension of the optimal
position obtained by the entire population in the it generation; α = β = 2.
06. Updating the position of each elephant in the male elephant population according to Eq. (5).

p = 1 − (c × it
itmax

)

X it+1
MC ,n ( j) = X it

MC ,n ( j) + r1 × p × [Xmax ( j) − Xmin ( j)] (5)

where X it+1
MC ,n ( j) is the jth dimension of the nth (n = 1 ⋅ ⋅ ⋅ Ne) elephant in the male elephant population

XMC of the it+1th iteration; r1 is a random number uniformly distributed within [−1, 1]; itmax and it
represent the maximum number of iterations and the current number of iterations; and c is 0.5.
07. Calculate the fitness value for each new elephant
08. Sorting the elephants in each herd
09. For i = 1:Nc-1do

(Continued)
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Algorithm 1 (continued)
10. Determine the worst elephant, the adult elephant that left, and the mateable elephant in the
ith family group: each family group contains both mateable and adult elephants. The mateable elephant
is the Nm = 3 elephant with the best fitness value in this family group, while the adult elephant is the one
that left its family group and was randomly selected from the remaining Ne-Nm-1 elephants except for the
mateable elephant and the one with the worst fitness value.
11. Eq. (6) produces 2 new individuals to replace the worst elephant in the family group and the adult
elephant that left, respectively.

X it+1
FC i ,C al f ( j) = r ×

⎛
⎝

X it+1
FC i ,R f ( j) + X it+1

MC ,Rm ( j)
2

⎞
⎠

(6)

where X it+1
FC i ,C al f denotes a newly generated baby elephant from the it+1st iteration of family colony

X it+1
FC i , X it+1

FC i ,R f (R f ∈ [1, . . . , Nm]) denotes a randomly selected individual from the it+1st iteration of
mateable elephants, and X it+1

MC ,Rm denotes the best elephant from the it+1st iteration of male elephant colony
XMC .
12. Updating the worst elephant in the male elephant population according to Eq. (7).

X it+1
MC ,worst =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X it+1
FC i ,Gm , i f f (X it+1

FC i ,Gm) < f (X it+1
MC ,worst)

X it+1
MC ,worst , el se

(7)

where X it+1
MC ,worst is the worst elephant in the male herd in it+1st iteration, and Xit+1

FC i ,Gm is the adult elephant
that left the family herd X it+1

FC i
in it+1st iteration.

13. End For
14. End While
15. Output the global optimal solution

3 Multi-Objective Elephant Clan Optimization Algorithm
To enhance the convergence and distribution of multi-objective algorithms, this section proposes

the Collaborative Decomposition Multi-objective Improved Elephant Clan Optimization Algorithm (CoD-
MOIECO) by using the ECO algorithm introduced in Section 2 as the core evolutionary strategy and
employing the Collaborative De-composition (CoD) environmental selection method [19]. This approach
integrates the benefits of both the penalty-based boundary intersection (PBI) and normal boundary
intersection (NBI) methods as a technique for handling multi-objective optimization. The pseudocode for
CoDMOIECO is shown in Algorithm 2.

Algorithm 2: CoDMOIECO
Input: N, D, M, U, L, it, it_max
Output: Pareto optimal solution set
01 Initialize parameters, including N,D,M,U,L,it,it_max
02 Randomly generate populations in a defined domainX
03 The two-layer generation scheme in NSGAIII is used to generate a set of weight vectors uniformly
distributed on the normalized hyperplane W
04 The rotation coefficient r is generated according to Algorithm 3
05 Calculate the target value f(X) for each individual and obtain the ideal point Z*

(Continued)
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Algorithm 2 (continued)
06 While it < it_max do
07 The Angle between each individual and each W is calculated according to Eq. (9), and each individual
is associated with the W with the smallest Angle
08 The subpopulation corresponding to the individual Xi associated weight vector is determined accord-
ing to the method in Section 3.1 (1)
09 The individuals within the subpopulation are sorted according to the sorting method in Section 3.1 (2)
10 For i = 1: N do
11 Update individuals according to Section 3.2 to generate new individuals
12 The newly generated individuals enter the new population, and the target value of the new individuals
is calculated, and the ideal point Z* is updated
13 End For
14 Merge the new population with the old population to form a new population U
15 The population U is non-dominated
16 Move individuals from successive non-dominant hierarchies into population S until S is no less
than N
17 Normalize all individuals in S and associate each individual in S with the corresponding subproblem
in W
18 Sort all individuals associated with each subproblem based on the gNCoD sorting strategy calculated
according to Eq. (18) in Section 3.3
19 All individuals at the ith position associated with the corresponding subproblem form the
ith NCOD-based Ri
20 While ∣X∣ + ∣Ri ∣ < N do
21 X ← X ∪ Ri
22 i ← i + 1
23 End While
24 The remaining X − ∣P∣ individuals were randomly selected from the final Ri to form a set R

′

i
25 X ← X ∪ R

′

i
26 End While
27 Output Pareto optimal solution set

Algorithm 3 offers a comprehensive description of the process for constructing the rotation coefficient
r based on the weight vector. In step 5 of Algorithm 3, αi represents the boundary-aware rotation factor of
Wi, while βi denotes the vertex-aware rotation factor at position Wi. Here, m is the number of objectives.

Algorithm 3: r(W)
01 r ← ∅
02 For each of these weight vectors wi do
03 αi ← 1 − minm

j=1 {wi
j} × m

04 βi = (1 − maxm
j=1 {wi

j}) × 2
05 ri = αi + βi

2
06 r ← r ∪ {ri}
07 End For
08 Output r
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3.1 New Individual Selection Strategy
To enable the CoDMOIECO algorithm to adapt to solving multi-objective optimization problems, an

individual selection method has been designed that includes subpopulation construction and a ranking
method for individuals based on NBI and angles. The specific details are as follows.

3.1.1 Subpopulation Construction
Typically, multi-objective optimization problems are solved using a decomposition approach. In this

process, related individuals from single-objective problems form a cohesive solution through mutual learning
and communication. Since the optimal solutions of each subproblem differ, the individuals guided by them
naturally carry evolutionary information in different directions. It is noteworthy that due to the stability of the
non-dominated Pareto front, subproblems corresponding to neighboring weights exhibit some similarities
in their optimal solutions, leading to significant overlap in the evolutionary information contained in the
related individuals. Compared to individuals with distinct evolutionary tendencies or information, learning
among these similar individuals can more effectively obtain optimized solutions for the corresponding
single-objective problems.

In light of this, this section no longer adopts the population-based evolutionary strategy from the ECO
algorithm. Instead, specific subpopulations are created for each weight vector to promote the collaborative
evolution of related individuals. Specifically, we first determine the neighborhood range of the weight vector
using Eq. (8). Then, by computing the Euclidean distances between the weight vectors, we select the T weight
vectors that are closest to the current weight vector to form its neighborhood. Finally, each weight vector
selects individuals associated with its neighboring weight vectors to form a subpopulation.

T = max (N × (0.5 − it/itmax ) , 5) (8)

Here, N represents the number of individuals, while it and itmax denote the current iteration number
and the maximum iteration number, respectively.

The Eq. (8) presented in this section modifies the conventional approach of using a constant neighbor-
hood size, allowing it to adaptively change with the iteration count. In the initial stages of the algorithm’s
evolution, the evolutionary levels among individuals differ significantly, and all are relatively distant from
the optimal Pareto front. A larger number of neighboring individuals provide optimal individuals with more
options, facilitating the use of evolutionary information from superior individuals in adjacent subproblems.
This helps to rapidly narrow the evolutionary gap between themselves and other subproblems, thus accel-
erating convergence toward the optimal Pareto front. In the later stages of the algorithm, as all individuals
are closer to the optimal Pareto front, reducing the number of neighboring individuals allows for a more
precise selection of optimal individuals. This more accurately guides the evolution within the neighborhood,
fostering a good distribution of solutions and effectively conserving computational resources.

3.1.2 Individual Ranking Based on NBI and Angles
To enhance the performance of the CoDMOIECO algorithm, which uses the ECO algorithm as its core

evolutionary strategy, it is necessary to select the leader individual, male individuals, and juvenile individuals
from the constructed subpopulations according to the individual update mechanism of the ECO algorithm.

Since the subpopulation construction is based on the weight vectors, the aggregation function values
of the individuals within the subpopulation are utilized to assess their quality. The Chebyshev function of
the NBI type can better measure the convergence of individuals, while the VaEA algorithm utilizes angles to
assess the distribution of individuals. Therefore, this section proposes an individual evaluation method based
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on NBI and angles: first, calculate gNBI, then compute the angle using Eq. (9); next, calculate the aggregation
function value using Eq. (10); finally, rank the individuals in each subpopulation based on the aggregation
function values, with smaller aggregation function values indicating superior individuals.

The following formula calculates the angle between each individual X in the subpopulation and each
weight vector Wi. Here, F(X) = f (X) − Z* represents the specific angle measurement.

angl e (F (X) , W i , Z∗) = arccos ∣
M
∑
m=1

( fm (X) − Z∗m) × W i/ ∥ f (X) − Z∗∥ × ∥W i∥∣ (9)

sort (X) = gN BI (X ∣W i ) + δ × angl e (F (X) , W i , Z∗) (10)

Here, gN BI (X∣W i) = maxm
j=1 { f j (x∣wi) − wi

j}, δ represents the weighting factor, as shown in Eq. (11).

δ = 2 + (6 × it/itmax) (11)

The individual ranking method based on NBI and angles introduced in this section offers several
advantages. On one hand, a smaller gNBI value for individuals on the same weight vector indicates that
the individuals are closer to the Pareto front, suggesting better convergence; conversely, the larger the
angle between individuals and the same weight vector, the more dispersed the individuals are, indicating
better distribution. Thus, the aggregation function, as shown in Eq. (9), comprehensively reflects both
convergence and distribution. On the other hand, the weighting factor δ increases with iterations, enhancing
the effect of the angle. In the initial stages of evolution, since individuals are typically far from the ideal
point, the algorithm should focus more on convergence. In the later stages of evolution, as individuals
gradually approach the ideal point, the algorithm needs to emphasize distribution more. In the early stages
of evolution, since the value of angl e (F (X) , W i , Z∗) ranges from [0, π/2], gNBI is likely to be much
greater than angl e (F (X) , W i , Z∗). The initial setting of δ balances gNBI and angl e (F (X) , W i , Z∗).
This section improves overall performance by reasonably adjusting the relationship between δ, gNBI,
and angl e (F (X) , W i , Z∗) to satisfy the algorithm’s requirements for convergence and distribution at
various stages.

3.2 New Update Methods for Leaders, Male Elephants, and Juvenile Elephants
As mentioned in Section 2, the population individual updates in the ECO algorithm are divided into

three methods: updating the matriarch leader individuals, updating the male elephant individuals, and
updating the juvenile elephant individuals. In the CoDMOIECO algorithm, as introduced in Section 3.1, each
individual to be updated will find its corresponding subpopulation. Within this subpopulation, individuals
will be ranked based on their performance, and the updates will be categorized into three types: updating the
leader individual at the optimal position, updating the male elephant individual at the worst position, and
updating the juvenile elephant individuals at other positions. The specific update methods are as follows.

3.2.1 Leader Individual Update
According to the description in Section 3.1, in the CoDMOIECO algorithm, each weight vector selects

a leader individual from the corresponding subpopulation. Generally, in the early stages of evolution,
even though the leader individual possesses the best evolutionary information in the subpopulation, the
information is not optimal because the individual is far from the theoretical Pareto front. In the later stages of
evolution, as individuals gradually approach the theoretical Pareto front, the evolutionary information of the
leader individual also approaches the theoretical optimal value. Although the evolutionary information of
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other individuals may be inferior to that of the leader individual, it is still similar. The exchange of information
between these individuals can potentially generate superior evolutionary information; however, excessive
communication may divert the leader individual from its original evolutionary direction, thereby reducing
the algorithm’s convergence speed. As the optimal individual within the subpopulation, the lead individual
needs to enhance its coverage of the search space while improving the effectiveness of the evolutionary
information. Based on this analysis, the new update method for the leader individual is shown in Algorithm 4.

Algorithm 4: New patriarch individual renewal method
01 According to Eq. (12), calculate the number of dimensions a that the individual to be updated should
evolve

a = rand perm (D, round ((D/2) × (ex p (− ((5 × it) /itmax )2))) + 2) (12)

02 a dimensions are randomly selected to form a dimension set to be updated rand_D
03 If the individual to be updated is the patriarch individual do
04 If rand < = 0.5 do
05 A simulated binary crossover with a distribution index of 30 with a probability of 1.0 and a polynomial
mutation with a distribution index of 30 with a probability of 1.0 were used to update the patriarch individuals
06 Else If rand > 0.5 && rand < = 0.6 do
07 The patriarch individual is updated according to the opposite learning mode of Eq. (13).

X j (it + 1) = U + L − Xi , j (it) (13)

08 Else
09 If j ∈ rand_D do
10 The jth dimension of the patriarch is updated according to Eq. (14)

X j (it + 1) = X j (it) + r × (X j (it) − r−X j) (14)

11 End
12 End

In the initial stages of evolution, it is advisable to retain a few characteristics of the leader individual
while exchanging the majority of characteristics with another randomly selected individual from the
population. Conversely, in the later stages of evolution, more characteristics of the leader individual should
be preserved, as shown in Eq. (14). During the evolutionary process, a certain probability should be applied
to introduce simulated binary crossover to enhance the leader individual’s coverage of the search space.
This enables the leader individual to guide other members in exploring the potential solution space more
thoroughly. As a guide for the individuals in the subpopulation, the leader individual must preserve the
effectiveness of its evolutionary information to ensure the successful evolution of the population. The
opposition learning strategy typically validates the solutions generated by checking for any significant
opposition between two solutions. This helps filter out unreasonable solutions while retaining those that
are valid.
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3.2.2 Leader Individual Update
In the ECO algorithm, the primary goal of the male elephant individuals is to generate superior

evolutionary information while maintaining population diversity. In the realm of multi-objective optimiza-
tion, each individual typically corresponds to a solution for a problem, necessitating the acceleration of
evolution for the male elephant individuals within the subpopulation. As noted, the male elephant individuals
occupy the last position in the current subpopulation. Similar to the leader individual updates, in the initial
stages of evolution, a few characteristics of the male elephant individuals should be replaced while the
majority of characteristics are exchanged with the leader center individual. Conversely, in the later stages
of evolution, more characteristics of the male elephant individuals should be preserved. When performing
characteristic exchanges, as shown in Eq. (15), this significantly enhances the effectiveness of the male
elephant individuals’ learning from superior individuals, accelerating the algorithm’s convergence speed
while maintaining diversity. For other characteristics of the male elephants, they can be randomly replaced
by the leader in-dividual of their subpopulation with a certain probability, as indicated in Eqs. (16) and (17).
Random replacement helps maintain the diversity of the male elephant individuals, while direct replacement
can improve their convergence. The new update method for the male elephant individuals is detailed in
Algorithm 5.

Algorithm 5: New male regeneration patterns
01 According to Eq. (12a), calculate the number of dimensions a that the individual to be updated should
evolve

a = rand perm (D, round ((D/2) × (ex p (− ((5 × it) /itmax )2))) + 2) (12a)

02 a dimension is randomly selected to form a dimension set rand_D to be updated
03 If the individual to be renewed is the male do
04 If j ∈ rand_D do
05 The jth dimension of male elephant is updated according to Eq. (15)

X j (it + 1) = (X j (it) + best−X j (it))/2 + r × p × (best−center−X j (it) − X j (it)) (15)

06 Else
07 If rand < 0.2 do
08 The jth dimension of the male elephant is replaced according to Eq. (16)

X j (it + 1) = r × best−X j (it) (16)

09 Else
10 The ith dimension of the male elephant is replaced directly according to Eq. (17).

X j (it + 1) = best−X j (it) (17)

11 End
12 End
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3.2.3 Update of the Juvenile Elephant Individuals
The new update method for the juvenile elephant individuals is detailed in Algorithm 6.
In CoDMOIECO, the juvenile elephant individuals need to accelerate the convergence speed while

maintaining a certain level of diversity, providing more evolutionary information for communication with
the leader individuals. Therefore, the individual features that require communication, as shown in Eq. (18),
evolve toward the optimal individual in the subpopulation to enhance their convergence speed while
also learning from a randomly selected individual in the entire population to preserve diversity. For the
individual features that do not require communication, they are replaced by the leader individual in the
subpopulation with a certain probability, thereby speeding up convergence and increasing the diversity of
the evolutionary information.

Algorithm 6: New ways of individual calf renewal
01 According to Eq. (12b), calculate the number of dimensions a that the individual to be updated should
evolve

a = rand perm (D, round ((D/2) × (ex p (− ((5 × it) /itmax )2))) + 2) (12b)

02 Randomly select a dimensions to form the set rand_D of dimensions to be updated 21 If the individual
to be renewed is a juvenile elephant
03 If j ∈ rand_D do
04 According to Eq. (18), the jth dimension of the juvenile elephant was updated.

X j (it + 1) = X j (it) + r × α × (best−X j (it) − X j (it)) + r × β × (r−X j − X j (it)) (18)

05 Else
06 If rand < 0.2 do
07 The jth dimension of the juvenile individual is replaced by the jth dimension of the best individual
within the subpopulation
08 End
09 End

As mentioned above, with the evolution of individuals, the updating strategies introduced in this section
gradually reduce the features updated for each individual. This aligns with the evolutionary requirement
of individuals approaching the optimal front and conducting a more refined search. At the same time,
different updating methods are designed for various individuals, ensuring that different information between
individuals can be fully communicated. This, to some extent, accelerates the algorithm’s convergence speed
toward the front. Additionally, through methods such as SBX, oppositional learning, random individual
learning, and communication, as well as replacement strategies, new excellent evolutionary information is
provided for each subpopulation, minimizing the likelihood of the algorithm becoming trapped in local
optima during the evolutionary process.

3.3 New CoD-Based Environmental Selection Method
The PBI type of Chebyshev function is better able to maintain population diversity, and the specific

aggregation function is shown in Eq. (19).

gPBI (x∣wi) = d1 ( f (x) , wi) + θ × d2 ( f (x) , wi) (19)
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where d1 ( f (x) , wi) denotes the projection length of the target vector f (x) under the reference vector wi, the
constant θ is used to balance convergence and distribution, and d2 ( f (x) , wi) denotes the perpendicular
distance from the target vector f (x) to the reference vector wi.

While PBI can maintain population diversity, it is unable to obtain uniform boundaries due to the
radial spatial distribution of its reference lines, and while NBI can maintain population convergence, its
parallel reference lines may result in poorer diversity due to undersampling near the boundaries. The CoD
environment selection method, a synergistic decomposition method of PBI and NBI, inherits the advantages
of the two methods in an integrated way. Therefore, this paper addresses the improvement of the CoD
environment selection method. The aggregation function is specifically shown in Eq. (20).

minimize gCoD (X ∣W i ) = gN BI (X ∣W i ) + ri × d2 ( f (X) , W i) (20)

where ri denotes the rotation factor.
Upon further analysis, the NBI-type Tchebycheff function and vertical distance d2 can only evaluate the

convergence and distribution of individuals to a certain extent, and they do not effectively assess these aspects
in a coordinated manner. It is well recognized that in multi-objective evolutionary algorithms, the emphasis
shifts between convergence in the early stages and distribution in the later stages of evolution. However, the
current methods do not adequately address the differing emphasis on convergence and distribution across
these evolutionary phases.

In light of this, to effectively enhance the evaluation of convergence and distribution by the gCoD

aggregation function, a new CoD aggregation function is proposed, as shown in Eq. (21). This function
combines the NBI-type Tchebycheff function with the angle of the individual’s objective vector relative to
the corresponding weight vector and the vertical distance.

minimize gNCoD (X ∣W i ) = gN BI (X ∣W i ) + ε × angl e (F (X) , W i , Z∗) + ri × d2 ( f (X) , W i) (21)

The coefficient ε of the angle ranges from 1 to 1.5 and increases with the number of iterations.
As seen from the above formula, this paper introduces the angle of the individual’s objective vector

relative to the corresponding weight vector into the original CoD aggregation function. A smaller angle
not only guides individuals to search toward the Pareto front along the associated weight vectors but also
directs individuals’ distribution on the Pareto front as they converge near it. The dynamic adjustment of
the angle coefficient allows the algorithm to focus more on exploration or distribution at different stages. In
the initial iterations, the coefficient is relatively small, emphasizing exploration and helping to discover new
solution spaces. In the later iterations, the coefficient gradually increases, leading to a greater distribution
of individuals near the Pareto front, thereby enhancing the algorithm’s diversity and distribution and
facilitating a more comprehensive exploration of the Pareto solution set. Therefore, the aggregation function
proposed in this section, which combines the NBI-style Tchebycheff function, dynamic updates of the
angle, and vertical distance, considers all three factors to offer a more accurate evaluation of an individual’s
convergence and distribution. This approach improves the performance and effectiveness of multi-objective
optimization algorithms.

CoDMOIECO represents the optimization algorithm when the aggregation function proposed in this
paper is gNcoD , and CoDMOIECO1 represents the algorithm when the aggregation function is gcoD , and to
ensure the fairness of the experiments, all parameters are set as shown in Section 4.1.
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As can be seen from Fig. 1, the distribution of individuals in CoDMOIECO is significantly more
dispersed than in ITLCO under the same conditions. This suggests that the CoDMOIECO proposed in this
section can better balance the convergence speed and population diversity.

(a) CoDMOIECO (b) CoDMOIECO1

Figure 1: Scatter plot of different algorithms on DTLZ1

4 Experiments
To verify the performance of CoDMOIECO, it is compared with four currently outstanding algorithms

on the DTLZ [20], WFG [21], and ZDT [22] test suites. In the DTLZ problems, the decision variable D = M
+ k – 1, where M represents the number of objectives, k is 5 for DTLZ1 and 10 for the others. In WFG, the
decision variable D = k + l, where k = 2(M − 1) and l = 20. In ZDT, the decision variable is fixed at 30. The
comparison algorithms include MOEA/D [12], CAMOEA [5], VaEA [16], and MOEA/D-UR [17].

4.1 Basic Parameter Settings
To ensure the fairness of the comparison experiments, for the ZDT problem with 2 objective functions,

the population size N is set to 100, and the maximum number of function evaluations is 25,000. For the
DTLZ and WFG problems with 3 objectives, the population size N is set to 91, and the maximum number of
function evaluations is 45,500. Other parameter settings for each algorithm are shown in Table 1.

Table 1: Parameter settings for each algorithm

Algorithm Parameter
MOEA/D pc = 1.0; xc = 20; pm = 1/n; F = 0.5; T = 20; delta = 0.9

VaEA pc = 1.0; pm = 1/n; ηc = 30; ηm = 20
MOEA/D-UR T = 0.1; δ = 0.9; nr = 2; k = 10

CAMOEA pc = 1.0; pm = 1/n; ηc = 30; ηm = 20
CoDMOIECO Tmin = 10; pc = 1.0; pm = 1/n; ηc = 30; ηm = 20
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4.2 Experimental Results and Analysis
The values of HV and IGD for the CoDMOIECO algorithm and the comparison algorithms on three

test sets are shown in Tables 2 and 3. The mean and standard deviation of HV and IGD are indicated by
“±,” with the best results for each function highlighted in bold. Table 4 presents the Wilcoxon rank-sum test
results between the CoDMOIECO algorithm and the comparison algorithms.

Table 2: HV results of each algorithm on the test sets

M MOEA/D Mean ± Std CAMOEA Mean ± Std VaEA Mean ± Std MOEA/D-UR Mean ± Std CoDMOIECO Mean ± Std

ZDT1 2 7.05E-01 ± 1.08E-02 7.19E-01 ± 2.02E-04 7.18E-01 ± 6.14E-04 7.18E-01 ±1.53E-03 7.20E-01 ± 1.45E-09
ZDT2 2 3.61E-01 ± 5.94E-02 4.44E-01 ± 2.09E-04 4.44E-01 ± 1.85E-04 4.43E-01 ±6.79E-04 4.45E-01 ± 2.18E-10
ZDT3 2 6.20E-01 ± 3.93E-02 5.99E-01 ± 4.48E-04 6.02E-01 ± 1.62E-02 5.99E-01 ±1.90E-03 5.99E-01 ± 3.12E-08
ZDT4 2 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 1.94E-03 ± 4.71E-03 7.20E-01 ± 4.84E-09
ZDT6 2 2.03E-01 ± 2.60E-02 1.99E-01 ± 2.15E-02 1.60E-01 ± 2.96E-02 3.01E-01 ± 1.32E-02 3.89E-01 ± 7.66E-11
DTLZ1 3 8.41E-01 ± 8.21E-04 8.35E-01 ± 2.08E-03 8.00E-01 ± 4.55E-02 8.35E-01 ± 1.57E-03 8.42E-01 ± 7.88E-10
DTLZ2 3 5.60E-01 ± 8.91E-06 5.48E-01 ± 2.28E-03 5.54E-01 ± 1.49E-03 5.58E-01 ± 7.45E-04 5.60E-01 ± 9.64E-10
DTLZ3 3 5.18E-01 ± 3.69E-02 5.14E-01 ± 9.76E-02 5.08E-01 ± 9.96E-02 5.36E-01 ± 1.03E-02 5.59E-01 ± 4.21E-08
DTLZ4 3 4.62E-01 ± 1.42E-01 5.49E-01 ± 1.51E-03 5.54E-01 ± 1.48E-03 4.95E-01 ± 1.32E-01 5.60E-01 ± 1.35E-09
DTLZ5 3 1.82E-01 ± 1.42E-05 1.99E-01 ± 2.03E-04 1.99E-01 ± 1.58E-04 1.98E-01 ± 2.11E-04 1.81E-01 ± 8.46E-06
DTLZ6 3 1.82E-01 ± 6.37E-06 2.00E-01 ± 1.05E-04 2.00E-01 ± 7.42E-05 1.98E-01 ± 4.77E-04 1.80E-01 ± 2.80E-07
DTLZ7 3 2.56E-01 ± 1.10E-03 2.74E-01 ± 1.34E-03 2.73E-01 ± 1.52E-02 2.67E-01 ± 2.09E-03 2.62E-01 ± 2.47E-05
WFG1 3 7.17E-01 ± 4.92E-02 8.13E-01 ± 2.48E-02 8.11E-01 ± 3.06E-02 8.91E-01 ± 3.15E-02 6.64E-01 ± 1.85E-03
WFG2 3 7.31E-01 ± 4.87E-02 8.64E-01 ± 6.65E-02 8.35E-01 ± 6.80E-02 8.30E-01 ± 6.81E-02 9.20E-01 ± 1.01E-05
WFG3 3 3.08E-01 ± 2.97E-02 3.41E-01 ± 8.10E-03 3.57E-01 ± 6.91E-03 3.84E-01 ± 1.00E-02 3.89E-01 ± 2.97E-05
WFG4 3 5.09E-01 ± 4.81E-03 5.14E-01 ± 4.61E-03 5.26E-01 ± 4.10E-03 5.38E-01 ± 2.23E-03 5.38E-01 ± 1.29E-05
WFG5 3 4.92E-01 ± 2.84E-03 4.90E-01 ± 3.28E-03 5.03E-01 ± 2.86E-03 4.97E-01 ± 2.10E-03 4.98E-01 ± 9.54E-06
WFG6 3 4.80E-01 ± 1.40E-02 4.91E-01 ± 4.86E-03 5.04E-01 ± 6.41E-03 5.07E-01 ± 7.61E-03 4.81E-01 ± 1.18E-07
WFG7 3 5.02E-01 ± 1.51E-02 5.34E-01 ± 3.10E-03 5.44E-01 ± 2.03E-03 5.44E-01 ± 4.65E-03 5.46E-01 ± 5.03E-06
WFG8 3 4.42E-01 ± 1.87E-02 4.33E-01 ± 4.55E-03 4.51E-01 ± 4.07E-03 4.62E-01 ± 4.08E-03 4.68E-01 ± 7.42E-06
WFG9 3 4.29E-01 ± 2.67E-02 4.70E-01 ± 1.98E-02 4.72E-01 ± 2.01E-02 4.84E-01 ± 2.36E-02 4.57E-01 ± 5.85E-06

Table 3: IGD results of each algorithm on the test sets

M MOEA/D Mean ± Std CAMOEA Mean ± Std VaEA Mean ± Std MOEA/D-UR Mean ± Std CoDMOIECO Mean ± Std

ZDT1 2 1.80E-02 ± 1.71E-02 4.60E-03 ± 1.18E-04 5.03E-03 ± 3.04E-04 5.50E-03 ± 1.33E-03 3.56E-03 ± 1.85E-09
ZDT2 2 7.09E-02 ± 6.74E-02 4.49E-03 ± 1.16E-04 4.33E-03 ± 8.19E-05 4.69E-03 ± 2.21E-04 3.47E-03 ± 6.26E-09
ZDT3 2 3.47E-02 ± 1.66E-02 5.14E-03 ± 1.59E-04 6.93E-03 ± 5.27E-03 1.09E-02 ± 2.10E-03 7.71E-03 ± 2.15E-07
ZDT4 2 2.79E+00 ± 7.23E-01 2.46E+00 ± 5.57E-01 3.13E+00 ± 7.31E-01 1.29E+00 ± 4.10E-01 3.58E-03 ± 1.28E-08
ZDT6 2 1.57E-01 ± 2.57E-02 1.75E-01 ± 2.51E-02 2.26E-01 ± 4.07E-02 6.96E-02 ± 1.11E-02 3.16E-03 ± 3.99E-09
DTLZ1 3 2.07E-02 ± 9.15E-05 2.27E-02 ± 5.11E-04 3.65E-02 ± 2.02E-02 2.31E-02 ± 7.44E-04 2.66E-04 ± 5.19E-09
DTLZ2 3 5.45E-02 ± 5.73E-07 6.01E-02 ± 8.95E-04 5.78E-02 ± 8.27E-04 5.61E-02 ± 4.81E-04 1.16E-03 ± 6.64E-08
DTLZ3 3 6.86E-02 ± 2.02E-02 9.82E-02 ± 1.74E-01 1.05E-01 ± 1.76E-01 6.96E-02 ± 3.41E-03 4.39E-03 ± 7.81E-07
DTLZ4 3 2.61E-01 ± 2.91E-01 6.03E-02 ± 1.09E-03 5.80E-02 ± 5.90E-04 1.84E-01 ± 2.65E-01 1.61E-03 ± 1.03E-07
DTLZ5 3 3.39E-02 ± 2.76E-05 5.64E-03 ± 1.72E-04 5.50E-03 ± 1.39E-04 7.35E-03 ± 3.65E-04 3.55E-02 ± 1.91E-05
DTLZ6 3 3.39E-02 ± 1.60E-05 5.16E-03 ± 1.48E-04 5.18E-03 ± 1.69E-04 7.60E-03 ± 7.64E-04 3.73E-02 ± 1.39E-06
DTLZ7 3 1.54E-01 ± 1.59E-03 6.46E-02 ± 1.39E-03 9.84E-02 ± 1.43E-01 1.01E-01 ± 5.39E-03 1.09E-01 ± 1.46E-04
WFG1 3 4.88E-01 ± 8.17E-02 3.27E-01 ± 4.10E-02 3.08E-01 ± 5.00E-02 2.19E-01 ± 3.52E-02 5.92E-01 ± 8.16E-03
WFG2 3 5.88E-01 ± 1.99E-01 3.13E-01 ± 1.51E-01 3.59E-01 ± 1.65E-01 3.86E-01 ± 1.57E-01 2.42E-01 ± 2.02E-04
WFG3 3 2.57E-01 ± 8.08E-02 1.69E-01 ±1.36E-02 1.46E-01 ± 1.29E-02 9.27E-02 ± 1.86E-02 8.62E-02 ± 7.73E-05
WFG4 3 2.66E-01 ± 5.31E-03 2.51E-01 ± 3.42E-03 2.49E-01 ± 4.21E-03 2.44E-01 ± 5.57E-03 2.44E-01 ± 3.31E-04
WFG5 3 2.53E-01 ± 2.83E-03 2.54E-01 ± 3.83E-03 2.43E-01 ± 3.33E-03 2.48E-01 ± 4.82E-03 2.24E-01 ± 3.00E-04
WFG6 3 2.86E-01 ± 1.29E-02 2.68E-01 ± 5.52E-03 2.52E-01 ± 6.53E-03 2.60E-01 ± 4.83E-02 2.93E-01 ± 4.85E-06
WFG7 3 3.04E-01 ± 2.38E-02 2.40E-01 ± 5.22E-03 2.30E-01 ± 2.82E-03 2.41E-01 ± 7.44E-03 2.69E-01 ± 2.17E-05
WFG8 3 3.21E-01 ± 2.77E-02 3.44E-01 ± 6.96E-03 3.14E-01 ± 5.29E-03 3.11E-01 ± 6.58E-03 3.06E-01 ± 7.95E-05
WFG9 3 3.22E-01 ± 3.91E-02 2.66E-01 ± 1.97E-02 2.57E-01 ± 1.87E-02 2.62E-01 ± 1.61E-02 2.98E-01 ± 8.82E-05
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Table 4: Wilcoxon rank-sum test results for HV and IGD of CoDMOIECO and comparison algorithms on the test sets

Test function M HV IGD

MOEA/D VaEA MOEA/D-UR CAMOEA MOEA/D VaEA MOEA/D-UR CAMOEA

ZDT1 2 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
ZDT2 2 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
ZDT3 2 0.000(+) 0.000(+) 0.000(−) 0.000(−) 0.000(−) 0.000(+) 0.000(−) 0.000(+)
ZDT4 2 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
ZDT6 2 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
DTLZ1 3 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
DTLZ2 3 0.428(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
DTLZ3 3 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
DTLZ4 3 0.079(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
DTLZ5 3 0.157 (=) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
DTLZ6 3 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
DTLZ7 3 0.000(−) 0.000(+) 0.000(+) 0.000(+) 0.000(−) 0.000(+) 0.000(+) 0.000(+)
WFG1 3 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
WFG2 3 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.074(=) 0.186(=)
WFG3 3 0.000(−) 0.000(−) 0.429(=) 0.000(−) 0.000(−) 0.000(−) 0.830(=) 0.000(−)
WFG4 3 0.000(−) 0.000(−) 0.912(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.171(=)
WFG5 3 0.000(−) 0.000(+) 0.084(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
WFG6 3 0.233(=) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
WFG7 3 0.000(−) 0.000(−) 0.492(=) 0.000(−) 0.000(−) 0.006(+) 0.000(+) 0.000(+)
WFG8 3 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
WFG9 3 0.000(−) 0.000(+) 0.000(+) 0.841(=) 0.000(−) 0.000(+) 0.000(+) 0.000(+)
+/=/- 3/4/14 8/0/13 6/4/11 5/1/15 4/0/17 8/0/13 7/2/12 8/2/11

From Tables 2 and 4, it can be observed that in terms of the HV metric, the CoDMOIECO algorithm
achieves the best performance compared to the comparison algorithms on ZDT1, ZDT2, ZDT4, ZDT6,
DTLZ1–4, WFG2–4, WFG7, and WFG8. The VaEA algorithm demonstrates optimal performance on DTLZ5,
DTLZ6, and WFG5. The MOEA/D algorithm and CAMOEA algorithm achieve the best results only on
ZDT3 and DTLZ7, respectively. The MOEA/D-UR algorithm excels on WFG1, WFG6, and WFG9. In general
evaluation, compared to the CoDMOIECO algorithm, the VaEA algorithm has an advantage on 8 functions
but falls short on 13 functions. The CAMOEA algorithm performs better on 5 functions but is inferior to
15 functions. The MOEA/D-UR algorithm shows strong performance on 6 functions but is less effective
on 11 functions. The MOEA/D algorithm exhibits a clear advantage on 3 functions but is outperformed on
14 functions.

According to Tables 3 and 4, in terms of the IGD metric, the CoDMOIECO algorithm achieves optimal
results on ZDT1, ZDT2, ZDT4, ZDT6, DTLZ1–4, WFG2–5, and WFG8. The VaEA algorithm excels on
DTLZ5–7 and WFG9. The CAMOEA algorithm performs best on ZDT3, DTLZ6, and DTLZ7. The MOEA/D-
UR algorithm only achieves the best results on WFG1. The MOEA/D algorithm does not achieve the best
results on any of the functions. Overall, compared to the CoDMOIECO algorithm, the MOEA/D algorithm
performs better on 4 functions but is inferior on 17 functions. The VaEA algorithm has superior performance
on 8 functions but is outperformed on 13 functions. The CAMOEA algorithm performs better on 8 functions
but is less effective on 11 functions. The MOEA/D-UR algorithm excels on 7 functions but falls short on
12 functions.

As shown in Table 5, from the Friedman’s test results for IGD and HV, it is clear that CoDMOIECO
performs best on both IGD and HV compared to other algorithms.

To clearly illustrate the overall performance of the CoDMOIECO algorithm, Figs. 2–4 show the Pareto
front graphs of all algorithms for three representative functions in the ZDT, DTLZ, and WFG test sets. By
observation, it can be noted that in terms of convergence, the CoDMOIECO algorithm converges to the true
front on ZDT1, DTLZ3, and WFG2. Regarding distribution, although there is still a certain gap between the
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Pareto front obtained by CoDMOIECO and the true front for the WFG2 test function, it still demonstrates
significant advantages in distribution compared to other comparative algorithms.

In summary, the CoDMOIECO algorithm exhibits greater advantages in both convergence and distri-
bution compared to the benchmark algorithms. This advantage allows the CoDMOIECO algorithm to more
effectively identify high-quality solutions that are near the true Pareto front when addressing multi-objective
optimization problems, thereby improving the quality of the optimization outcomes.

Table 5: Friedman test results for HV and IGD of CoDMOIECO and comparison algorithms on the test sets

MOEAD CAMOEA VaEA MOEADUR CoDMOIECO
HV 1.98 2.76 3.12 3.38 3.76

5 4 3 2 1
IGD 4.14 2.9 2.76 2.83 2.36

5 4 2 3 1

(a)MOEA/D (b)VaEA (c)MOEA/D-UR

(d)CAMOEA (e)CoDMOIECO (f)True Front

Figure 2: Pareto front graph of various algorithms on ZDT1
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(a)MOEA/D (b)VaEA (c)MOEA/D-UR

(d)CAMOEA (e)CoDMOIECO (f)True Front

Figure 3: Pareto front graph of various algorithms on ZDTZ3

(a)MOEA/D (b)VaEA (c)MOEA/D-UR

(d)CAMOEA (e)CoDMOIECO (f)True Front

Figure 4: Pareto front graph of various algorithms on WFG2
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5 Conclusions
To tackle more complex and practical optimization challenges and improve the performance of

multi-objective optimization algorithms in addressing these issues, this paper integrates the elephant clan
optimization algorithm with multi-objective processing techniques, proposing the CoDMOIECO algorithm.
Based on the characteristics of multi-objective optimization problems, new individual selection methods,
updated strategies for the leader, male, and juvenile elephants, and a new CoD-based environmental
selection method are introduced. Experiments on the ZDT, DTLZ, and WFG benchmark function sets
demonstrate that CoDMOIECO exhibits superior convergence and distribution compared to benchmark
algorithms. However, as the number of optimization objectives increases, the time complexity increases,
and the performance of the algorithm decreases. Therefore, reducing the complexity and improving the
performance of algorithms in large-scale multi-objective optimization is an important part of the research.
CoDMOIECO can be further extended and applied to the engineering field to solve optimization problems in
real engineering and maximize the benefits. For example, fuzzy overlapping community detection problem,
and optimization problem of edge computing.
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