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ABSTRACT: Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing.
Despite the success of Convolutional Neural Networks (CNNs), they often fail to capture inter-layer feature relationships
and fully leverage contextual information, leading to the loss of important details. Additionally, due to significant intra-
class variation and small inter-class differences in remote sensing images, CNNs may experience class confusion. To
address these issues, we propose a novel Category-Guided Feature Collaborative Learning Network (CG-FCLNet),
which enables fine-grained feature extraction and adaptive fusion. Specifically, we design a Feature Collaborative
Learning Module (FCLM) to facilitate the tight interaction of multi-scale features. We also introduce a Scale-Aware
Fusion Module (SAFM), which iteratively fuses features from different layers using a spatial attention mechanism,
enabling deeper feature fusion. Furthermore, we design a Category-Guided Module (CGM) to extract category-aware
information that guides feature fusion, ensuring that the fused features more accurately reflect the semantic information
of each category, thereby improving detailed segmentation. The experimental results show that CG-FCLNet achieves a
Mean Intersection over Union (mIoU) of 83.46%, an mF1 of 90.87%, and an Overall Accuracy (OA) of 91.34% on the
Vaihingen dataset. On the Potsdam dataset, it achieves a mIoU of 86.54%, an mF1 of 92.65%, and an OA of 91.29%.
These results highlight the superior performance of CG-FCLNet compared to existing state-of-the-art methods.

KEYWORDS: Semantic segmentation; remote sensing; feature context interaction; attention module; category-guided
module

1 Introduction
Semantic segmentation of remote sensing images [1] is a critical task in the field of computer vision.

Unlike traditional segmentation, it focuses on both geometric shapes and semantic information for each
pixel. Each pixel must be categorized (e.g., human, vehicle, building) for deeper content understanding. It’s
widely used in fields like land cover mapping [2], urban planning [3], and road and building extraction [4,5].
However, due to the complex scenes, small target sizes, and uneven category distribution typical of remote-
sensing images, achieving highly accurate semantic segmentation remains an extremely challenging task.

In recent years, Convolutional Neural Networks (CNNs) have demonstrated outstanding performance
in many fields and have become the mainstream method for semantic segmentation. Fully Convolutional
Networks (FCNs) [6] enable networks to process inputs of any size and perform pixel-level segmentation
by removing fully connected layers from traditional CNNs. However, their simple structure often leads to
coarse segmentation results, lacking fine details. To address this issue, researchers have proposed various
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improved models. For example, U-shaped Convolutional Neural Network (U-Net) [7] builds upon FCNs by
introducing skip connections, which effectively recover lost detail information and improve segmentation
accuracy. However, skip connections fail to adequately distinguish and fuse low-level and high-level features,
limiting the network’s ability to represent features. To further enhance the integration of multi-scale
contextual information, DeepLabv3+ [8] employs dilated convolutions, overcoming limitations in capturing
multi-scale features. Subsequently, Pyramid Scene Parsing Network (PSPNet) [9] addresses the shortcomings
in aggregating cross-region contextual information through a pyramid pooling module, further improving
the model’s semantic understanding. To strengthen feature representation, Multi-Level Feature Mining
Network (MLFMNet) [10] introduces the Irregular Pyramid Receptive Field (IPRF) module, overcoming the
limitations of traditional pyramid structures when processing detailed features in complex scenes. Addition-
ally, Dual-Branch Hybrid Reinforcement Network (DHRNet) [11] adopts a dual-branch parallel structure,
improving both global semantic and local detail extraction, while reducing redundancy and optimizing
computational efficiency and memory usage. In contrast, Hidden Feature-Guided Network (HFGNet) [12]
uses a multi-feature fusion module to enhance object discrimination and address this issue, although small-
scale feature loss or inaccuracies may still occur. Multiscale Global Context Network (MSGCNet) [13]
employs cross-attention to narrow the semantic gap and enrich information, achieving better segmentation.
However, unclear edge features in occluded areas hinder feature interaction. Multiscale Feature Context
Aggregation Network (MFCANet) [14] combines features across scales using a multi-scale feature context
aggregation module, excelling in cross-scale information handling, but faces difficulties in detecting densely
occluded small objects. Multi-scale Context-aware and Global Feature Fusion Network (MCGFF-Net) [15]
introduces a Cross-Layer Feature Fusion Module (CFM), enhancing semantic information interaction, but
still requires improvement in handling noise and redundancy. Global Extraction Local Exploration Network
(GeletNet) [16] enhances object recognition by strengthening mid-level feature interactions through the
Knowledge Transfer Module (KTM), but its performance is limited due to the lack of interactions between
other layers. Context Exploration and Multi-level Interaction Network (CEMINet) [17] aggregates multi-
level features through its Hierarchical Feature Hybrid Interaction (HFHI) module, refining the feature
structure top-down, but still struggles with long-range dependencies.

Although existing models have made progress in segmentation tasks, they have not adequately explored
the interaction between feature maps at different stages. In remote sensing images, where object distribution
is often sparse, relying solely on local contextual information for pixel classification can blur category
boundaries and result in incomplete segmentation. Additionally, when local features of different object types
are highly similar, this similarity causes mutual interference, weakening the model’s discriminative ability,
and resulting in feature entanglement, unclear boundaries, and loss of structural details.

To address these issues, we propose a novel Category-Guided Feature Collaborative Learning Network
(CG-FCLNet). This network enhances the interaction between multi-stage features and utilizes category-
aware information to guide feature fusion during the decoding process. CG-FCLNet integrates feature
information from different stages by employing an advanced Feature Collaborative Learning Module
(FCLM), which reveals the inherent relationships and complementary advantages between them. Building on
this, we introduce the Scale-Aware Fusion Module (SAFM), designed to mine multi-scale global contextual
information outputted by FCLM. This module iteratively integrates features through a spatial attention
mechanism, achieving fine fusion and optimization. Additionally, we introduce the Category-Guided
Module (CGM), which uses coarse segmentation results to guide the fusion of adjacent feature maps, leading
to more refined segmentation outcomes. The main contributions of our work are as follows:
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(1) We propose the Feature Collaborative Learning Module (FCLM), which enhances the interaction
between features at different stages and explores their intrinsic relationships, effectively improving the
model’s discriminative ability.

(2) We propose the Scale-Aware Fusion Module (SAFM), which uses spatial attention to iteratively
integrate the global context of the decoder to enhance the discriminability of the final prediction.

(3) We propose the Category-Guided Module (CGM), which guides category information at each layer
during the feature fusion process to optimize feature representation and integration.

The rest of this paper is organized as follows: Section 2 discusses related work; Section 3 describes the
details of our proposed method; Section 4 presents the experimental setup, ablation studies, and comparative
results, along with a detailed discussion; Section 5 elaborates on the conclusion. Abbreviations provide a
comprehensive list of abbreviations and terms used throughout the paper.

2 Related Works
In this section, we review some of the research related to the proposed model, focusing on multi-scale

feature Context extraction and category-aware mechanisms. As shown in Table 1, the main methods from
these studies are presented.

2.1 Multi-Scale Feature Context Interaction
In semantic segmentation, multi-scale feature interaction provides rich information that enables models

to better understand image semantics and achieve high-quality segmentation. For example, GeletNet [16]
introduces the KTM, which extracts discriminative information for salient objects by emphasizing the
interaction between mid-level features. However, it does not fully leverage the effectiveness of interactions
between adjacent feature layers. CEMINet [17] facilitates interaction between high-level and low-level
features in a top-down manner, but it struggles to effectively capture long-range dependencies, limiting its
ability to extract more robust semantic information. CNN and Multiscale Local-Context Transformer Net-
work (CMLFormer) [18] introduces a multi-scale local-context transform block (MLTB), which efficiently
captures both local and global feature information at various scales with low complexity. Geometric Prior-
guided Interactive Network (GPINet) [19] proposes local-global interaction modules (LGIMs) that allow
the network to refine learned representations interactively and efficiently. However, the hybrid network
structure may increase model complexity and require additional computational resources. Additionally,
Bhatti et al. [20] present a detailed feature extraction approach that combines each feature with its cross-
information, enhancing the model’s ability to recognize complex objects and improving multi-feature
fusion robustness.

Compared to these methods, we explore the intrinsic relationships between adjacent feature maps and
strengthen their connections through mutual learning. Meanwhile, we focus on the distinct characteristics
of each feature map, optimizing and fine-tuning them accordingly. This series of operations is primarily
facilitated by the Feature Collaborative Learning Module (FCLM), which ensures that the feature maps can
collaborate effectively while retaining their characteristics.

2.2 Category-Aware Mechanism
Studies [21–24] demonstrate that category-aware mechanisms enhance segmentation accuracy by

integrating information across categories, enabling adaptive feature highlighting. For example, the Class
Guidance Block module [25] enhances the model’s ability to handle fine-grained category differences by
strengthening feature fusion and refinement. However, class imbalance remains a challenge, particularly
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when category distributions are uneven. Semantic Category Balance-Aware Involved Anti-Interference
Network (SCBANet) [26] introduces an Optional Decoder Module based on Semantic Category Balance
(ODMSCB), which dynamically adjusts the decoder’s output to address this issue. Category attention guided
network (CAGNet) [27] uses the Category Attention Guided Module (CAGM) to capture key category
differences. Similarly, Category-Based Interactive Attention and Perception Fusion Network (CIAPNet) [28]
refines self-attention through the Category Grouped Attention (CGA) module to focus on distinct category
features. However, they still have limitations in dynamically adjusting category weights. To address this issue,
Uncertain Category-Aware Fusion Network (UCAFNet) [29] proposes an Uncertain Category-Aware Fusion
Strategy (UCAFS), which dynamically adjusts category weights during fusion for better performance in
complex scenarios. However, the lack of coordination between these modules may limit the effectiveness of
information integration.

In contrast, we consider semantic differences between features at different stages. Instead of simply
upsampling and adding them for fusion, we use a Scale-Aware Fusion Module (SAFM) to capture the
importance of different image regions, achieving precise feature fusion. Furthermore, we introduce a
Category-Guided Module (CGM), which guides adjacent feature map fusion using coarse segmentation
results of multi-layer features, ensuring effective category information use and enhancing segmentation
accuracy.

2.3 Self-Attention Mechanism
CNNs are proficient at extracting local features and achieving scale invariance, but they are limited

in modeling global information. To address this, researchers have introduced self-attention mechanisms
[30–32] to capture long-range dependencies and improve segmentation performance. For example, Attention
Aggregation Feature Pyramid Network (A2-FPN) [33] introduced a feature pyramid network with linear
attention weighting to enhance the fusion of cross-scale features and improve segmentation accuracy. How-
ever, this method does not effectively mitigate the impact of low-resolution feature maps on segmentation
results. To address this, Multistage Attention ResU-Net (MAResU-Net) [34] combines attention mechanisms
with U-Net by weighting low-resolution feature maps to enhance segmentation performance. Despite these
improvements, it still faces challenges in handling fine-grained features and multi-scale information. Hybrid
Multiple Attention Network (HMANet) [35] integrates multiple attention mechanisms to strengthen class
information and learn pixel-wise spatial correlations, effectively extracting detailed features. Additionally,
Global-Local Self-Attention Network (GLSANet) [36] proposes a global-local self-attention mechanism that
combines global semantic information with local details to enhance model robustness and accuracy in
complex backgrounds. Based on these insights, we propose a new method that enhances multi-stage feature
interactions and incorporates category-aware information to improve segmentation in complex scenes.

Table 1: Main methods in related studies

Category Advantages Disadvantages Reference
Multi-scale feature
context interaction

Capture local and global
information, improve detail

sensitivity, and address
blurred boundaries and detail

loss.

The computational complexity
and memory consumption
increase significantly, while
information redundancy or

inconsistency may occur.

[16–19]

(Continued)
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Table 1 (continued)

Category Advantages Disadvantages Reference
Category-aware

mechanism
Enhance the model’s ability

to distinguish between
categories and improve
category differentiation.

Limited by the quality and
diversity of category label data,
inaccurate labels or imbalanced
category distribution may affect

the model’s performance.

[26–29]

Self-attention
mechanism

Focus on relevant features
within the image and capture

long-range dependencies.

Lacking explicit modeling of
spatial structure, it may also fail

to effectively distinguish
redundant information.

[33–36]

3 Methodology
Fig. 1 illustrates the overall framework of CG-FCLNet, which consists of four main modules. First, an

encoder based on convolutional neural networks extracts multi-scale semantic features from the image.
Second, an innovative Feature Collaborative Learning Module (FCLM) is introduced. This module enhances
key features in the feature map through deep interaction, while suppressing irrelevant information. It ensures
that the network focuses on the most important parts of the image. Next, the Scale-Aware Fusion Module
(SAFM) integrates features from different levels, resulting in a more comprehensive and enriched feature
representation. Meanwhile, the Category-Guided Module (CGM) uses category information to guide feature
fusion, leading to more accurate segmentation results.

Figure 1: The architecture of our proposed Category-Guided Feature Collaborative Learning Network (CG-FCLNet).
It utilizes the backbone to extract features, which are then enhanced by the FCLM. The category information extracted
by the CGM guides the SAFM in integrating feature information

3.1 Feature Collaborative Learning Module
Cross-scale feature interaction significantly enhances the model’s ability to understand both details

and the global context by integrating features of different resolutions. This approach bridges the gap in
correlation between features at different network layers, enabling effective cross-layer feature transfer. Based
on this, we propose a novel Feature Collaborative Learning Module (FCLM), as illustrated in Fig. 2. The
module is primarily composed of Fig. 2b and c, with the overall architecture shown in Fig. 2a. This module
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explores the latent relationships between features at different stages and performs targeted integration based
on the strengths and characteristics of each stage, capturing finer semantic information and extracting more
discriminative features.

Figure 2: Structure of the feature collaborative learning module (FCLM). (a) The implementation details of FCLM,
consist of (b) and (c). (b) Feature Collaborative Module (FCM) introduces multi-scale information to the network.
(c) Channel Selection Module (CSM) selects the most suitable feature maps and eliminates redundant information,
where R, T, and S represent Reshape, Transpose, and Sigmoid, respectively

Specifically, the FCLM shown in Fig. 2a consists of two parts: a Feature Collaborative Module (FCM)
and a Channel Selection Module (CSM). The FCM models the contextual correlation of features across
different stages. It efficiently integrates feature information from various stages, delving into the potential
connections and complementary strengths. Through effective fusion and processing, FCM can generate
discriminative features. The CSM is designed to process each stage’s feature maps based on their unique
characteristics. It selects the most suitable feature map channels from a multitude of options, eliminating
redundant information to prevent interference with subsequent processing. This optimizes the feature
representation. Finally, the feature maps produced by both the FCM and CSM are summed to obtain the final
feature map. This approach achieves effective integration of cross-stage feature information and generates
discriminative features. It also ensures that each stage’s feature maps are refined and optimized with precision.
Next, we will provide the design principles and detailed explanations for these two modules.

3.1.1 Feature Collaborative Module
Feature Collaborative Module (FCM): When two feature maps are multiplied, the result emphasizes

areas where both exhibit significant responses. This highlights the salient information shared between the
features and guides the model to focus on these regions, facilitating the collaborative identification of objects.
In contrast, adding two feature maps combines the information each contains. Therefore, in the FCM, we first
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standardize the feature maps from different scales. Then, we apply addition and multiplication operations
to generate new features. Finally, we use self-attention mechanisms to model the cross-stage feature context
interaction. This strategy enables the model to capture fine-grained features more effectively, making the
resulting features more discriminative and thereby improving the model’s ability to recognize objects in
complex scenes and diverse contexts.

Fig. 2b illustrates the detailed design of the FCM. It starts with the cross-stage feature maps Fi and Fi+1 as
inputs (where Fi represents the feature map generated at the i-th stage). Due to the scale differences between
feature maps from various stages, a 3 × 3 convolution is first applied to standardize the scale and the number
of channels, resulting in f c

i and f c
i+1. By performing product and sum operations on f c

i and f c
i+1 to highlight

their correlation. This approach also considers all the information from these two features, enhancing their
expressiveness and adaptability. The obtained feature maps fp and fs are input into a convolutional layer
to generate the corresponding query matrix Q and key matrix K, where {Q , K} ∈ RC×H×W . They are then
reshaped into RC×N , where N =H ×W represents the number of pixels. A matrix multiplication operation is
performed between the transpose of Q and K, and a softmax layer is used to calculate the weights S ∈ RN×N .
This process can be formulated as:

Si j =
ex p(Qi ⋅ K j)

∑N
i=1(ex p(Qi ⋅ K j))

(1)

where Si j measures the i-th position’s impact on the j-th position.
Meanwhile, we input f c

i and f c
i+1 into a convolutional layer to generate the corresponding value matrices

Vi and Vi+1, which are then reshaped into RC×N . Finally, Vi and Vi+1 are each multiplied with the transpose
of S, performing matrix multiplication operations. The resulting two matrices, which are of shape RC×N , are
reshaped back into RC×H×W and the corresponding f c

i and f c
i+1 are added together to obtain the final output.

3.1.2 Channel Selection Module
Channel Selection Module (CSM): While the FCM primarily focuses on feature fusion and correlation,

the CSM is introduced as a supplementary component to better capture the inherent information of
the features themselves. The CSM directly calculates channel attention scores from the feature map and
optimizes them by training the mapping matrix. This approach integrates a channel attention mechanism,
enabling the model to focus more accurately on important feature information. It can capture key channel
information and retain a certain proportion of the original feature data, thereby enhancing the effectiveness
of feature selection.

The specific implementation of CSM is shown in Fig. 2c. A 1 × 1 convolutional layer is applied, followed
by reshaping and transposing operations on Fi to obtain a matrix fN ∈ RN×1. Meanwhile, a matrix fc ∈ RC×N

is obtained by applying a 1 × 1 convolutional layer and reshaping the result. These two matrices are then
multiplied and reshaped, and the sigmoid function is applied to obtain the channel attention map Attc . The
process Attc can be described as:

Attc = δ (Conv1×1 ( fc × fN)) (2)

where δ represents the Sigmoid function. The feature map Fi is multiplied by the channel attention map Attc .
A residual connection is then performed between the result and Fi to obtain the final feature map f

′

i .
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3.2 Scale-Aware Fusion Module
In the decoder, directly combining features from different stages may reduce feature expressiveness due

to semantic differences and information redundancy [37]. Inspired by relevant studies [38,39], we designed
a Scale-Aware Fusion Module (SAFM). As shown in SAFM in Fig. 1, to address the scale and resolution
differences of feature maps at various stages. The components of this module are illustrated in Fig. 3, we first
apply an Efficient Up-convolution Block (EUB) to gradually upsample the feature map at the current stage,
ensuring it matches the size and resolution of the feature map at the next stage. This approach preserves
image details without significantly increasing the computational burden. Next, we introduce the Scale-Aware
Model (SAM), which performs fine-grained fusion of features from different stages. This fusion strategy
leverages the potential of features at each stage and dynamically selects the most valuable feature information
for integration. This provides a more comprehensive and accurate feature representation for subsequent
segmentation tasks. The specific operations are as follows.

Figure 3: Structure of the scale-aware fusion module (SAFM). The SAFM comprises two main components: (a) Effi-
cient Up-convolution Block (EUB) is used to restore the feature scale. (b) Scale-Aware Model (SAM) integrates feature
information

Firstly, we use the EUB to unify the scales of the feature maps. As shown in Fig. 3a, the size of the feature
map is expanded through an upsampling method with a ratio of 2, which increases its spatial dimension.
Then, the upsampled feature map is enhanced using a 3 × 3 depth-wise convolution to explore additional
feature information. In addition, we adopt the channel shuffle technique [40] to promote communication
between different channels, enabling better fusion and cooperation of features across channels. Finally, a 1× 1
convolution layer integrates the feature information obtained from the previous operations.

The high-level feature map with adjusted scales and the adjacent low-level feature map are sent to the
SAM for feature fusion. The operations of the SAM module are shown in Fig. 3b. Firstly, the two feature maps
are concatenated to preliminarily integrate the information of different feature maps. Next, a convolution
layer is used to perform dimension reduction on the concatenated feature map. This step not only decreases
computational complexity but also refines the feature representation. Subsequently, a softmax layer to obtain
two spatial attention maps A and B ∈ RH×W . These weights are dynamically adjusted according to the
importance of the feature maps, enabling the model to focus on the key information and improving the
attention and utilization efficiency of important features. Finally, the attention weights are multiplied by
the original feature maps and summed to obtain the fused features. This process ensures the efficiency and
accuracy of the model in dealing with multi-scale features. The process can be described as:

Ff usion = A× Fi+1 + B × Fi (3)
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3.3 Category-Guided Module
To address the challenge of large intra-class variations and small inter-class differences in high-

resolution remote sensing imagery, we propose a Category-Guided Module (CGM). The module first utilizes
deep-level features for category prediction, generating a preliminary segmentation map. Next, channel
separation is applied to the rough segmentation results, which are then processed using the Sigmoid function.
This step assigns a probability value to each pixel, indicating its likelihood of belonging to a specific category,
thereby enhancing the precision of category information at the pixel level. Additionally, the output from
the CGM is used to guide the Scale-Aware Fusion Module (SAFM) process layer by layer. This approach
enables the model to capture semantic information at different levels, ensuring that the feature fusion process
emphasizes the semantic relationships between categories. Consequently, the model can accurately identify
objects and delineate their boundaries, leading to more precise segmentation results. This enhances the
model’s performance and accuracy, especially for complex remote-sensing images.

Specifically, as shown in Fig. 4, a coarse-grained segmentation result is obtained through a 3 × 3
and a 1 × 1 convolutional layer, denoted as P ∈ RB×K×H×W (where K represents the total number of
segmentation categories). A channel-separation operation is then applied to this rough segmentation result
P to obtain Pi , where Pi ∈ RB×1×H×W , and i = 1, ..., K. Next, a Sigmoid operation is performed on each
Pi , so that the probability value of each pixel in Pi represents the likelihood that the pixel belongs to the
corresponding category.

Figure 4: Structure of the category-guided module (CGM). S represents Sigmoid operation

The fusion features obtained in SAFM are multiplied by Pi to generate enhanced features for each
category. Finally, the refined segmentation result is obtained through the segmentation head (containing
3 × 3 and 1 × 1 convolutional layers).

3.4 Loss Function
Like most prior works, we employ the cross-entropy loss Lce and Dice loss Ld ice as the total loss function.

Specifically, the expressions for Lce and Ld ice are as follows, respectively:

Lce = −
1
N

N
∑
n=1

K
∑
k=1

yn
k(log ŷn

k) (4)

Ld ice = 1 − 2 ∣y ∩ ŷ∣
∣y∣ + ∣ ŷ∣

(5)
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L = Lce + Ld ice (6)

where ŷ denotes the network prediction segmentation result and y denotes the true value. N and K denote
the number of samples and the number of categories, respectively.

Our decoder’s four segmentation heads produce four prediction maps P1, P2, P3, and P4 across its stages.
Thus, the total loss can be expressed as:

Ltotal = Lp1 + Lp2 + Lp3 + Lp4 (7)

where Lp1, Lp2, Lp3 and Lp4 are the losses of each prediction map.
Overall, through the integrated use of FCLM, SAFM, and CGM, our approach is capable of sensitively

detecting the distinguishing features among various objects and leveraging category information to guide the
segmentation process. Consequently, this model exhibits superior performance in detail processing and edge
positioning compared to alternative methods. This capability is particularly crucial in practical applications,
especially in critical areas such as land use analysis, environmental change detection, and urban planning.

4 Experiment
In this section, we first provide a detailed introduction to the dataset used. Next, we discuss the

specific parameter settings for model training and the quantitative assessment indicators of the network
architecture. Additionally, we compare our proposed method with other advanced semantic segmentation
networks and conduct ablation studies to further analyze and verify our approach. Through these steps, we
comprehensively present the performance and advantages of our method from various perspectives.

4.1 Datasets
ISPRS Vaihingen dataset consists of 33 high-resolution images with an average size of 2494× 2064 pixels

per image. It contains five foreground classes (impervious surface, building, low vegetation, tree, and car)
and one background class (clutter). According to the official dataset segmentation settings, we used image ID
1, 3, 5, 7, 11, 13, 15, 17, 21, 23, 26, 28, 32, 34, and 37 for training, image ID 30 for validation, and the remaining
17 images for testing.

ISPRS Potsdam dataset contains 38 high-resolution images, each with a size of 6000 × 6000 pixels. Each
image contains the same category information as the Vaihingen dataset. According to the formal dataset
segmentation setting, we used image ID 2_11, 2_12, 3_10, 3_11, 3_12, 4_10, 4_11, 4_12, 5_10, 5_11, 5_12, 6_7,
6_8, 6_9, 6_10, 6_11, 6_12, 7_7, 7_8, 7_9, 7_11 and 7_12 for training, image ID 2_10 for validation, and the
remaining 14 images for testing (excluding the incorrectly labeled 7_10 image).

4.2 Implementation Details
All models were implemented using PyTorch on the NVIDIA GTX 3090 GPU in our lab device. In

our experiments, we used the AdamW optimizer with an initial learning rate of 6×10-4 and a batch size
of 8. The images were randomly cropped into 512 × 512 image patches. Augmentation techniques, such as
random scaling ([0.5,0.75,1.0,1.25,1.5]), random vertical flips, and random horizontal flips, were used during
the training process. The maximum number of epochs was set to 105 for both the Potsdam and Vaihingen
datasets. Additionally, Test-Time Augmentation (TTA) techniques, including horizontal and vertical flips,
were applied during the testing phase. This study uses Overall Accuracy (OA), Mean Intersection over Union
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(mIoU), and Mean F1 Score (mF1) to evaluate the model’s performance. The specific formulas are as follows:

OA = ∑K
k=1 TPk

∑K
k=1 TPk + FPk + TNk + FNk

(8)

mIoU = 1
K

K
∑
k=1

TPk

TPk + FPk + FNk
(9)

precision = 1
K

K
∑
k=1

TPk

TPk + FPk
(10)

recal l = 1
K

K
∑
k=1

TPk

TPk + FNk
(11)

F1 = 2 × precision × recal l
precision + recal l

(12)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respectively,
for a particular object indexed as category k. Precision refers to the proportion of actual positive instances
among those that the model predicts as positive. Recall refers to the proportion of positive instances that the
model predicts correctly out of all actual positive instances.

4.3 Ablation Study
We performed several types of ablation studies on the Vaihingen and Potsdam datasets with the aim of

evaluating the contribution of the CG-FCLNet components. To ensure the fairness of the experiments, the
test-time augmentation strategy was not adopted during all ablation experiments. We carried out ablation
experiments according to the different settings listed in Table 2. The highest values in each column are in bold.

Table 2: Results of the ablation study on two datasets, the highest values in each column are in bold

Model Vaihingen Potsdam

mF1 mIoU OA mF1 mIoU OA
Baseline 88.26 79.27 89.59 90.33 82.58 88.88

Baseline+CSM 89.02 80.47 90.12 91.21 84.06 89.89
Baseline+FCM 89.33 80.97 90.16 91.39 84.38 89.97

Baseline+FCLM 89.63 81.43 90.33 91.59 84.71 90.20
Baseline+CGM 89.13 80.65 90.12 91.26 84.16 89.71
Baseline+SAFM 89.50 81.25 90.17 91.39 84.36 89.78

Baseline+FCLM+SAFM 89.83 81.78 90.45 91.85 85.16 90.47
Baseline+FCLM+CGM 89.75 81.65 90.54 91.78 85.05 90.41

Baseline+FCLM+SAFM+CGM 90.12 82.25 90.72 92.10 85.62 90.66

In this research, we adopted a baseline structure similar to U-Net, incorporating a pre-trained ResNet18
encoder. In the decoder, we used bilinear upsampling and addition operations to fuse features, effectively
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transferring them through skip connections. Based on this, we separately tested different modules or
combinations of them to verify the effectiveness of each.

Superiority of the FCLM: The FCLM consists of FCM and CSM. To verify the effectiveness of these two
components, we compared the FCLM with FCM and CSM. As shown in Table 2, after introducing FCM,
the mF1, OA, and mIoU of the network on the Vaihingen dataset are increased by 1.07%, 0.57%, and 1.70%,
which verifies the effectiveness of FCM. After introducing CSM, the mF1, OA, and mIoU of the network on
the Vaihingen dataset are increased by 0.76%, 0.53%, and 1.20% respectively, which verifies the effectiveness
of CSM. The FCLM composed of the combination of the two increases the mF1, OA, and mIoU on the
Vaihingen dataset by 1.37%, 0.74%, and 2.16%, respectively, which confirms the complementarity of FCM
and CSM in features. Similar trends can be observed on the Potsdam dataset as well, where mF1, OA, and
mIoU increased by 1.26%, 1.32%, and 2.13%, respectively. This complementarity shows that the FCLM can
effectively generate richer feature representations through cross-stage feature interaction, promoting efficient
information exchange and integration between features at different levels. As a result, the model can capture
more critical information and feature variations. The FCM improves feature discriminability and semantic
detail, boosting performance but increasing computational overhead and risking information loss. The CSM
optimizes feature representation by removing redundancies, and reducing computational costs, though it
may discard valuable features. The FCLM integrates FCM and CSM, balancing discriminability, efficiency,
and representation.

Superiority of the CGM and FCLM+CGM: To verify the effectiveness of CGM, it was integrated alone
into the Baseline model, creating Baseline + CGM. As shown in Table 2, the Baseline model with CGM
achieved an mF1 score of 0.87, an OA of 0.53, and a mIoU of 1.38% on the Vaihingen dataset, while the
corresponding improvements on the Potsdam dataset were 0.93%, 0.83%, and 1.58%, respectively. These
results demonstrate the effectiveness of CGM in guiding feature fusion by progressively incorporating
category-specific information. CGM ensures that category information is utilized at each stage of feature
fusion, enhancing the model’s ability to identify and integrate features from different categories in the image.
However, while CGM improves the model’s recognition capability, it has limitations in capturing multi-
scale contextual information. To address this, the introduction of FCLM further enhances the network’s
performance metrics. This indicates that the combination of FCLM and CGM complements each other,
improving the model’s ability to integrate multi-scale information.

The superiority of the SAFM and FCLM+SAFM: After integrating SAFM with the Baseline model, the
mF1 score, OA, and mIoU on the Vaihingen dataset showed improvements of at least 1.24%, 0.58%, and 1.98%,
respectively. On the Potsdam dataset, the improvements were 1.06%, 0.9%, and 1.78%, respectively. The SAFM
employs a spatially adaptive feature aggregation technique that utilizes spatial information more effectively
for feature fusion compared to traditional methods. This approach significantly enhances segmentation
by enabling the model to better capture local image details. However, SAFM still faces limitations in
capturing multi-scale background information, which can affect the model’s understanding of the overall
image structure. To address this issue, the introduction of FCLM further improved the model’s performance,
demonstrating the effectiveness of combining FCLM with SAFM. The feature interaction mechanism in
FCLM enables the network to better integrate multi-level feature information, thereby enhancing the model’s
ability to interpret complex background details.

The superiority of the FCLM+SAFM+CGM: After integrating the three modules, higher accuracy was
successfully achieved on both datasets. Specifically, compared to the baseline model, on the Vaihingen
dataset, the mF1, OA, and mIoU were improved by at least 1.86%, 1.13%, and 2.98%, respectively; while on the
Potsdam dataset, the corresponding improvements were 1.77%, 1.78%, and 3.04%, respectively. These results
validate that the integration of FCLM, SAFM, and CGM enables the model to capture more comprehensive
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and valuable features, while also utilizing class-specific information during the feature fusion process. This
improves the quality of feature fusion and boosts the model’s overall performance in semantic segmentation.
By integrating multi-scale features, the strategy enhances the model’s understanding of both local image
details and global structure, significantly optimizing segmentation results and demonstrating the method’s
substantial value in analyzing complex remote-sensing images.

4.4 Comparison with State-of-the-Art Methods
To verify our method, we compare it with several popular approaches on the Vaihingen and Potsdam

datasets. The algorithms compared include a variety of CNN models, such as the standard FCN [6] and
DeepLabV3+ [8]; models that incorporate attention mechanisms, such as A2-FPN [33] and MAResU-
Net [34]; LoG-GAN [24], which utilizes class information; and advanced methods that integrate transformer
architecture, including MLFMNet [10], MSGCNet [13], SegFormer [41], and UnetFormer [42].

Comparison with other methods on the Vaihingen dataset: Table 3 presents the quantitative analysis
results of our semantic segmentation task on the Vaihingen dataset. The highest values in each column are
bolded. The data in Table 3 shows that our proposed CG-FCLNet method achieves the best performance in
the three key indicators of mF1, mIoU, and OA. Compared with the suboptimal method MSGCNet, mF1
improved by 0.23%, mIoU by 0.37%, and OA by 0.17%. In particular, in the small-size target Car category, our
F1 and IoU reach 89.79% and 81.46%, respectively, which are 0.34% and 0.54% higher than the second-ranked
MSGCNet. These results demonstrate that our method excels not only in the recognition and segmentation
of large-scale objects but also in capturing and segmenting small-scale objects.

Table 3: Results on the Vaihingen dataset, the highest values in each column are bolded

Model F1 Score (%)/IoU Score (%)

Imp. surf Building Lowveg Tree Car mF1 mIoU OA
FCN 92.18/85.50 94.80/90.11 88.04/72.48 89.82/81.52 84.93/73.81 89.15 80.68 90.36

Deeplabv3+ 92.82/86.61 95.51/91.40 84.91/73.78 90.23/82.19 87.94/78.48 90.28 82.49 91.03
MLFMNet 92.88/86.71 94.87/90.23 85.21/74.23 90.12/82.01 88.46/79.30 90.31 82.50 90.88
MSGCNet 93.07/87.05 95.74/91.83 84.69/73.44 90.23/82.19 89.45/80.92 90.64 83.09 91.17
LoG-CAN 93.06/87.01 95.65/91.67 84.67/73.42 90.28/82.29 89.32/80.70 90.60 83.02 91.14

A2-FPN 93.08/87.06 95.45/91.29 84.66/73.40 90.07/81.93 88.62/79.57 90.38 82.65 91.02
MAResU-Net 92.99/86.89 95.59/91.55 84.66/73.40 90.35/82.39 87.80/78.26 90.28 82.50 91.11

Segformer 92.31/85.71 94.54/89.64 84.69/73.44 90.34/82.39 87.24/77.36 89.82 81.71 90.56
Unetformer 93.07/87.03 95.66/91.69 84.73/73.50 90.31/82.33 88.25/78.97 90.40 82.71 91.14

Ours 93.06/87.02 95.87/92.07 85.16/74.16 90.46/82.58 89.79/81.46 90.87 83.46 91.34

To visually compare the segmentation results of different algorithms, we show the segmentation
results on the Vaihingen dataset, as shown in Fig. 5. In the first case, our method demonstrated excellent
performance in recognizing and segmenting small objects, such as cars and buildings, accurately identifying
and delineating their edges. In contrast, other methods exhibited varying degrees of omission and errors
during the recognition process. Specifically, in the small building area marked by the middle red box, except
for our method and MLFMNet, other methods failed to fully recognize certain building structures. For the
small cars in the other two red boxes, our method not only accurately identified the cars but also clearly
outlined their edge contours, while other methods showed blurred boundaries and misidentification issues.
In the second case, the building in the left red box had significant appearance differences compared to the
other buildings, with its color and texture resembling those of Lowveg and cars. This similarity led other
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models to incorrectly classify the building as Lowveg and the car as a building. However, by incorporating
context information processing and fine-grained feature learning mechanisms into the feature interaction
module and integrating category information, our method was able to capture subtle differences in the image
more precisely, successfully distinguishing between these similar categories and avoiding misclassification.

Figure 5: Visualization comparisons on the Vaihingen dataset. The “Image” represents the input RGB images, and the
“GT” represents ground truth

Comparison with other methods on the Potsdam dataset: As with the Vaihingen dataset, we conducted
experiments on the Potsdam dataset. The results presented in Table 4 demonstrate that our proposed CG-
FCLNet method has achieved the highest scores in mF1, mIoU, and OA (the highest values in each column
are bolded). Compared to the second-best performing MSGCNet method, our mF1 increased by 0.24%,
mIoU by 0.45%, and OA by 0.22%. Additionally, our method has attained the highest values in F1 score and
IoU for each category, except Lowveg and Tree. Particularly, in the small target Car category, our F1 and IoU
reached 96.50% and 93.23%, respectively, which is 0.37% and 0.69% higher than the MLFMNet.
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Table 4: Results on the Potsdam dataset, the highest values in each column are bolded

Model F1 Score (%)/IoU Score (%)

Imp. surf Building Lowveg Tree Car mF1 mIoU OA
FCN 92.13/85.41 94.47/89.52 86.46/76.15 87.87/78.36 94.45/89.49 91.08 83.79 89.69

Deeplabv3+ 93.43/87.68 95.99/92.30 87.02/77.02 88.35/79.13 95.02/90.52 91.96 85.33 90.72
MLFMNet 93.44/87.69 96.15/92.59 87.59/77.93 88.56/79.46 96.13/92.54 92.37 86.04 90.98
MSGCNet 93.53/87.84 95.95/92.21 87.78/78.22 88.71/79.71 96.09/92.48 92.41 86.09 91.07

LoG-
CAN

93.34/87.52 95.80/91.93 87.19/77.29 88.51/79.38 95.62/91.60 92.09 85.54 90.82

A2-FPN 93.67/88.09 96.27/92.82 87.23/77.35 88.76/79.79 95.16/90.76 92.22 85.76 91.01
MAResU-

Net
93.48/87.75 96.33/92.92 87.47/77.73 88.58/79.51 95.88/92.09 92.35 86.00 91.02

Segformer 93.51/87.80 95.96/92.23 87.28/77.44 88.15/78.81 94.96/90.40 91.97 85.34 90.82
Unetformer 93.52/87.83 96.37/92.99 87.08/77.12 88.16/78.83 96.08/92.45 92.24 85.85 90.93

Ours 93.90/88.49 96.50/93.24 87.73/78.15 88.64/79.59 96.50/93.23 92.65 86.54 91.29

To visually compare the segmentation results of different algorithms, we show the segmentation results
on the Potsdam dataset, as shown in Fig. 6. In the first case, although the texture of Lowveg in the red box
is similar to other categories like Imp. surf and Building, which increases the difficulty of distinguishing
between these categories, our model still performs accurate segmentation. This demonstrates the model’s
ability to handle categories with similar texture features and capture subtle differences. In the second case,
the trees within the red box on the left have complex shapes and blurred edges. Our model successfully
identifies and accurately segments the trees through fine-grained feature learning and contextual information
processing, preventing the merging of segmentation areas and ensuring the independence of the tree regions.
In the background area within the red box at the top right, the color and texture resemble those of buildings,
which other models may mistakenly identify as buildings. In contrast, our model effectively distinguishes
between the background and the buildings.

In addition, we evaluated our model on low-resolution images. Low-resolution images were generated
from high-resolution ones through a 4× downsampling factor. The results of comparison with other methods
(namely MLFMNet [10], LoG-GAN [24], and SegFormer [41]) are shown in Table 5. The highest values in
each column are in bold. It can be seen that under the 4× degradation factors on both datasets, the model
achieved the best performance in terms of mF1, mIoU, and OA metrics (except for the OA on the Potsdam
dataset), demonstrating its ability to effectively capture important features and maintain high segmentation
accuracy under low-resolution conditions. However, the loss of details and contextual information in
low-resolution images may limit the capability of the feature interaction module, leading to performance
degradation compared to high-resolution images.

Fig. 7 illustrates the trend of OA changes concerning epochs for training and testing data on the
Vaihingen and Potsdam datasets. In both datasets, the training accuracy (represented by the blue solid
line) rises rapidly in the early stages of training, then slows down, eventually stabilizing in the later stages.
Notably, the training accuracy remains consistently above 0.90, reflecting the model’s ability to effectively
extract features from the training set and perform excellently on both datasets. Similarly, the testing accuracy
(represented by the red dashed line) follows a similar growth pattern. The gap between training and testing
accuracy is relatively small in both datasets, indicating that the model not only performs well on the training
data but also maintains high accuracy on unseen data, demonstrating strong generalization capability.
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Figure 6: Visualization comparisons on the Potsdam dataset. The “Image” represents the input RGB images, and the
“GT” represents ground truth

Table 5: Comparison of our model with other methods on low-resolution images the highest values in each column
are in bold

Model Degradation factors Vaihingen Potsdam

mF1 mIoU OA mF1 mIoU OA
MLFMNet 4× 82.62 71.62 87.44 88.00 78.95 87.35
LoG-CAN 4× 81.94 70.77 87.04 87.46 78.10 86.81
Segformer 4× 82.35 71.25 87.17 87.90 78.67 87.67

Ours 4× 83.20 72.44 87.87 88.29 79.33 87.54
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Figure 7: Comparison of OA between training and testing data

4.5 Efficiency Analysis
The efficiency of deep learning methods can be evaluated using metrics such as model parameters,

floating-point operations (FLOPs), and frames per second (FPS). FLOPs assess complexity, FPS evaluate
speed, and model parameters (M) evaluate storage space consumption. We input data of size 3 × 1024 ×
1024 into all models and evaluated their efficiency under the same running environment. The evaluation
results are shown in Table 6, the best values in each column are in bold. As seen in the table, CG-FCLNet’s
model parameters and computational complexity are moderate compared to other methods. However, the
inclusion of multiple collaborative modules in feature extraction increases inference complexity, leading to
a lower FPS.

Table 6: Comparison of efficiency with state-of-the-art methods the best values in each column are in bold

Model Params (Mb) FLOPs (Gbps) FPS
FCN 11.42 39.87 136.13

Deeplabv3+ 21.32 184.66 52.64
MLFMNet 14.55 74.69 68.97
MSGCNet 27.61 114.54 36.47
LoG-CAN 12.48 61.68 71.55

A2-FPN 12.16 167.33 76.99
MAResU-Net 16.17 101.66 33.99

Segformer 13.68 53.04 26.45
Unetformer 11.72 46.97 88.03

Ours 13.00 62.86 37.92

5 Conclusion
In this paper, we propose a novel network framework for the semantic segmentation of remote sensing

images, called the Category-Guided Feature Collaborative Learning Network (CG-FCLNet). It incorporates
the Feature Collaborative Learning Module (FCLM), which facilitates interactions between features at
different levels and uncovers their intrinsic relationships. This improves the model’s understanding of
complex scenes. To further enhance performance, we design a Scale-Aware Fusion Module (SAFM) that uses
a spatial attention mechanism to iteratively fuse multi-level features, significantly boosting segmentation



2768 Comput Mater Contin. 2025;83(2)

accuracy. Additionally, the Category-Guided Module (CGM) optimizes feature fusion by guiding category-
aware information, ensuring that the fused features more accurately reflect the semantic information of the
categories. Experimental results show that CG-FCLNet outperforms existing methods on the Potsdam and
Vaihingen datasets, achieving higher segmentation accuracy and better detail preservation.

In future work, we are committed to enhancing the precision of our model, particularly in addressing
the issue of unclear boundaries in low-resolution images. We will focus on optimizing the model’s ability to
learn and process edge features, with the aim of improving the accuracy of edge segmentation.

Acknowledgement: The authors would like to express their sincere gratitude to all those who contributed to this
research. Their support and efforts were key factors in the success of this study. Additionally, special thanks to the editors
and reviewers for their critical and constructive comments and suggestions.

Funding Statement: This research was funded by National Natural Science Foundation of China (61603245).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Min
Yao, Guangjie Hu; data collection: Guangjie Hu, Yaozu Zhang; analysis and interpretation of results: Min Yao, Guangjie
Hu, Yaozu Zhang; draft manuscript preparation: Min Yao, Guangjie Hu, Yaozu Zhang. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: Data provided in this study are available upon request from the correspond-
ing author.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Abbreviations
CG-FCLNet Category-Guided Feature Collaborative Learning Network
FCLM Feature Collaborative Learning Module
SAFM Scale-Aware Fusion Module
CGM Category-Guided Module
FCM Feature Collaborative Module
CSM Channel Selection Module
EUB Efficient Up-convolution Block
SAM Scale-Aware Model
mIoU Mean Intersection over Union
mF1 Mean F1 Score
OA Overall Accuracy
FLOPs Floating-Point Operations
FPS Frames Per Second

References
1. Kotaridis I, Lazaridou M. Remote sensing image segmentation advances: a meta-analysis. ISPRS J Photogramm

Remote Sens. 2021;173(3):309–22. doi:10.1016/j.isprsjprs.2021.01.020.
2. Li R, Zheng S, Duan C, Wang L, Zhang C. Land cover classification from remote sensing images based on multi-

scale fully convolutional network. Geo Spatial Inf Sci. 2022;25(2):278–94. doi:10.1080/10095020.2021.2017237.
3. Lv Z, Yang T, Lei T, Zhou W, Zhang Z, You Z. Spatial-spectral similarity based on adaptive region for landslide

inventory mapping with remote-sensed images. IEEE Trans Geosci Remote Sens. 2024;62:4405111. doi:10.1109/
TGRS.2024.3380199.

https://doi.org/10.1016/j.isprsjprs.2021.01.020
https://doi.org/10.1080/10095020.2021.2017237
https://doi.org/10.1109/TGRS.2024.3380199
https://doi.org/10.1109/TGRS.2024.3380199


Comput Mater Contin. 2025;83(2) 2769

4. Xu Q, Long C, Yu L, Zhang C. Road extraction with satellite images and partial road maps. IEEE Trans Geosci
Remote Sens. 2023;61:4501214. doi:10.1109/TGRS.2023.3261332.

5. Sun Z, Zhou W, Ding C, Xia M. Multi-resolution transformer network for building and road segmentation of
remote sensing image. ISPRS Int J Geo Inf. 2022;11(3):165. doi:10.3390/ijgi11030165.

6. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal
Mach Intell. 2017;39(4):640–51. doi:10.1109/TPAMI.2016.2572683.

7. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N,
Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention–MICCAI
2015. Lecture notes in computer science. Vol. 9351. Cham: Springer; 2015. doi:10.1007/978-3-319-24574-4_28.

8. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for
semantic image segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer vision—ECCV
2018. Lecture notes in computer science. Vol. 11211. Cham: Springer; 2018. doi:10.1007/978-3-030-01234-2_49.

9. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR); 2017 Jul 21–26. Honolulu, HI, USA: IEEE; 2017. p. 6230–9. doi:10.1109/CVPR.
2017.660.

10. Wei X, Rao L, Fan G, Chen N. MLFMNet: a multilevel feature mining network for semantic segmentation on aerial
images. IEEE J Sel Top Appl Earth Obs Remote Sens. 2024;17:16165–79. doi:10.1109/JSTARS.2024.3452250.

11. Bai Q, Luo X, Wang Y, Wei T. DHRNet: a dual-branch hybrid reinforcement network for semantic segmentation
of remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens. 2024;17:4176–93. doi:10.1109/JSTARS.2024.
3357216.

12. Wang Z, Zhang S, Zhang C, Wang B. Hidden feature-guided semantic segmentation network for remote sensing
images. IEEE Trans Geosci Remote Sens. 2023;61:5603417. doi:10.1109/TGRS.2023.3244273.

13. Zeng Q, Zhou J, Tao J, Chen L, Niu X, Zhang Y. Multiscale global context network for semantic segmentation of
high-resolution remote sensing images. IEEE Trans Geosci Remote Sens. 2024;62:5622913. doi:10.1109/TGRS.2024.
3393489.

14. Jiang H, Luo T, Peng H, Zhang G. MFCANet: multiscale feature context aggregation network for oriented object
detection in remote-sensing images. IEEE Access. 2024;12(10):45986–6001. doi:10.1109/ACCESS.2024.3381539.

15. Li Y, Meng W, Ma D, Xu S, Zhu X. MCGFF-Net: a multi-scale context-aware and global feature fusion network for
enhanced polyp and skin lesion segmentation. Vis Comput. 2024;30(2):584. doi:10.1007/s00371-024-03720-9.

16. Li G, Bai Z, Liu Z, Zhang X, Ling H. Salient object detection in optical remote sensing images driven by transformer.
IEEE Trans Image Process. 2023;32:5257–69. doi:10.1109/TIP.2023.3314285.

17. Xia C, Chen X, Sun Y, Ge B, Fang X, Gao X, et al. CEMINet: context exploration and multi-level interaction network
for salient object detection. Digit Signal Process. 2024;147(4):104403. doi:10.1016/j.dsp.2024.104403.

18. Wu H, Zhang M, Huang P, Tang W. CMLFormer: CNN and multiscale local-context transformer network for
remote sensing images semantic segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens. 2024;17:7233–41.
doi:10.1109/JSTARS.2024.3375313.

19. Li X, Xu F, Liu F, Tong Y, Lyu X, Zhou J. Semantic segmentation of remote sensing images by representation
refinement and geometric prior-guided inference. IEEE Trans Geosci Remote Sens. 2023;62:5400318. doi:10.1109/
TGRS.2023.3339291.

20. Bhatti UA, Yu Z, Chanussot J, Zeeshan Z, Yuan L, Luo W, et al. Local similarity-based spatial-spectral fusion
hyperspectral image classification with deep CNN and Gabor filtering. IEEE Trans Geosci Remote Sensing.
2022;60:5514215. doi:10.1109/TGRS.2021.3090410.

21. Zhang F, Chen Y, Li Z, Hong Z, Liu J, Ma F, et al. ACFNet: attentional class feature network for semantic
segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV); 2019 Oct 27–Nov 2.
Seoul, Republic of Korea: IEEE; 2019. p. 6797–806. doi:10.1109/iccv.2019.00690.

22. Yuan Y, Chen X, Wang J. Object-contextual representations for semantic segmentation. In: Vedaldi A, Bischof
H, Brox T, Frahm JM, editors. Computer vision—ECCV 2020. ECCV 2020. Lecture notes in computer science.
Vol. 12351. Cham: Springer; 2020. doi:10.1007/978-3-030-58539-6_11.

https://doi.org/10.1109/TGRS.2023.3261332
https://doi.org/10.3390/ijgi11030165
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/JSTARS.2024.3452250
https://doi.org/10.1109/JSTARS.2024.3357216
https://doi.org/10.1109/JSTARS.2024.3357216
https://doi.org/10.1109/TGRS.2023.3244273
https://doi.org/10.1109/TGRS.2024.3393489
https://doi.org/10.1109/TGRS.2024.3393489
https://doi.org/10.1109/ACCESS.2024.3381539
https://doi.org/10.1007/s00371-024-03720-9
https://doi.org/10.1109/TIP.2023.3314285
https://doi.org/10.1016/j.dsp.2024.104403
https://doi.org/10.1109/JSTARS.2024.3375313
https://doi.org/10.1109/TGRS.2023.3339291
https://doi.org/10.1109/TGRS.2023.3339291
https://doi.org/10.1109/TGRS.2021.3090410
https://doi.org/10.1109/iccv.2019.00690
https://doi.org/10.1007/978-3-030-58539-6_11


2770 Comput Mater Contin. 2025;83(2)

23. Ma X, Che R, Wang X, Ma M, Wu S, Feng T, et al. DOCNet: dual-domain optimized class-aware network for
remote sensing image segmentation. IEEE Geosci Remote Sensing Lett. 2024;21:2500905. doi:10.1109/LGRS.2024.
3350211.

24. Ma X, Ma M, Hu C, Song Z, Zhao Z, Feng T, et al. LoG-CAN: local-global class-aware network for semantic
segmentation of remote sensing images. In: ICASSP 2023—2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP); 2023 Jun 4–10. Rhodes Island, Greece: IEEE; 2023. p. 1–5. doi:10.1109/
ICASSP49357.2023.10095835.

25. Du S, Liu M. Class-guidance network based on the pyramid vision transformer for efficient semantic segmentation
of high-resolution remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens. 2023;16:5578–89. doi:10.
1109/JSTARS.2023.3285632.

26. Nie J, Wang Z, Liang X, Yang C, Zheng C, Wei Z. Semantic category balance-aware involved anti-interference
network for remote sensing semantic segmentation. IEEE Trans Geosci Remote Sens. 2023;61:4409712. doi:10.1109/
TGRS.2023.3325327.

27. Wang S, Hu Q, Wang S, Zhao P, Li J, Ai M. Category attention guided network for semantic segmentation of Fine-
Resolution remote sensing images. Int J Appl Earth Obs Geoinf. 2024;127:103661. doi:10.1016/j.jag.2024.103661.

28. Liu T, Cheng S, Yuan J. Category-based interactive attention and perception fusion network for semantic
segmentation of remote sensing images. Remote Sens. 2024;16(20):3864. doi:10.3390/rs16203864.

29. Meng X, Zhang S, Liu Q, Yang G, Sun W. Uncertain category-aware fusion network for hyperspectral and LiDAR
joint classification. IEEE Trans Geosci Remote Sens. 2024;62:5523015. doi:10.1109/TGRS.2024.3424829.

30. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition; 2018 Jun 18–23. Salt Lake City, UT, USA: IEEE; 2018. p. 7132–41. doi:10.1109/CVPR.2018.00745.

31. Woo J, Park J, Lee JY, Kweon IS. CBAM: convolutional block attention module. In: Ferrari V, Hebert M,
Sminchisescu, C, Weiss Y, editors. Computer vision—ECCV 2018. Lecture notes in computer science. Vol. 11211.
Cham: Springer; 2018. doi:10.1007/978-3-030-01234-2_1.

32. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, et al. Dual attention network for scene segmentation. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15–20. Long Beach, CA, USA: IEEE;
2019. p. 3141–9. doi:10.1109/cvpr.2019.00326.

33. Li R, Wang L, Zhang C, Duan C, Zheng S. A2-FPN for semantic segmentation of fine-resolution remotely sensed
images. Int J Remote Sens. 2022;43(3):1131–55. doi:10.1080/01431161.2022.2030071.

34. Li R, Zheng S, Duan C, Su J, Zhang C. Multistage attention ResU-Net for semantic segmentation of fine-resolution
remote sensing images. IEEE Geosci Remote Sens Lett. 2021;19:8009205. doi:10.1109/LGRS.2021.3063381.

35. Niu R, Sun X, Tian Y, Diao W, Chen K, Fu K. Hybrid multiple attention network for semantic segmentation in
aerial images. IEEE Trans Geosci Remote Sensing. 2022;60:5603018. doi:10.1109/TGRS.2021.3065112.

36. Hu X, Zhang P, Zhang Q, Yuan F. GLSANet: global-local self-attention network for remote sensing image semantic
segmentation. IEEE Geosci Remote Sens Lett. 2023;20:6000105. doi:10.1109/LGRS.2023.3235117.

37. Feng S, Zhao H, Shi F, Cheng X, Wang M, Ma Y, et al. CPFNet: context pyramid fusion network for medical image
segmentation. IEEE Trans Med Imaging. 2020;39(10):3008–18. doi:10.1109/TMI.2020.2983721.

38. Gu R, Wang G, Song T, Huang R, Aertsen M, Deprest J, et al. CA-Net: comprehensive attention convolutional
neural networks for explainable medical image segmentation. IEEE Trans Med Imaging. 2021;40(2):699–711. doi:10.
1109/TMI.2020.3035253.

39. Rahman MM, Munir M, Marculescu R. EMCAD: efficient multi-scale convolutional attention decoding for
medical image segmentation. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR); 2024 Jun 16–22. Seattle, WA, USA: IEEE; 2024. p. 11769–79. doi:10.1109/CVPR52733.2024.01118.

40. Zhang X, Zhou X, Lin M, Sun J. ShuffleNet: an extremely efficient convolutional neural network for mobile devices.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018 Jun 18–23. Salt Lake City, UT,
USA: IEEE; 2018. p. 6848–56. doi:10.1109/CVPR.2018.00716.

https://doi.org/10.1109/LGRS.2024.3350211
https://doi.org/10.1109/LGRS.2024.3350211
https://doi.org/10.1109/ICASSP49357.2023.10095835
https://doi.org/10.1109/ICASSP49357.2023.10095835
https://doi.org/10.1109/JSTARS.2023.3285632
https://doi.org/10.1109/JSTARS.2023.3285632
https://doi.org/10.1109/TGRS.2023.3325327
https://doi.org/10.1109/TGRS.2023.3325327
https://doi.org/10.1016/j.jag.2024.103661
https://doi.org/10.3390/rs16203864
https://doi.org/10.1109/TGRS.2024.3424829
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/cvpr.2019.00326
https://doi.org/10.1080/01431161.2022.2030071
https://doi.org/10.1109/LGRS.2021.3063381
https://doi.org/10.1109/TGRS.2021.3065112
https://doi.org/10.1109/LGRS.2023.3235117
https://doi.org/10.1109/TMI.2020.2983721
https://doi.org/10.1109/TMI.2020.3035253
https://doi.org/10.1109/TMI.2020.3035253
https://doi.org/10.1109/CVPR52733.2024.01118
https://doi.org/10.1109/CVPR.2018.00716


Comput Mater Contin. 2025;83(2) 2771

41. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. SegFormer: simple and efficient design for semantic
segmentation with transformers. Adv Neural Inf Process Syst. 2021;34:12077–90.

42. Wang L, Li R, Zhang C, Fang S, Duan C, Meng X, et al. UNetFormer: a UNet-like transformer for efficient semantic
segmentation of remote sensing urban scene imagery. ISPRS J Photogramm Remote Sens. 2022;190:196–214. doi:10.
1016/j.isprsjprs.2022.06.008.

https://doi.org/10.1016/j.isprsjprs.2022.06.008
https://doi.org/10.1016/j.isprsjprs.2022.06.008

	CG-FCLNet: Category-Guided Feature Collaborative Learning Network for Semantic Segmentation of Remote Sensing Images
	1 Introduction
	2 Related Works
	3 Methodology
	4 Experiment
	5 Conclusion
	Abbreviations
	References


