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ABSTRACT: When dealing with imbalanced datasets, the traditional support vector machine (SVM) tends to produce
a classification hyperplane that is biased towards the majority class, which exhibits poor robustness. This paper proposes
a high-performance classification algorithm specifically designed for imbalanced datasets. The proposed method first
uses a biased second-order cone programming support vector machine (B-SOCP-SVM) to identify the support vectors
(SVs) and non-support vectors (NSVs) in the imbalanced data. Then, it applies the synthetic minority over-sampling
technique (SV-SMOTE) to oversample the support vectors of the minority class and uses the random under-sampling
technique (NSV-RUS) multiple times to undersample the non-support vectors of the majority class. Combining the
above-obtained minority class data set with multiple majority class datasets can obtain multiple new balanced data sets.
Finally, SOCP-SVM is used to classify each data set, and the final result is obtained through the integrated algorithm.
Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets.
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1 Introduction
Imbalanced datasets lead to a significant challenge to the effectiveness of machine learning models due

to the uneven distribution of classes [1]. This issue is prevalent in fields such as cancer malignancy grading [2],
industrial system monitoring [3], and text mining [4]. In real-world scenarios, the decision plane obtained
using classifiers tends to be biased towards the majority class. From a practical standpoint, identifying
minority class samples is more crucial. Therefore, when classifying imbalanced datasets, a customized
algorithm is required to meet practical applications.

To better classify datasets, Vapnik proposed the support vector machine (SVM) in the 1990s [5]. SVM
is a supervised learning model used for data classification and regression analysis. Its core idea is to find
an optimal decision boundary (hyperplane) that maximizes the margin between different classes. The hard-
margin SVM is the basic form of SVM, suitable for linearly separable datasets. At the same time, soft-margin
SVM was introduced to allow some data points to violate the margin constraints by introducing slack
variables through penalty parameters.

Algorithm-based and data-level-based methods are mainly used when dealing with imbalanced
datasets [6]. Sampling algorithms are a data level-based method [1], which is mainly divided into three
types: oversampling, undersampling, and synthetic sampling algorithms. The main idea is to use a certain
strategy to increase the number of minority classes or decrease the number of majority classes before using
the classifier, to balance the two-class dataset. Besides sampling algorithms, ensemble algorithms are also
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frequently used in imbalanced datasets. Ensemble learning improves prediction accuracy by combining the
decisions of multiple classifiers to output a single class label [7], which proves to outperform non-ensemble
classification methods. Another particular solution for SVM is choosing a second-order cone programming
support vector machine (SOCP-SVM) which is proposed by Nath and Bhattacharyya to replace the original
SVM to enhance the classification [8], whose objective function is a quadratic function with a second-order
cone constraints. It can adjust the error rates of the two-class datasets to allocate weights, which leads to
better performance in classifying imbalanced datasets.

Many scholars have proposed further optimization strategies to address the shortcomings of SVM when
dealing with imbalanced datasets. In 2020, Kim and John proposed a hybrid neural network and cost-
sensitive support vector machine (hybrid NN-CSSVM) algorithm. This algorithm combines multiple neural
network structures to extract features from different modal data, integrating them with SVM optimized
through cost-sensitive learning, resulting in better performance on imbalanced datasets [9]. In 2021, Wei and
Huang proposed a new method based on the sample feature oversampling technique and multi-class least
squares support vector machine, transforming multi-class imbalanced dataset problems into multiple binary
imbalanced dataset problems. This algorithm demonstrated superior performance and robustness [10].
In 2022, Yu and Fu proposed a novel cost-sensitive learning model CSSVM for classifying imbalanced
datasets. This model combines the advantages of SVM and asymmetric LINEX loss function, achieving
efficient cost-sensitive learning by assigning different instance costs [11]. At the same time, Hasib et al.
proposed a new hybrid framework named HUSCSLBoost was proposed to address the class imbalance. This
framework integrates three key steps: data cleaning using Tomek-Link to eliminate noise, data balancing
via random under-sampling to create balanced subsets, and cost-sensitive learning through CSLBoost,
which incorporates cost concepts based on sample hardness [12]. These recent research methods tend
to combine different models and algorithms, the method which combines multiple models proposed in
this paper outperforms the traditional SVM. In 2023, Shajalal, Md, and Hajek, Petr proposed a deep
neural network model has been proposed for predicting product backorder, incorporating advanced data
balancing techniques such as SMOTE, weight boosting, and hybrid sampling methods. These methods
optimize training data distribution, enabling the model to achieve state-of-the-art performance in standard
metrics and profit-based evaluations [13]. Tanveer, Mishra, and Richhariya propose a novel fuzzy-based
approach to handle class-imbalanced and noisy datasets. Two models, IF-RELSTSVM and F-RELSTSVM, are
introduced, leveraging intuitionistic and hyperplane-based fuzzy membership functions, respectively. These
methods dynamically calculate membership values through projection, effectively addressing noise and
imbalance [14]. In 2024, Rezvani, Pourpanah, and Lim provide a comprehensive review of methods address-
ing class imbalance in SVM and its variants. They categorize SVM-based approaches into three groups:
re-sampling, algorithmic, and fusion methods. The study highlights the strengths and limitations of each
category, showing that fusion methods often achieve the best performance by combining re-sampling and
algorithmic improvements, albeit at a higher computational cost [15]. Meanwhile, Fofanah, Abdul Joseph,
and Chen, David proposed novel architecture for imbalanced graph data named GATE-GNN, addressing
the limitations of traditional methods like resampling and reweighting by leveraging ensemble modules and
spatial embeddings [16]. Tested on benchmark graph datasets, GATE-GNN outperforms leading models,
achieving superior classification accuracy and reduced training time, highlighting its practical application
potential. These recent research methods tend to combine different models and algorithms, the method that
combines multiple models proposed in this paper outperforms the classifier that has not been optimized.

Gao and Jian proposed an ensemble sampling learning algorithm based on SVM [17]. This algorithm
first uses biased support vector machine (B-SVM) to divide vectors into support vectors (samples near the
decision margin) and non-support vectors (samples far from the decision margin), then applies synthetic
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minority over-sampling technique (SV-SMOTE) to increase support vectors in the dataset and uses random
undersampling technique (NSV-RUS) to eliminate non-support vectors without removing support vectors.
Repeatedly using this method produces multiple majority-class samples, which combined with minority-
class samples processed by SV-SMOTE, yield multiple balanced datasets. Each dataset is classified using an
SVM classifier, and the ensemble algorithm combines different classifiers through voting to form an ensemble
classifier (SVMen).

The ensemble algorithm [17] presented in this paper enhances the classification of imbalanced datasets
by incorporating second-order cone programming support vector machines (SOCP-SVM) into the ensemble
framework. Traditional SVMs struggle with noise, outliers, and skewed decision boundaries in imbalanced
data, resulting in poor classification of the minority class. SOCP-SVM addresses these limitations by opti-
mizing the decision boundary and cost function to mitigate the majority class’s influence. The algorithm first
applies a biased second-order cone programming support vector machine(B-SOCP-SVM) to differentiate
between support vectors and non-support vectors. Then use the synthetic minority over-sampling technique
(SV-SMOTE) to generate additional minority class samples based on the support vectors. For the majority
class, it performs a variant of random under-sampling (NSV-RUS) multiple times to produce balanced
datasets. Each dataset is classified using SOCP-SVM, and the final classification is derived through the SOCP-
SVM ensemble (SOCP-SVMen). This approach proves to outperform the original SOCP-SVM. The main
contribution of this paper is:

(i) We propose a novel hybrid approach that combines a second-order cone programming support
vector machine (SOCP-SVM) with synthetic sampling techniques to address imbalanced datasets.
This integration improves both memorization and generalization performance, especially in cases with
noisy or skewed data.

(ii) By introducing SV-SMOTE, a synthetic minority over-sampling technique that operates exclusively
on support vectors. This method ensures that the most crucial minority class samples contribute
effectively to the decision boundary, reducing the negative impact of noise and outliers that often
affect traditional SVM models. Moreover, a modified random under-sampling algorithm (NSV-RUS)
is applied to the majority class, carefully preserving support vectors.

(iii) The combination of SOCP-SVM and these improved sampling methods leads to an ensemble learning
framework, enhancing the classifier’s ability to generalize across imbalanced datasets. The ensemble
model, referred to as SOCP-SVMen, exhibits superior classification performance in comparison to
traditional SVM methods, particularly in classifying minority class samples.

(iv) Experimental results confirm the strong performance of the proposed hybrid model, highlighting
improvements in both minority-class classification and overall model accuracy.

The structure of this article is as follows: Section 2 describes the basic knowledge required to understand
the algorithm, Section 3 provides the detailed implementation steps of the algorithm, Section 4 presents the
experimental results of the proposed method compared to the control methods, and Section 5 concludes
with the final remarks.

2 Basic Formulation

2.1 Support Vector Machine (SVM)
In the 1990s, Vapnik introduced a Support Vector Machine (SVM) to enhance the performance of

classifiers [5]. Consider a dataset T = {(x1 , y1), (x2, y2), ⋅ ⋅ ⋅ , (xm , ym)} where xi ∈ Rn , yi ∈ {1,−1}, and i =
1, 2, ⋅ ⋅ ⋅ , m (m denoting the number of data points). The task is to find a hyperplane that acts as a decision
boundary to separate samples of different classes. The goal of SVM is to find a hyperplane that maximizes
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the margin between the two classes, improving the classifier’s generalization capability. This hyperplane can
be obtained by solving the following optimization problem:

min 1
2
∥w∥2

s.t. yi (wT xi + b) ≥ 1, i = 1, 2, ⋅ ⋅ ⋅ , m
(1)

where w is the normal vector to the hyperplane, b is the offset term, xi is the sample point, and yi is the class
label of the sample point (+1 or −1).

Soft margin SVM introduces a slack variable ξi to handle the linearly inseparable cases, the optimization
problem can be formulated as:

min 1
2
∥w∥2 + C

m
∑
i=1

ξi

s.t. yi (wT xi + b) ≥ 1 − ξi , i = 1, 2, ⋅ ⋅ ⋅ , m

ξi ≥ 0, i = 1, 2, ⋅ ⋅ ⋅ , m

(2)

where C is a regularization parameter that balances margin maximization and classification error penalty.
The decision boundary of the classifier can be obtained by solving the above optimization problem.

Although SVMs have been widely applied over the past 20 years, their computational complexity
and suboptimal performance in handling imbalanced datasets have notable drawbacks. Better classification
results will be achieved if the constraint is replaced by a second-order cone [8]. For non-linearly separable
datasets, the data can be mapped to a higher-dimensional space using a kernel function to make it linearly
separable in that space. Common kernel functions include the linear kernel, polynomial kernel, radial basis
function (RBF) kernel, and sigmoid kernel.

2.2 Sampling Algorithms
To better address imbalanced datasets, researchers have developed various sampling algorithms,

including oversampling, undersampling, and synthetic sampling methods. Oversampling algorithms balance
datasets by increasing the number of minority class samples, thereby improving the classifier’s ability
to recognize minority classes. The Synthetic Minority Over-sampling Technique (SMOTE) is the most
representative method [18]. SMOTE generates new samples by randomly selecting k nearest neighbors of
minority class samples and performing linear interpolation between these points to achieve a balanced
state. SMOTE has been extensively studied for its excellent performance, and its common variants include
Borderline-SMOTE [19], which tends to generate more synthetic samples at the boundary to improve
classifier performance. AdaSYN [20], which generates samples based on the density of minority class
samples, creates more samples in low-density regions to enhance the classifier’s learning capability in these
areas. These superior performances have led scientists to categorize these methods under a new term:
SMOTE-like algorithms. The basic form of SMOTE can be expressed by the following formula:

xnew = xi + λ (x j − xi) (3)

where xnew is the newly generated data point, the xi is the data point we choose in the minority class, x j is
the neighbor of the xi and λ is a random value from (0, 1).

Undersampling algorithms balance datasets by reducing the number of majority-class samples. Com-
mon undersampling methods include Edited Nearest Neighbor (ENN) [21] and Tomek Link [22] algorithms.
ENN maintains data balance by removing majority class samples whose labels are inconsistent with their
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nearest neighbors. Specifically, for each majority class sample, the algorithm identifies its k nearest neighbors.
If the sample’s label is inconsistent with the majority of its neighbors’ labels, then it is removed. This method
effectively eliminates noise and boundary samples, thereby improving classifier performance. Tomek Link
removes majority class samples which are pairs of samples from different classes that are each other’s
nearest neighbors. By identifying all Tomek Link pairs in the dataset and removing the majority of class
samples in these pairs, the class boundaries are clarified, enabling the classifier to better distinguish between
different classes.

Synthetic sampling algorithms combine oversampling and undersampling methods to better handle
imbalanced data. Common synthetic sampling algorithms include SMOTE-ENN [23] and SMOTE-
Tomek [24]. SMOTE-ENN first generates new minority class samples using SMOTE, then cleans the dataset
using ENN. SMOTE-Tomek first generates new minority class samples using SMOTE, then cleans the
dataset using Tomek Link. Synthetic sampling algorithms combine the advantages of both oversampling
and undersampling methods, achieving a balanced dataset while eliminating noise. By effectively applying
different sampling algorithms, imbalanced datasets can be managed, enhancing the classifier’s ability to
recognize minority classes and improving overall classification performance. The sampling method adopted
in this paper is also a synthetic sampling algorithm.

The aforementioned sampling algorithms are commonly used for imbalanced datasets but also have
critical issues. Oversampling can introduce noisy points that interfere with the classifier while undersampling
can remove data points useful for the hyperplane. To address these issues, the proposed algorithm differen-
tiates between support vectors (SVs) and non-support vectors (NSVs), applying oversampling only on SVs
and undersampling only on NSVs. Specifically, the method employs a variant of SMOTE, called Support
Vector-SMOTE (SV-SMOTE), for oversampling support vectors, and a Random Undersampling algorithm
(NSV-RUS) for undersampling non-support vectors.

2.3 Ensemble Algorithms
To enhance classifier performance and prediction accuracy, researchers have developed various ensem-

ble algorithms, Bagging, Boosting, and Stacking are the most representative methods. Bagging [25] improves
model stability and accuracy by constructing multiple independent classifiers and averaging or voting on
their predictions. Specifically, Bagging generates multiple sub-datasets by randomly sampling from the
original dataset, training a classifier on each sub-dataset. The final prediction is the average or majority vote of
all classifiers’ predictions. A classic implementation of Bagging is Random Forest, which integrates multiple
decision tree classifiers, significantly improving model generalization and noise resistance.

Ensemble algorithms improve prediction accuracy and robustness by combining the predictions of
multiple models, reducing the errors that a single model might make. Combining multiple models also
mitigates the impact of noise and bias in the training data, making the overall model more robust and reliable.
In this method, multiple datasets are obtained through random undersampling, and each dataset yields a
model. The final prediction accuracy is enhanced by combining these models using a voting mechanism.

The work presented in the paper introduces a novel approach to mitigate issues inherent in traditional
sampling methods when dealing with imbalanced datasets. By differentiating between SVs and NSVs and
then applying specific sampling strategies, the proposed DCS-SOCP-SVM method demonstrates improved
classification performance and offers a promising direction for future research in handling imbalanced data.
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2.4 Deep Learning in the Imbalanced Dataset
Deep learning has demonstrated remarkable success in various domains, including computer vision,

natural language processing, and medical diagnosis. However, its performance in imbalanced datasets
presents unique challenges. Unlike traditional machine learning algorithms, deep learning models rely
heavily on large volumes of data for training. When faced with imbalanced datasets, these models often
become biased toward the majority class, leading to suboptimal performance in minority class prediction.
This issue arises primarily because the loss functions commonly used, such as cross-entropy, inherently
prioritize overall accuracy rather than focusing on underrepresented classes.

To address these challenges, researchers have proposed various strategies. One prominent approach
involves the design of specialized loss functions, such as the focal loss introduced by Lin et al. [26], which
dynamically scales the loss for hard-to-classify examples, thereby focusing the learning process on minority
classes. Another significant advancement is the use of class-balanced loss [27], which reweights the contri-
butions of each class based on their inverse frequency to mitigate the impact of class imbalance. Additionally,
ensemble learning and deep learning have shown promise, with ensemble methods combining multiple
models and recent efforts integrating them with deep learning to enhance predictive performance [28]. This
article proposes Deep Density Hybrid Sampling (DDHS) to address imbalanced data by learning a low-
dimensional latent space, preserving class proximity, and generating diverse synthetic samples. Combined
with boosting, DDHS boosting outperforms other ensemble methods in experiments [29].

3 Proposed Method: DCS-SOCP-SVM
In this section, we propose a novel integrated sampling method for imbalanced datasets, which extends

the method proposed by Jian et al. [17]. Specifically, we replace the classifier used to differentiate support vec-
tors from B-SVM to B-SOCP-SVM and the general classifier from SVM to SOCP-SVM. Section 3.1 presents
the specific implementation of the algorithm, Section 3.2 provides details on the classifiers used, Section 3.3
gives information on the sampling algorithms employed, and Section 3.4 details the ensemble algorithm used
in our method.

3.1 Overview of Proposed Method: DCS-SOCP-SVM
The following describes the specific steps of the DCS-SOCP-SVM algorithm:
Step 1: Identify the support vectors (SVs) and non-support vectors (NSVs) of both minority and

majority classes using the B-SOCP-SVM method (Eq. (11)). Support Vectors are the data points for which the
constraints involving ξi are active, whereas Non-Support Vectors lie outside the margin and do not influence
the decision boundary.

Step 2: Apply the Synthetic Minority Over-sampling Technique (SMOTE) to the support vectors (SVs)
of the minority class. The new minority class dataset consists of new support vectors (SVs) and the original
non-support vectors (NSVs) from the minority class.

Step 3: Employ various random undersampling methods to eliminate some of the non-support vectors
(NSVs) in the majority class, resulting in multiple new sets of NSVs, while also removing noisy support
vectors (SVs) from the majority class. The new majority class datasets consist of the processed support vectors
(SVs) and the new sets of NSVs.

Step 4: Combining the new minority class dataset with each of the new majority class datasets to obtain
multiple balanced training sets. These balanced training sets are then used to create an ensemble of multiple
SOCP-SVM models. For each sample point, the final class is determined by majority voting among the
classifiers in the ensemble, referred to as SOCP-SVMen.
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In addition to the step-by-step breakdown provided in Algorithm 1, the entire process of the proposed
method is represented in Fig. 1. This figure illustrates the key stages and transitions between each step of the
algorithm, offering a clearer view of the workflow and interactions among different components.

Figure 1: DCS-SOCP-SVM
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3.2 Second-Order Cone Programming Support Vector Machine (SOCP-SVM)
The major innovation of this method is to optimize the original method [17] by replacing the classifiers

for distinguishing support vectors (B-SVM) and the general classifier (SVM) with second-order cone
programming. This results in B-SOCP-SVM and SOCP-SVM.

Suppose X1 and X2 are random vectors generating positive and negative class samples, and their means
and covariance matrices are (μi ,∑i), i = 1, 2, where ∑i ∈ Rn×n is a symmetric positive definite matrix.
Consider the following quadratic chance-constrained formulation:

min
w ,b

1
2
∥w∥2

s.t. Pr{wT X1 + b ≥ 1} ≥ η1

Pr{wT X2 + b ≤ −1} ≥ η2

(4)

where ηi ∈ (0, 1), i = 1, 2 represents the probability that a random sample lies on one side of the hyperplane
with at least a probability of ηi . To ensure that the correct classification rate of each class exceeds ηi for the
worst-case distribution (μi , Σ i), the constraints can be transformed as follows:

inf
X1∼(μ1 ,∑1)

Pr{wT X1 + b ≥ 1} ≥ η1

inf
X2∼(μ2 ,∑2)

Pr{wT X2 + b ≤ −1} ≥ η2
(5)

where X ∼ (μ,∑) denotes the family of distributions with a common mean μ and covariance ∑. In order
to better solve the above constraints, we introduce the multivariate Chebyshev inequality, which can be
described as follows:
Theorem 1: Let X be an n-dimensional random vector. The mean and covariance of X are μ ∈ Rn and ∑ ∈
Rn×n , respectively. Given w ∈ Rn , w ≠ 0 and b ∈ R, define:

H (w , b) = {z ∣wT z < b, z ∈ Rn }

be half-space. Then:

Pr{z ∈ Rn} = s2

s2 +wT ∑w

The proof of Theorem 1 can be found in the paper [8].
Apply the Theorem 1 with X = Xi and H = Hi , the constraints can be transformed by setting:

Pr{Xi ∈ Rn} = wT ∑i w
(wT μ − b)2 +wT ∑i w

(6)

which can be transformed as follows:

wT μ − b ≤
√

1 − η
η

√
wT∑i w (7)
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Based on the Theorem 1, the inequalities (5) can be transformed as follows:

wT μ1 + b ≥ 1 + κ1
√

wT ∑1 w

−(wT μ2 + b) ≥ 1 + κ2
√

wT ∑2 w
(8)

where κk =
√ ηk

1−ηk
, k = 1, 2. Therefore, coupled with the model (4), we obtain the following model:

min
w ,b

1
2
∥w∥2

s.t. wT μ1 + b ≥ 1 + κ1
√

wT ∑1 w

−(wT μ2 + b) ≥ 1 + κ2
√

wT ∑2 w

(9)

where Σ i = Si ST
i , i = 1, 2. To better handle non-linear separable problems, slack variable ξi is introduced to

form a soft-margin second-order cone programming SVM, making it suitable for some non-linear separable
scenarios, the formula is described as follows:

min
w ,b ,ξ
−r + C

m
∑
i=1

ξi

s.t. wT μ1 + b ≥ r − ξi + κ1
√

wT ∑1 w

−(wT μ2 + b) ≥ r − ξi + κ2
√

wT ∑2 w

−1 ≤ w j ≤ 1, j = 1, 2, ⋅ ⋅ ⋅ , n

ξi ≥ 0, i = 1, 2, ⋅ ⋅ ⋅ , m

(10)

The classifier above is the most common in the algorithm. Additionally, to process the original
dataset and distinguish support vectors from non-support vectors, we optimize it using second-order cone
programming to enhance performance, resulting in B-SOCP-SVM. This approach is essentially a soft-margin
SVM combined with cost-sensitive learning methods, resulting in:

min
w ,b ,ξ
−r + C+

m
∑

i∈I+
ξi + C+

m
∑

i∈I−
ξi

s.t. wT μ1 + b ≥ r − ξi + κ1
√

wT ∑1 w

−(wT μ2 + b) ≥ r − ξi + κ2
√

wT ∑2 w

−1 ≤ w j ≤ 1, j = 1, 2, ⋅ ⋅ ⋅ , n

ξi ≥ 0, i = 1, 2, ⋅ ⋅ ⋅ , m

(11)

where C+ and C− are penalty parameters corresponding to each class. Eqs. (10) and (11) are the primary
classifiers used in the algorithm.

3.3 The Applied Two Sampling Methods
Two main sampling algorithms are employed in our method: a variant of the SMOTE (Synthetic

Minority Over-sampling Technique) algorithm and a variant of the random undersampling technique to
create balanced datasets. The SMOTE algorithm generates synthetic samples by linear interpolation between
two neighboring samples, thereby increasing the number of minority class samples to balance the dataset.
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Support vectors (SVs) have a greater influence on the decision hyperplane compared to non-support vectors
(NSVs). In this study, synthetic samples are generated exclusively from the support vectors of the minority
class using SMOTE, while keeping the number of non-support vectors constant. This method is referred to
as SV-SMOTE. The formula used for generating synthetic samples is as follows:

xnew = x sv + λ (xknn − x sv) (12)

where λ is a random value in the range is (0, 1), xsv represents a support vector from the minority class,
and x knn is a random sample from the k-nearest neighbors of xsv . Additionally, let m denote the number of
samples from the majority class among the k-nearest neighbors. If the ratio k

m exceeds or equals 0.8 based on
past experience, the sample is considered noise and should be discarded. In our paperwork, k is set to 5. The
new dataset for the minority class comprises synthetic support vectors and the original non-support vectors
from the minority class. The step of Algorithm 1 can be described as follows:

Algorithm 1: SV-SMOTE algorithm
1. Input: Minority class support vectors X sv , k-nearest neighbors k
2. Output: New synthetic samples Xnew
3. for each support vector x sv ∈ X sv do
4. Find the k-nearest neighbors of x sv , denoted as X knn
5. for each neighbor x knn ∈ X knn do
6. Generate a random value λ ∈ (0, 1)
7. Compute the synthetic sample using linear interpolation:

xnew = x sv + λ (x knn − x sv)
8. Let m be the number of majority class samples in X knn
9. if the ratio k

m > 0.8 then
10. Consider the sample noise and discard it
11. else
12. Add xnew to the set of synthetic samples.
13. end if
14. end for
15. end for
16. Return the set of synthetic samples Xnew

The random undersampling algorithm randomly selects and removes a portion of the samples from
the majority class. However, since support vectors play a crucial role in the performance of the SVM, we
apply random undersampling without removing support vectors (NSV-RUS) to reduce the number of non-
support vectors in the majority class to preserve critical information. The goal of the sampling strategy is to
ensure that the number of majority-class samples equals the number of minority-class samples, which can be
achieved using the random undersampling method. Specifically, the support vectors from the majority class
are retained, and the remaining majority class samples are randomly selected until the number of majority
class samples equals the number of minority class samples. The steps of the Algorithm 2 can be described
as follows:
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Algorithm 2: Random Undersampling Algorithm (NSV-RUS)
1. Input: Majority class samples Sma jor i t y , Minority class samples Sminority
2. Output: New balanced dataset Sbalanced
3. Let SVma jor i t y be the support vectors from Sma jor i t y
4. Let NSVma jor i t y be the non-support vectors from Sma jor i t y
5. Retain all support vectors SVma jor i t y
6. Randomly select samples from NSVma jor i t y until the total number of majority samples equals the

number of minority samples:
nma jor i t y = nminor i t y

7. Form the new balanced dataset Sbal anced = SVma jor i t y ∪ S
′

ma jor i t y ∪ Sminority, where S
′

ma jor i t y is
the subset of randomly selected majority class samples

8. Return Sbalanced

3.4 Ensemble SOCP-SVM Classifier (SOCP-SVMen)
To maintain diversity among datasets that have been undersampling, multiple new majority class NSV

sets are obtained by multiple NSV-RUS methods. These new NSV sets are combined with the original SV set
to form multiple new majority-class datasets. Based on these majority class datasets, a new balanced training
set is created by combining the new minority class dataset with each of the new majority class datasets. Each
balanced training set generates a SOCP-SVM classifier model, resulting in multiple SOCP-SVM classifiers.
The SOCP-SVMen can be created and defined as follows:

SOCP − SV Men =
n
∑
i=1

SOCP − SV Mi (13)

For each sample point, the final result is determined by the majority vote among the predictions of the
individual classifiers.

4 Numerical Experiments
In this section, we evaluate the performance of the proposed DCS-SOCP-SVM method. Eight datasets

are selected in our paperwork: cmc2, Haberman, wilt2, yeast, abalone, ecoli, car, and balance. To demonstrate
the advantages of the proposed algorithm, the selected datasets mainly focus on those with high imbalance
characteristics. These datasets can be downloaded from the University of California, Irvine (UCI) reposi-
tory [30]. Different methods are applied to process the original datasets and compare their performance,
including the original SOCP-SVM, SMOTE-SOCP-SVM (applying the SMOTE algorithm to the original
dataset before using SOCP-SVM for classification), ENN-SOCP-SVM (applying the ENN algorithm to the
original dataset before using before SOCP-SVM for classification), DCS-SVM, and SOCP-DCS-SVM. There
are many evaluations that can be used to assess the dataset [31]. In this paper, the comparison of these models
is based on three evaluation metrics: G-mean [32], F-measure [33], and AUC [34]. These evaluation metrics
are detailed in Section 4.1. The main results and a summary of classification performance are provided
in Section 4.2.

4.1 Data Information and Evaluation Metrics
The proposed method and other models were applied to eight datasets from the UCI repository for

binary classification tasks [30]. Table 1 presents basic information about the selected standard datasets,
including the target minority class, the number of variables, the number of samples in the datasets, and
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the imbalance ratio of the datasets. The definition of imbalance ratio is the number of positive samples
over the number of negative samples. More information about the datasets can be found on the UCI
repository website.

Table 1: Benchmark data sets for class learning

Dataset Target Variables Examples Imbalance ratio
Ecoli M 30 569 1.7

Haberman Class2 3 306 2.78
Wilt2 Class1 5 4839 17.54
Yeast NUC 8 1332 14.9

Abalone Class7 8 4177 9.68
Balance B 4 625 11.75

Car Class1 6 1729 2.33
Cmc2 Class1 9 1473 1.34

Given the emphasis on minority classes, traditional evaluation metrics such as accuracy and error rate
are not suitable for imbalanced datasets. The main evaluation relies on three metrics to comprehensively
assess the results: G-mean [32], F-measure [33], and AUC [34]. These three metrics better measure the
classifier’s performance on imbalanced datasets, as defined below.

4.1.1 G-Mean
The definition of G-mean is the product of the true positive rate and the true negative rate, a commonly

used solution for evaluating imbalanced datasets [32]. It is defined as follows:

G −mean =
√

TP × TN
(TP + FN) + (TN + FP) (14)

Here, TP is the number of true positives, FN is the number of false negatives, TN is the number of true
negatives, and FP is the number of false positives. G-mean effectively calculates the geometric mean of class
accuracies for both the majority (negative) and minority (positive) classes. If the classifier is biased towards
one class, the value will approach 0; if both classes are correctly classified, the value will approach 1.

4.1.2 F-Measure
The F-measure balances Recall and Precision [33]. It is defined as follows:

F −measure = 2 × Precision + Recal l
Precision + Recal l

(15)

This formula includes a coefficient β which aims to adjust the emphasis on precision rate or recall rate.
Typically, β is set to 1. Recall is defined as the proportion of actual positive instances correctly identified
by the model. Precision is defined as the proportion of predicted positive samples that are actually positive.
An improvement in either Recall or Precision increases the F-measure value, indicating better classification
performance for the positive class.
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4.1.3 AUC
AUC (Area Under the Curve) is another evaluation metric in imbalanced dataset as it is insensitive

to changes in class distribution particularly for binary classification tasks. It is estimated through various
techniques, the most used is the trapezoidal method, which is a geometrical method based on linear
interpolation between each point on the ROC curve [34]. The approximation of AUC which is widely used
in binary classification is:

AUC =
1 + TP

TP + F N −
FP

FP + T N
2

(16)

It provides a simple numerical assessment of the overall classifier performance ranging from 0.5 to 1,
0.5 indicates performance equivalent to random guessing, and 1 denotes perfect classification.

4.2 Experimental Results
In this section, we compare the performance of the proposed DCS method with four other methods on

the test datasets:

1. Original SOCP-SVM without sampling the test dataset [8].
2. ENN-SOCP-SVM (using the ENN method on the test dataset before using SOCP-SVM).
3. SMOTE-SOCP-SVM (applying the SMOTE algorithm to the test dataset).
4. DCS-SVM using a regular support vector machine as the classifier [17].

The DCS-SOCP-SVM method aims to address overfitting, information loss in undersampling methods,
and trivial information increase in oversampling methods, as well as reducing the computational cost
brought by support vector machines. In the experiments, SOCP-SVM was used as the classifier. Each
method was repeated five times, with the average results used as the final outcome. These experiments were
implemented using MATLAB2023a and Python3.11.2 on a personal computer equipped with an AMD4600,
3.70 GHz processor.

The first method directly operates on the original dataset without sampling (NS method). The second
method uses the ENN method for sampling; the reason for not using random sampling as a control is that
the ENN algorithm generally performs better than random undersampling. In the experiments, random
undersampling is used to obtain more classifiers. In this method, k is chosen as 3, which means that for each
sample point, if the nearest 3 elements of the same class outnumber those of the different class, it is retained;
otherwise, it is removed. The strategy in the third method is to make the number of majority class samples
equal to the number of minority class samples as much as possible to maximize the algorithm’s performance.
Both major sampling algorithms were implemented using Python’s imbalanced-learn library [35]. The
parameters and implementations of the fourth method are consistent with those proposed in Chapter 3, with
the only difference being that B-SVM is used to distinguish support vectors and non-support vectors, and a
traditional support vector machine is used as the final classifier instead of a second-order cone programming
support vector machine, resulting in an ensemble SVM (SVMen). The fourth method and the proposed
algorithm were both implemented using MATLAB.

Given the importance of minority class samples in imbalanced datasets, the G-mean and F-measure of
the minority class samples were chosen to evaluate. As shown in Table 2, the proposed DCS-SOCP-SVM
method achieved the highest G-mean of 0.85721. The proposed algorithm achieved the highest value on six
datasets, while the SMOTE and SOCP-SVM combined algorithms achieved the highest value on four datasets
ranking second. The undersampling algorithm and the ordinary DCS algorithm achieved the highest value
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on the two datasets, outperforming the traditional SOCP-SVM. Table 3 shows that the proposed DCS-SOCP-
SVM method achieved the highest average value of 0.94611. The proposed algorithm outperformed other
datasets on all datasets or was paired with them, while the SMOTE and SOCP-SVM combined algorithm
achieved the highest value on three datasets, ranking second. The undersampling algorithm and the ordinary
DCS algorithm achieved the highest value on two datasets, while the unoptimized SOCP-SVM achieved
the highest value on one dataset. Table 4 shows that the proposed DCS-SOCP-SVM algorithm achieved the
highest value of 0.84815. The proposed algorithm outperformed the other datasets on five datasets, while
the SOCP-SVM optimized with SMOTE achieved the highest value on four datasets. The ENN-optimized
SOCP-SVM and the original DCS algorithm followed closely, achieving the highest value on three and
two datasets, respectively. The unoptimized classifier performed the worst, with the lowest performance
on all datasets. Combining the data from Tables 2–4, it can be observed that using DCS as a sampling
method outperforms traditional oversampling algorithms such as SMOTE and undersampling algorithms
such as ENN, indicating better performance of the new sampling algorithm compared to traditional sampling
algorithms. For algorithms that use DCS, the method using SOCP-SVM as the classifier outperforms the
method using SVM as the classifier, indicating that the classifier mentioned in this paper outperforms
traditional SVM classifiers. Combining the data and the conclusions from the tables, it can be concluded that
the method proposed in this paper is more advantageous than traditional methods.

Table 2: G-mean

NS-SOCP-SVM SMOTE-SOCP-SVM ENN-SOCP-SVM DCS-SVM DCS-SOCP-SVM
Abalone 0.82848 0.83980 0.82014 0.82204 0.83980
Balance 0.96666 0.99959 0.97510 0.98272 0.95323

Car 0.74824 0.74501 0.74898 0.74756 0.75881
Cmc2 0.72507 0.73308 0.71169 0.73929 0.74738
Ecoli 0.94868 0.96225 0.96225 0.96225 0.96225

Haberman 0.75593 0.92582 0.82752 0.87833 0.91352
Wilt2 0.69063 0.69861 0.69177 0.69063 0.71039
Yeast 0.96515 0.96077 0.96515 0.96515 0.97236

Table 3: F-measure

NS-SOCP-SVM SMOTE-SOCP-SVM ENN-SOCP-SVM DCS-SVM DCS-SOCP-SVM
Abalone 0.89170 0.89296 0.88193 0.90713 0.91005
Balance 0.99187 0.99828 0.99187 0.99187 0.99828

Car 0.88387 0.89102 0.88387 0.89731 0.90352
Cmc2 0.72507 0.82828 0.79828 0.79828 0.83202
Ecoli 0.98462 0.96269 0.98462 0.98462 0.98462

Haberman 0.92894 0.94915 0.94915 0.94915 0.96188
Wilt2 0.97224 0.98532 0.98532 0.98532 0.98532
Yeast 0.98983 0.99320 0.96963 0.97784 0.99320
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Table 4: AUC

NS-SOCP-SVM SMOTE-SOCP-SVM ENN-SOCP-SVM DCS-SVM DCS-SOCP-SVM
Abalone 0.76942 0.84065 0.82280 0.83710 0.84065
Balance 0.96721 0.96967 0.97541 0.97541 0.98317

Car 0.75301 0.74612 0.76488 0.76032 0.75382
Cmc2 0.72507 0.73337 0.71528 0.72760 0.74210
Ecoli 0.88557 0.88740 0.88740 0.88740 0.88740

Haberman 0.76902 0.92857 0.92857 0.90381 0.91654
Wilt2 0.69208 0.69960 0.69315 0.69315 0.69960
Yeast 0.96575 0.96154 0.96154 0.96575 0.96154

5 Conclusion
Sampling methods are commonly employed to address the issue of skewed sample distribution in

imbalanced datasets. However, these methods can lead to the loss of crucial information or the introduction
of irrelevant information during classification, ultimately affecting the prediction accuracy of minority class
samples in imbalanced datasets. Given the different contributions of support vectors (SVs) and non-support
vectors (NSVs) to classification, this paper proposes a new ensemble sampling classification algorithm based
on SOCP-SVM (DCS-SOCP-SVM). In this method, SVs and NSVs are identified through the B-SOCP-
SVM method. The SV-SMOTE is used to increase the number of minority class samples, and NSV-RUS
is employed multiple times to reduce the number of majority class samples, resulting in different training
sets. Imbalanced datasets were selected from the UCI repository and experiments were conducted using
various existing sampling methods. The results demonstrate that the proposed DCS-SOCP-SVM method
outperforms other methods (SOCP-SVM, ENN-SOCP-SVM, SMOTE-SOCP-SVM, and DCS-SVM).

The proposed method offers significant potential for future optimization. For example, the SMOTE
algorithm used in this approach could be substituted with more advanced techniques such as ADASYN
or Borderline-SMOTE to improve performance. Similarly, the random undersampling component could
be enhanced by leveraging algorithms like Edited Nearest Neighbors (ENN), and various datasets could
be generated by experimenting with different parameter configurations. Additionally, more sophisticated
ensemble learning techniques, such as Boosting or Stacking, could be applied to combine classifiers or
integrate diverse models, enabling a deeper exploration of performance improvements. Moreover, this
method can be extended to handle multi-class datasets, broadening its applicability and impact.
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Abbreviation
SVM Support vector machine
SOCP-SVM Second-order cone programming support vector machine
SV Support vector
NSV Non-support vector
B-SVM Biased support vector machine
B-SOCP-SVM Biased second-order cone programming support vector machine
SV-SMOTE Support vector-SMOTE
NSV-RUS Random under-sampling removing non-support vectors
SVMen Support vector machine ensemble classifier
SOCP-SVMen Second-order cone programming support vector machine ensemble classifier
hybrid NN-CSSVM Hybrid neural network and cost-sensitive support vector machine
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