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ABSTRACT: This study conducts a thorough examination of honeycomb sandwich panels with a lattice core, adopting
advanced computational techniques for their modeling. The research extends its analysis to investigate the natural
frequency behavior of sandwich panels, encompassing the comprehensive assessment of the entire panel structure. At
its core, the research applies the Representative Volume Element (RVE) theory to establish the equivalent material
properties, thereby enhancing the predictive capabilities of lattice structure simulations. The methodology applies these
properties in the core of infinite panels, which are modeled using double periodic boundary conditions to explore
their natural frequencies. Expanding beyond mere material characterization, the study introduces a novel approach
to defining the material within the panel cores. By incorporating alternate materials such as steel and AlSiC, and
by strategically modifying their ratios, the research streamlines the process of material variation without resorting
to repetitive 3D operations on the constituent cells. This optimizes not only the computational resources but also
offers insights into the structural response under diverse material compositions. Furthermore, the investigation extends
its scope to analyze the influence of curvature on the structural behavior of lattice structures. Panels are modeled
with varying degrees of curvature, ranging from single to double curvatures, including cylindrical and spherical
configurations, across a spectrum of radii. A rigorous analysis is performed to study the effect of curvature on the
mechanical performance and stability of lattice structures, offering valuable insights for design optimization and
structural engineering applications. By building upon the existing knowledge and introducing innovative method-
ologies, this study contributes to improving the understanding of lattice structures and their applicability in diverse
engineering contexts.

KEYWORDS: Sandwich panels; finite element method; homogenization theories; honeycomb; representative volume
element

1 Introduction
In the realm of engineering, there has been a notable shift towards the use of fewer resources and the

enhancement of the design of lightweight structures, particularly within transportation systems, in response
to ecological trends [1]. This evolution has led to the widespread adoption of Additive Manufacturing (AM)
technologies, serving as a direct response to these trends. AM processes offer a wide parameter space that
significantly influences the mechanical properties, while simultaneously reducing the manufacturing costs
through a decreased material usage [2,3].

Recent advancements in AM have emphasized the integration of sustainable practices and energy-
efficient production methods. Binder jetting and directed energy deposition techniques have revealed to be
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optimal to achieve a high material utilization while minimizing waste, making them suitable for large-scale
industrial applications [4,5]. Moreover, the development of hybrid AM systems has facilitated the production
of multi-material components with enhanced mechanical and thermal properties [6,7].

The rapid expansion of AM technologies can be attributed to their flexible processes, ability to
incorporate multi-materials, and capability to modify function, structure, and material properties, while
reducing the production costs up to 50% [8]. The Artificial Intelligence (AI) and machine learning tools have
increasingly been integrated into AM workflows to optimize the process parameters, to detect defects, and
to predict material properties, leading to an improved efficiency and product quality [9,10]. These tools are
particularly valuable for automating the design of complex lattice structures [11].

This complexity in AM production processes enables the creation of periodic structures, which boast
advantageous mechanical properties relative to weight or volume ratios [3]. Among these highly periodic
structures, lattice cells and porous cellular structures, presenting different applications and potentials due
to their tailored properties [12–14]. A recent work has also explored the use of AM in creating bio-
inspired designs for energy absorption and impact resistance, with potential applications in aerospace and
automotive engineering.

To fully harness the potential of AM, engineers must identify and integrate the most affecting process
parameters for design and modeling phases, requiring the development and selection of appropriate design
tools [8], such as the Representative Volume Element (RVE). The RVE serves as the smallest statistically
representative volume or cellular element of the entire domain, ensuring a constitutive response error below
5% [15]. It must strike a balance between being smaller than the overall structural domain, yet large enough
to encompass defects for a realistic mechanical response [16,17].

Recent advancements in computational modeling, such as phase-field approaches, have improved the
simulation of RVE properties under complex loading conditions, enabling a more accurate prediction of the
material behavior [18,19]. These methods, together with traditional finite element strategies, are particularly
useful for anisotropic and heterogeneous materials.

Various studies have proposed methods to determine the optimal size of the RVE to maintain the
computational efficiency [20,21]. Notable contributions in literature, including works by Masters et al. [22],
Christensen [23], and Wang et al. [24,25], have provided solutions for deriving the equivalent mechanical
properties from RVE definitions, predominantly relying on the description of cellular components through
Euler-Bernoulli beams. Alternative approaches, such as energy equivalence methods, offer solutions for more
complex cellular topologies [26,27].

Numerous studies have explored the wave propagation in lattice structures and their corresponding
frequency response [28–30]. The recent research has introduced novel approaches for bandgap engineering
in lattice structures, enabling their use in vibration isolation and noise reduction applications [31,32].

Homogenization techniques allow for the investigation of an equivalent continuum representation of
periodic solid cellular structures. Asymptotic expansion approaches have facilitated the development of
multiscale methods [33,34]. In such a context, the Finite Element Method (FEM) remains the predominant
tool for analyzing continuum micromechanics problems, with periodic homogenization methods leveraging
single repeating volume elements [35,36].

Innovative hybrid homogenization approaches combine experimental data and numerical simulations,
thus enhancing the accuracy of material property predictions for AM components [37,38]. These techniques
are particularly beneficial for high-performance applications in aerospace and biomedical engineering.

Recent advancements, such as the mechanics of structural genome, offer innovative approaches to
periodic homogenization, allowing for the analysis and division of structures into basic repeating elements
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for macro-to-micro scale transitions [39]. Noteworthy studies about the homogenization procedure of
periodic cellular structures, including those by Seiler et al. [40], Alaimo et al. [41], Mantegna et al. [42],
and Tumino et al. [43], have introduced novel concepts, such as waviness and simplifiedbreak homogeniza-
tion approaches.

Advanced studies, such as the investigation of thermo-elastic buckling in honeycomb micro plates
integrated with FG-GNPs reinforced Epoxy skins [44], provide valuable insights that complement our
methodology. In the last years, the advancement in the field of auxetic honeycomb structures has further
emphasized their potential in engineering applications. For instance, Kiani et al. [45] conducted a detailed
thermo-mechanical bending analysis of sandwich cylindrical panels with auxetic honeycomb cores, high-
lighting their enhanced mechanical behavior under combined loading conditions. Similarly, Amirabadi
et al. [46] explored the free vibrational behavior of conical sandwich shells with functionally graded auxetic
honeycomb cores, focusing on the dynamic advantages of such structures. These studies underscore the
growing interest and utility of auxetic honeycomb designs, aligning with the focus of this work on innovative
lattice-based materials.

From an analytical point of view in the existing literature, a comprehensive investigation into the
structural behavior of doubly-curved shells reinforced with honeycomb cores has been conducted by
Tornabene et al. [47]. Their study encompasses the modal analysis of a large variety of shell geome-
tries across various practical applications of such shells. Utilizing a theoretical framework grounded in
the equivalent single layer and principles of differential geometry, as extensively discussed in another
study [48], numerical computations were carried out employing the generalized differential quadrature
method [49].

In conclusion, this study significantly contributes to advancing the understanding of honeycomb
sandwich panels and lattice structures, validated through the work of Tornabene et al. [47] and based
on the research by Valvano [50] for the application of the RVE method. The integration of advanced
computational tools, sustainable practices, and bio-inspired designs demonstrates the potential of AM to
revolutionize engineering applications. By leveraging recent innovations in AI, multi-material systems, and
hybrid modeling, this study provides a valid reference for a further development in the field of lightweight
and high-performance structures.

2 Homogenization Theory
The central idea behind the sandwich core, as employed here, relies on lattice structures. In particular,

rectangular, hexagonal, and reentrant cell geometries are considered, as they represent the most commonly
used cell configurations in practical applications and they are extensively documented in literature. In
the present study, these cellular geometries are examined in two distinct scenarios: in the first one, the
model is validated through cell geometries existing in the literature, in particular the cell geometries
investigated by Tornabene et al. [47]. In the second scenario, the equivalent volume among the three
geometries remains constant. In this context, the homogenization of these cells plays a pivotal role in
understanding and analizing the structural properties of sandwich panels. The homogenization approach,
the same used by Valvano in his work [50], allows for the simplification of the complexity of cell structures by
treating the composite material of the panel as a continuous medium with uniform properties. Specifically,
considering rectangular, hexagonal, and reentrant cell geometries, the homogenization procedure is applied
to characterize the effective mechanical behavior of the sandwich panel. Based on this homogenization
technique, the intricate variations within the cell geometries are effectively considered, facilitating accurate
predictions of the overall structural response of the sandwich sructure. Importantly, the utilisation of
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homogenization techniques not only ensures a computational efficiency but also guarantees a compre-
hensive analysis of the plate behavior, thus enhancing the reliability and robustness of the engineering
design process.

In the numerical code used herein, each cell has been drawn as a three dimentional (3D) solid, as
shown in Fig. 1. The discretization process of the cells involves the use of C3D20R elements, i.e., a 20-node
quadratic brick, with reduced integration. The reduced integration is a numerical method used to solve the
numerical “locking” problem, usually linked to thin-walled structures [51–53]. The mesh convergence study
is not reported here for the sake of brevity.

Figure 1: Representation of the honeycomb cells: rectangular, hexagonal and reentrant geometry

In materials science, RVEs (Fig. 2) serve as crucial tools for characterizing the mechanical properties of
complex structures, particularly in the case of honeycomb sandwich panels. RVEs represent the minimum
repeating unit within these structures (cells), encapsulating the essential statistical variations in material
properties. By defining the RVE, researchers can extract the key mechanical core properties such as Young’s
modulus (E), Poisson’s ratio (ν), and shear modulus (G). For honeycomb lattice panels, whose cells exhibit
an isotropic behavior under traction or shear loading, these properties suffice. For cells with an anisotropic
behavior, additional properties are considered (i.e., Ei , νi j and Gi j, with i , j = x , y, z). Also, the kinematic
components referred to the x , y and z directions are indicated as u, v and w, respectively. This approach
facilitates the development of accurate computational models and enhances the knowledge of the material
behavior, crucial for the advancement in engineering and design.
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For consistency reasons, in the current homogenization campaign is essential to ensure the displacement
compatibility along the faces of the RVE by applying double periodic boundary conditions to surfaces with
normals differing from the loaded face. Fig. 3 illustrates an example of hexagonal cell, with three positive
surfaces in each direction named x+, y+ and z+. For readability purposes, the negative surfaces are not
depicted in the figure. According to Valvano [50], the notion of periodicity entails that the RVE undergoes
uniform deformations, without separation or overlap among neighboring volume elements [35,54]. This
condition of periodicity can be formulated as follows:

ui = ε̄ i k xk + u∗i (1)

ui are the mechanical displacements for a generic i-th direction (i.e., i = 1, 2, 3 refers to the displacement
components along x , y and z directions, in compact notation). Thus, the displacements on a pair of opposite
boundary surfaces writes:

u j+
i = ε̄ i k x j+

k + u∗i u j−
i = ε̄ i k x j−

k + u∗i (2)

Here, ε̄ i k represents the average strains, and u∗i denotes the unknown periodic component of the
displacement components on the boundary surfaces. In this context, index j denotes the normal direction
for both the upper (+) and lower (–) boundary surfaces. The displacement variation between the upper and
lower boundary surfaces can be characterized as:

u j+
i − u j−

i = ε̄ i k(x j+
k − x j−

k ) = ε̄ i k Δx j
k (3)

For a RVE in cubic shape, and in more general parallelepiped volume elements, the constant nature
of Δx j

k holds. As a result, a generalized formulation of periodic boundary conditions can be defined in the
following manner:

u j+
i (x , y, z) − u j−

i (x , y, z) = c j
i (4)

In this equation, the constants c j
i refer to the stretching or contracting factors of the RVE. It is possible

to define the average stresses σ̄i j and strains ε̄ i j of the RVE as follows [50]:

ε̄ i k =
1
V ∫V

εi j dV ; σ̄i k =
1
V ∫V

σi j dV (5)

The integrands εi j and σi j in Eq. (5) represent the local strains and stresses of the constituent
volume elements.

To implement the double periodicity within the numerical code used, a novel routine has been here
implemented in the Abaqus environment, which verifies the position of corresponding nodes placed on the
opposite boundary surfaces (i.e., at x+ and x−). For each pair of nodes located on the external surfaces, a
series of constraint equations is generated, as outlined below [42], i.e.,

u+i − u−i = Δu v+i − v−i = Δv w+i −w−i = Δw (6)

with

Δu = u+re f − u−re f Δv = v+re f − v−re f Δw = w+re f −w−re f (7)
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Figure 2: RVE for an arbitrary hexagonal cell

Figure 3: Constrained faces and reference system of an arbitrary hexagonal cell

In Eq. (6), the fundamental constraint equations are presented for a single direction. The mechanical dis-
placements for each pair of i-th nodes can be correlated by introducing a Δ term, representing the stretch or
dilation properties of the cellular structure. This parameter is determined based on a selected reference (re f )
pair of nodes. Upon implementing the double periodicity condition, nodes within the mesh may intersect
two distinct boundary surfaces with different normals. These intersecting nodes must remain unconstrained.
For a fixed variation of loading and boundary conditions necessary to assess parameters such as Young’s
modulus E, Poisson’s ratio ν, or shear modulus G, a comprehensive summary of boundaries, here adopted
to define the orthotropic homogenized properties for the cell (i.e., Ex , Ey , Ez , νx y , νxz , νyz , Gx y , Gxz , Gyz),
is provided in Table 1. In order to determine the Young modulus Ei in each direction i, traction has been
enforced on the positive surfaces x+, y+ and z+ (Fig. 3), alternatively, through a prescribed displacement
along the selected direction. Furthermore, the reaction force could be obtained from the lower boundary
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surfaces x−, y− and z−, where the prescribed displacement is set to zero only for the component in the load
direction (i.e., x, y and z), as shown in Fig. 4 for the y-direction traction. To apply the boundary conditions,
the definition of the outer boundary surfaces with respect to the direction of its normal is a crucial aspect.
The boundary conditions are defined by enforcing a prescribed displacement on the FEM nodes lying on the
boundary surfaces.

Table 1: Summary of double boundary conditions

Outer surfaces x+ x− y+ y− z+ z−

Ex u = load u = 0 u = periodic u = periodic u = periodic u = periodic
v = free v = free v = periodic v = periodic v = periodic v = periodic
w = free w = free w = periodic w = periodic w = periodic w = periodic

Ey u = periodic u = periodic u = free u = free u = periodic u = periodic
v = periodic v = periodic v = load v = 0 v = periodic v = periodic
w = periodic w = periodic w = free w = free w = periodic w = periodic

Ez u = periodic u = periodic u = periodic u = periodic u = free u = free
v = periodic v = periodic v = periodic v = periodic v = free v = free
w = periodic w = periodic w = periodic w = periodic w = load w = 0

νx y u = load u = 0 u = periodic u = periodic u = periodic u = periodic
v = free v = free v = periodic v = periodic v = periodic v = periodic
w = free w = free w = periodic w = periodic w = periodic w = periodic

νxz u = load u = 0 u = periodic u = periodic u = periodic u = periodic
v = free v = free v = periodic v = periodic v = periodic v = periodic
w = free w = free w = periodic w = periodic w = periodic w = periodic

νyz u = periodic u = periodic u = free u = free u = periodic u = periodic
v = periodic v = periodic v = load v = 0 v = periodic v = periodic
w = periodic w = periodic w = free w = free w = periodic w = periodic

Gx y u = 0 u = 0 u = periodic u = periodic u = periodic u = periodic
v = load v = 0 v = periodic v = periodic v = periodic v = periodic
w = free w = free w = periodic w = periodic w = periodic w = periodic

Gyx u = periodic u = periodic u = load u = 0 u = periodic u = periodic
v = periodic v = periodic v = 0 v = 0 v = periodic v = periodic
w = periodic w = periodic w = free w = free w = periodic w = periodic

Gxz u = 0 u = 0 u = periodic u = periodic u = periodic u = periodic
v = free v = free v = periodic v = periodic v = periodic v = periodic
w = load w = 0 w = periodic w = periodic w = periodic w = periodic

Gzx u = periodic u = periodic u = periodic u = periodic u = load u = 0
v = periodic v = periodic v = periodic v = periodic v = free v = free
w = periodic w = periodic w = periodic w = periodic w = 0 w = 0

Gyz u = periodic u = periodic u = free u = free u = periodic u = periodic
v = periodic v = periodic v = 0 v = 0 v = periodic v = periodic
w = periodic w = periodic w = load w = 0 w = periodic w = periodic

Gz y u = periodic u = periodic u = periodic u = periodic u = free u = free
v = periodic v = periodic v = periodic v = periodic v = load v = 0
w = periodic w = periodic w = periodic w = periodic w = 0 w = 0
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Figure 4: Traction test in y-direction. The load is applied on the y+ surface, while the y− surface (grey) is constrained
in the y-direction

A series of pure traction tests are conducted to assess the Young’s modulus E and Poisson’s coefficient
ν. Various geometries of the cell are examined, i.e., rectangular, hexagonal, and reentrant shapes. According
to the Hooke’s law σ = Eε, the Young’s modulus E can be deduced from stress and strain data. Strain
values are readily available since traction is applied as prescribed displacement on a boundary surface. The
corresponding stress state can be computed using the reaction forces obtained from the opposite boundary
surface, where the prescribed displacement is restricted solely to the component of the loading direction.
Additionally, the equivalent stresses are determined as follows:

σeq =
∑ Freac

Aeq
(8)

Here, Aeq is the area of the box cell where the load is applied (it is H ∗ W for a load applied in the
x-direction, L ∗ W for a load applied in the z-direction, L ∗ H for a load applied in the y-direction). Freac
represents the sum of reactions on the constrained face in the loading direction. At the same time, the
Poisson’s coefficint ν writes:

νeq = −
εtransv

εl oad
(9)

As previously stated, εl oad is determined from the prescribed loading displacement. Conversely, εtransv
needs to be computed along the two transversal directions using the following simple expressions, here
shown for the specimen loaded in the z-direction: εx x = (u+x − u−x )/L or εy y = (v+y − v−y )/H. The same
procedure must be applied for each loading direction. It is possible to obtain the shear modulus G, by knowing
the stress and the strain and by using the Hooke law: τ = Gε.

In Figs. 5 and 6, the shear loading is represented. In particular, to define the shear modulus Gx y , the
faces with normal y and z are constrained with double periodic boundary conditions (arrows), while the
x-normal-positive face is loaded in the y-direction. Its opposite face (grey face) is constrained in the x and
y directions. Gyx is calculated considering the faces with normal x and z constrained with double periodic
boundary conditions (arrows), while the y-normal-positive face is loaded in the x-direction. Its opposite face
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(grey face) is constrained in the x and y directions. In any case, the shear modulus is calculated based on the
reaction force in the load direction and generated on the parallel and opposite face of the loaded one, namely
the restrained one.

Figure 5: Loaded cell for the definition of the shear modulus Gx y

Figure 6: Loaded cell for the definition of the shear modulus Gyx

Given the asymmetrical behavior of the cells under consideration, all shear moduli will be different
each other. This will result in the definition of a homogenized material with non-isotropic properties. In
particular, it is considered the equilibrium equation τi j = τ ji resulting from the equilibrium assumption that
avoids the specimen torsion, such that:

τi j = τ ji ⇒ Gi j
∂u j

∂i
= G ji

∂ui

∂ j
(10)
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being i the direction of the load, and j the transverse direction. Since the response of the cell to shear stresses
is not symmetrical (as shown in Figs. 5 and 6), it is clear that Gi j ≠ G ji and Eq. (10) becomes:

∂u j

∂i
=

G ji

Gi j

∂u j

∂i
(11)

In this way, knowing one of the two tangential stresses (e.g., τ ji) and both shear moduli G ji and Gi j, it
is possible to define the tangential stress in the other direction. Once the strain and shear stresses in both
directions are known, it is possible to define the homogenized shear modulus as follows:

Ḡi j =
τi j + τ ji

εi j + ε ji
(12)

Finally, to fully characterize the homogenized properties of the generic aluminium cell, the equivalent
density has been determined as: ρ = ρall (Vcell/Vcube cell), where Vcell represents the volume of the considered
cell structure, and Vcube cell denotes the volume of the equivalent full parallelepiped cell.

3 Results

3.1 Honeycomb Panels with Different Lattice Cells
Among different geometries of the cells, the inclination θ of the sides of length a is varied from 0○ (for

rectangular cells) to±30○ (for hexagonal and reentrant cells). The same isotropic material is applied for all cell
geometries, i.e., Aluminium with ρ = 2700 kg/m3, E = 70 GPa, ν = 0.33. The external bounding box defining
the cell dimensions (Fig. 2), is a parallelepiped with edges of length L = 20 mm, H = 10 mm and W = 5 mm
representing the cell length, height and depth respectively. In all analyzed cells, the wall thickness, s, measures
0.1 mm uniformly. However, it reduces by half, i.e., to 0.05 mm, along walls oriented normally to the y-axis.

The geometrical dimensions of the cells, depicted in Fig. 7 measure l = 4.97E − 3 m, l2 = 10.0E −
3 m, θ = 0 deg for the rectangular cell, l = 5.77E − 3 m, l2 = 7.11E − 3 m, θ = 30 deg for the hexagonal cell and
l = 5.98E − 3 m, l2 = 13.39E − 3 m, θ = −30 deg for the reentrant cell.

The homogenized orthotropic properties of the cell for various geometries are presented in Table 2.
In the same manner, the homogenized properties of cells modeled with dimensions equal to those used

by Tornabene et al. [47] have been defined. The resulting properties are listed in Table 3.
This subsection validates the current approach for 3D homogenizations of equivalent orthotropic

materials by examining an infinite sandwich panel under double-periodic boundary conditions. To this end,
two sandwich structures are modeled, for a fixed geometry. The first panel consists of two external aluminium
skins with thickness of 1 mm and a central core of thickness 5 mm with cells aligned in a single row. The other
panel, on the other hand, has a central core with homogenized properties, as previously defined, while the
skins are made of aluminum. As mentioned before, the panel has double boundary conditions at each lateral
face. The first ten natural frequencies are computed for each cell geometry, as reported in Tables 4 and 5 for
cells with equal volume and those modeled according to Ref. [47], respectively. Fig. 8 shows the first four
frequencies of a 3D plate made of rectangular cells with a costant volume.

It is evident from the results in Tables 4 and 5 that the homogenization method proposed in this study
effectively approximates the 3D behavior, with a significantly lower computational cost and an overall error
mostly below 5%.
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Figure 7: Geometry of the rectangular, hexagonal and reentrant cells

Table 2: Equivalent properties of rectangular, hexagonal and reentrant cells with a constant equivalent volume

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 ρ
(Pa) (Pa) (Pa) (−) (−) (−) (Pa) (Pa) (Pa) (kg/m3)

Rectangul ar Cel l
1.270E6 7.410E8 1.393E9 0.0001 0.0003 0.1751 1.168E5 2.289E8 2.643E8 53.73

Reentrant Cel l
1.094E6 6.173E5 1.763E9 −1.3295 0.0002 0.0001 5.752E4 2.253E8 1.355E8 68.00

Hexagonal Cel l
1.077E6 7.193E5 1.300E9 0.0001 0.0002 0.0001 2.521E5 2.475E8 1.472E8 50.20

Table 3: Equivalent properties of rectangular, hexagonal and reentrant cells with reference dimensions [47]

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 ρ
(Pa) (Pa) (Pa) (−) (−) (−) (Pa) (Pa) (Pa) (kg/m3)

Rectangul ar Cel l
1273163 741041992 1393000977 9.9471E-5 3.0201E-4 0.1754 116825 228915695 264267719 53.73

Reentrant Cel l
310469 386629 1412498714 −0.8957 7.2815E-5 9.0261E-5 29325 153625526 108602931 54.48

Hexagonal Cel l
1350221 1351570 1566109185 0.9983 2.8384E-4 2.8481E-4 512092 276523163 207818247 60.40
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Figure 8: First four frequencies (Hz) of the rectangular plate modeled with a 3D lattice core

Furthermore, a comparison among results in Table 5 with predictions by Tornabene et al. [47] shows
the good accuracy of the proposed approach, despite the reduced number of degrees of freedom (DOFs) by
an order of magnitude.

Table 5 reports the results obtained by considering shear components for out-of-plane bending only,
instead of considering the full shear components calculated by Eq. (12) for a general orthotropic material.
This decision is based on the issue described earlier, specifically the difference between shear components,
where Gi j ≠ G ji , which are typically related by the equilibrium equation τi j = τ ji .
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To mitigate this inconsistency in the future, one could consider adopting a different starting point for
the formulation of the constitutive equations, using τi j ≠ τ ji . This approach would result in independent
values for Gi j and G ji .

3.2 Honeycomb Panels with Various Material Cells
The investigation of lattice structures with varying cell materials stands at the forefront of materials

science and engineering, particularly in the context of homogenized property studies. Within this realm, the
exploration of lattice structures with diverse cell geometries offers invaluable insights into the mechanical
properties, but also in general thermal or functional characteristics of materials.

This study examines the homogenized properties of lattice structures with varying cell geometries,
transitioning from aluminum to two distinct materials: steel and isotropic metal matrix composite AlSiC
(Aluminum Silicon Carbide) with short fibers [55]. The sequential analysis highlights the influence of the
material composition on the overall behavior of lattice structures, favoring tailored material design and
optimization across a spectrum of applications. A systematic analysis explores the relation between cell
geometry and material properties, advancing the understanding of lattice structures and their potential for
practical implementation in diverse engineering domains.

The mechanical properties applied in the model for the two materials just introduced, i.e., steel
and AlSiC, are reported in Table 6. AlSiC is widely used in advanced engineering applications due to its
exceptional combination of high thermal conductivity, low density, and excellent mechanical properties.
These characteristics make it a preferred choice for applications requiring lightweight yet robust materials,
especially in thermal management and structural integrity. This section focuses on the analysis of AlSiC to
highlight its suitability for the investigated scenarios. The volume fraction Vf of the AlSiC material is here
considered equal to 0.70%.

Table 6: Aluminum, steel and AlSiC materials properties

Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio
Aluminum 2700 70.00 0.330

Steel 7830 207.0 0.300
AlSiC [55] 3020 224.6 0.231

To define the equivalent properties of cells composed of the steel and AlSiC materials, the techniques
described in the previous section are employed, and the results are presented in Table 7, for cells whose
volume remains constant as the angle θ varies.

Homogenization of cells within lattice structures involves different materials in these cells, often leading
to a complex nature of the mechanical properties. Understanding these relationships is pivotal, as it can
significantly reduce the computational time by circumventing the need for recalculating finite element
analyzes. By discerning the homogenized properties of one material, it becomes feasible to define those of
another through established relationships, as summarized in Table 8, referring to a rectangular cell. This
approach streamlines the design process, enabling engineers to leverage existing data and models to predict
the mechanical behavior of novel materials without the burden of extensive recalculations.
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Table 7: Equivalent properties of rectangular, hexagonal and reentrant cells with a constant equivalent volume. Steel
and AlSiC material

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 ρ
(Pa) (Pa) (Pa) (−) (−) (−) (Pa) (Pa) (Pa) (kg/m3)

Rectangul ar Cel l
Steel 3677939 2169756445 4119321094 1.4307E-4 2.6834E-4 0.1577 338171 692403529 799584196 155.8
AlSiC 3836825 2310251367 4469542969 1.7439E-4 1.9885E-4 0.1192 352622 792662811 916122446 60.10

Reentrant Cel l
Steel 3168338 1787486 5216087109 −1.3296 1.8273E-4 1.0279E-4 166571 680827811 408105060 197.3
AlSiC 3304423 1864260 5659535156 −1.3296 1.3543E-4 7.6072E-05 173702 777613727 462483349 76.10

Hexagonal Cel l
Steel 3119549 2083040 3845591797 1.2229 2.4323E-4 1.6235E-4 730078 748204940 442746782 145.6
AlSiC 3253813 2172607 4172533203 1.2230 1.8007E-4 1.2001E-4 761341 855821969 500481764 56.17

Table 8: Dimensionless ratios of steel, aluminum, and AlSiC materials for a rectangular cell

ρre l Ere l
x Ere l

y Ere l
z νre l

x y νre l
x z νre l

yz Gre l
x y Gre l

x z Gre l
yz

Aluminium 1.99E-02 1.81E-05 1.06E-02 1.99E-02 3.81E-04 9.13E-04 5.31E-01 4.44E-06 8.70E-03 1.00E-02
Steel 1.99E-02 1.78E-05 1.05E-02 1.99E-02 4.77E-04 8.94E-04 5.26E-01 4.25E-06 8.70E-03 1.00E-02
AlSiC 1.99E-02 1.71E-05 1.03E-02 1.99E-02 7.55E-04 8.61E-04 5.16E-01 3.87E-06 8.69E-03 1.00E-02

The parameters listed in Table 8 are derived from the ratio between the equivalent property for a fixed
geometry and the actual property of the material. This ratio is calculated for each of the 9 mechanical
properties. Knowing the mechanical properties of materials and their homogenized properties for one of
them, it is possible to define the homogenized properties of other materials. To do this, one multiplies the
normalised value, i.e., those in Table 8, by the corresponding material property. For instance, if one wants to
determine the Young’s modulus Ex of steel using the homogenized properties of aluminum, these quantities
should multiply the Young’s modulus of steel Estee l by Ere l

x of aluminum.
This approach enables engineers to efficiently extrapolate the mechanical behavior of various materials

within lattice structures, significantly reducing the computational burden and accelerating the design
process. By leveraging these established relationships, designers can make informed decisions regarding
the material selection and structural optimization, ultimately enhancing the performance and reliability of
lattice-based systems. Therefore, the first 10 frequencies (Table 9) of the panel with the core composed by
homogenized properties of steel and AlSiC materials were computed for each cell geometry. In Table 2 the
equivalent properties for aluminium material are reported. It is easy to notice that the frequencies decrease
as the material stiffness increases, as also observed in the plate composed of steel cells.



2418 Comput Mater Contin. 2025;83(2)

Table 9: Natural frequencies (Hz) of a rectangular plate reinforced with rectangular, hexagonal and re-entered
honeycomb core. The cells have all the same equivalent volume. Steel and AlSiC material

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Rectangul ar Cel l

Steel 515.63 1006.8 1018.0 1446.4 1716.6 1751.0 2103.0 2123.8 2587.8 2651.3 144615
AlSiC 540.51 1059.8 1071.2 1526.6 1816.0 1850.8 2228.7 2249.7 2751.3 2815.6 144615

Reentrant Cel l
Steel 495.69 944.02 978.02 1361.0 1570.6 1675.9 1932.2 2001.5 2312.8 2506.8 144615

AlSiC 525.41 1006.8 1040.3 1454.1 1685.4 1790.8 2075.3 2145.1 2495.4 2697.8 144615
Hexagonal Cel l

Steel 506.53 969.66 1003.3 1401.7 1619.7 1724.5 1996.7 2065.8 2396.1 2595.2 144615
AlSiC 530.54 1021.3 1054.3 1479.1 1715.7 1820.0 2117.3 2186.5 2551.4 2757.5 144615

3.3 Honeycomb Curved Lattice Shells
Introducing curved lattice structures, we delve into a realm where traditional engineering meets inno-

vative design, offering a myriad of possibilities across various applications. These structures, characterized
by their curvature and interconnected lattice patterns, exhibit unique mechanical properties and aesthetic
appeal. From architectural marvels to aerospace components, curved lattice structures have garnered a
significant attention for their lightweight nature, structural integrity, and adaptability to complex geometries.

In this context, the present study focuses on the modeling of cylindrical and spherical panels with
cores composed of materials exhibiting homogenized properties. By integrating lattice structures into curved
panels, the work aims to explore the synergies between curvature and lattice geometry, leveraging the
enhanced mechanical characteristics of homogenized materials. The objective of this study is to analyze the
variation in natural frequencies of such panels as their curvature and dimensions change. By systematically
investigating how the curvature and size of curved lattice panels influence their natural vibration modes,
the work aims to provide insights into the dynamic behavior of these structures. This analysis will not only
deepen the understanding of the relationship between curvature and natural frequencies, but also it will
improve the design and optimization of curved lattice structures for specific engineering applications.

Tables 10–15 summarize the natural frequencies for cylindrical and spherical panels with radii of 2.0025
and 1 m, considering various plate dimensions and homogenized properties derived from rectangular,
hexagonal, and indented cells. Three dimensions are considered, named Geometry 1, 2 and 3. The value of
the varying parameters is indicated in each table. The three geometries are applied to both a cylindrical panel
(Tables 10–12) and a spherical one (Tables 13–15). The homogenized properties applied to the sandwich core
are derived from the cells analyzed in the current study at a constant equivalent volume (Case 1), as well as
those from the same work by Tornabene et al. [47] (Case 2).

Based on results in Table 10, it can be noticed that frequencies increase as curvature increases. This
correlation suggests a direct relationship between curvature and frequency, indicating that higher degrees
of curvature lead to higher frequencies in the observed phenomena. Moreover, an interesting observation
emerges regarding the impact of plate dimensions on results. Despite the variations in dimensions of the
plates used in this study, the differences in size seem to have a minimal effect on the outcomes. This suggests
that the variations in plate dimensions do not significantly alter the relationship between curvature and
frequency. Such robustness in the findings underscores the reliability and generalizability of the observed
trend across different plate sizes.
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Table 10: Natural frequencies (Hz) of a shell with Geometry 1

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Rectangul ar Cel l

R[m] = 2.0025; Ly[m] = 0.42061; ϕ[deg] = 11.6606
Case 1 584.69 902.02 922.12 1232.9 1419.0 1474.2 1698.3 1736.5 2009.5 2128.9 62661
Case 2 584.69 902.00 922.09 1232.9 1418.9 1474.1 1698.2 1736.5 2009.4 2128.9 62661

R[m] = 1; Ly[m] = 0.42061; ϕ[deg] = 23.3503
Case 1 844.68 961.47 1118.7 1326.5 1538.5 1570.9 1793.5 1804.5 2118.9 2185.93 62661
Case 2 844.67 961.45 1118.7 1326.5 1538.5 1570.9 1793.5 1804.4 2118.8 2185.8 62661

Reentrant Cel l
R[m] = 2.0025; Ly[m] = 0.39425; ϕ[deg] = 11.71421

Case 1 583.79 821.46 963.05 1194.7 1262.8 1508.4 1566.2 1706.9 1757.7 2017.1 59640
Case 2 570.93 781.01 908.86 1117.2 1187.9 1385.7 1455.5 1565.4 1639.8 1849.6 59640

R[m] = 1; Ly[m] = 0.39425; ϕ[deg] = 23.42842
Case 1 831.39 873.32 1147.7 1282.3 1308.8 1609.6 1642.2 1764.8 1793.7 2036.7 59640
Case 2 822.49 836.26 1104.9 1211.6 1240.3 1503.7 1532.8 1647.5 1660.9 1887.2 59640

Hexagonal Cel l
R[m] = 2.0025; Ly[m] = 0.42002; ϕ[deg] = 11.3102

Case 1 582.69 856.78 924.02 1192.8 1345.7 1435.0 1616.1 1668.8 1888.8 2032.1 62661
Case 2 591.87 908.03 942.44 1250.2 1455.1 1473.5 1735.5 1739.9 2082.2 2098.2 62661

R[m] = 1; Ly[m] = 0.42002; ϕ[deg] = 22.6487
Case 1 835.08 896.04 1114.5 1271.1 1380.2 1573.9 1648.9 1749.8 1885.2 2071.4 62661
Case 2 841.76 943.26 1128.3 1322.9 1487.3 1604.4 1763.9 1816.1 2076.4 2197.6 62661

Table 11: Natural frequencies (Hz) of a shell with Geometry 2

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Rectangul ar Cel l

R[m] = 2.0025; Ly[m] = 0.40; ϕ[deg] = 11.4510
Case 1 607.54 938.35 980.19 1298.2 1511.7 1528.5 1800.1 1809.3 2149.8 2191.8 59640
Case 2 607.53 938.33 980.16 1298.2 1511.7 1528.5 1800.0 1809.2 2149.7 2191.7 59640

R[m] = 1; Ly[m] = 0.40; ϕ[deg] = 22.93
Case 1 857.38 979.28 1164.4 1375.2 1553.3 1654.5 1843.6 1879.3 2195.1 2249.9 59640
Case 2 857.38 979.25 1164.4 1375.2 1553.3 1654.5 1843.6 1879.2 2195.0 2249.8 59640

Reentrant Cel l
R[m] = 2.0025; Ly[m] = 0.40; ϕ[deg] = 11.4510

Case 1 585.01 837.13 951.76 1196.4 1294.8 1483.7 1585.1 1694.1 1804.8 2023.6 59640
Case 2 572.21 795.36 899.26 1119.2 1217.2 1364.8 1473.2 1554.9 1682.9 1853.6 59640

R[m] = 1; Ly[m] = 0.40; ϕ[deg] = 22.93
Case 1 832.09 881.57 1136.9 1278.2 1331.7 1618.3 1620.6 1775.6 1802.9 2062.1 59640
Case 2 823.62 843.38 1095.8 1207.9 1260.8 1512.7 1513.9 1645.5 1682.2 1900.9 59640

(Continued)
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Table 11 (continued)

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Hexagonal Cel l

R[m] = 2.0025; Ly[m] = 0.40; ϕ[deg] = 11.4510
Case 1 595.25 859.89 974.18 1231.1 1336.1 1527.7 1637.3 1748.6 1868.6 2094.1 59640
Case 2 604.36 909.54 993.81 1287.9 1446.6 1565.3 1754.5 1821.4 2057.4 2224.1 59640

R[m] = 1; Ly[m] = 0.40; ϕ[deg] = 22.93
Case 1 844.42 903.73 1157.9 1312.0 1371.7 1660.0 1671.6 1828.9 1866.0 2134.8 59640
Case 2 851.16 949.15 1172.9 1363.5 1476.0 1693.4 1784.4 1897.3 2052.3 2260.7 59640

Table 12: Natural frequencies (Hz) of a shell with Geometry 3 studied with only Case 2

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Rectangul ar Cel l

R[m] = 2.0025; Ly[m] = 0.40; ϕ[deg] = 11.4510
Case 2 607.53 938.33 980.16 1298.2 1511.7 1528.5 1800.0 1809.2 2149.7 2191.7 62661

R[m] = 1; Ly[m] = 0.40; ϕ[deg] = 22.93
Case 2 857.38 979.25 1164.4 1375.2 1553.3 1654.5 1843.6 1879.2 2195.0 2249.8 62661

Reentrant Cel l
R[m] = 2.0025; Ly[m] = 0.3942522; ϕ[deg] = 11.28611

Case 2 580.67 811.86 916.02 1141.5 1241.3 1391.2 1502.1 1585.1 1715.1 1889.1 59640
R[m] = 1; Ly[m] = 0.3942522; ϕ[deg] = 22.6320

Case 2 831.59 860.28 1110.3 1229.7 1285.5 1536.8 1543.9 1675.0 1718.0 1937.3 59640
Hexagonal Cel l

R[m] = 2.0025; Ly[m] = 0.400296; ϕ[deg] = 11.4506
Case 2 604.10 909.33 992.95 1287.2 1446.5 1563.8 1753.9 1820.0 2057.4 2222.9 59640

R[m] = 1; Ly[m] = 0.400296; ϕ[deg] = 22.9298
Case 2 851.89 952.09 1172.9 1365.2 1481.9 1692.6 1789.2 1898.1 2061.2 2264.1 59640

Table 13: Natural frequencies (Hz) of a shell with Geometry 1

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Rectangul ar Cel l

R[m] = 2.0025; ϕ1[deg] = 11.6607; ϕ2[deg] = 12.0496
Case 1 730.16 952.73 986.98 1283.8 1436.4 1531.1 1724.7 1778.1 2012.6 2165.3 62661
Case 2 730.16 952.71 986.96 1283.8 1436.3 1531.1 1724.6 1777.9 2012.6 2165.2 62661

R[m] = 1; ϕ1[deg] = 23.3505; ϕ2[deg] = 24.1293
Case 1 1183.1 1214.5 1233.3 1494.9 1622.8 1743.6 1884.4 1929.4 2136.4 2273.6 62661
Case 2 1183.1 1214.5 1233.3 1494.9 1622.7 1743.5 1884.4 1929.3 2136.4 2273.6 62661

Reentrant Cel l
R[m] = 2.0025; ϕ1[deg] = 11.3103; ϕ2[deg] = 12.0329

Case 1 719.25 925.15 934.96 1213.5 1362.9 1417.7 1610.8 1645.5 1866.7 1979.6 62661

(Continued)



Comput Mater Contin. 2025;83(2) 2421

Table 13 (continued)

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Case 2 711.78 889.46 891.46 1145.7 1284.9 1318.6 1506.6 1520.5 1747.3 1795.3 62661

R[m] = 1; ϕ1[deg] = 22.6479; ϕ2[deg] = 24.0959
Case 1 1166.4 1183.8 1198.8 1433.3 1547.4 1655.2 1776.0 1810.5 1993.3 2103.4 62661
Case 2 1158.3 1159.7 1170.1 1379.7 1476.1 1586.5 1684.6 1700.0 1884.2 1933.6 62661

Hexagonal Cel l
R[m] = 2.0025; ϕ1[deg] = 11.7142; ϕ2[deg] = 11.2944

Case 1 742.13 935.98 1011.9 1278.9 1365.8 1570.8 1662.3 1786.3 1862.8 2119.8 59640
Case 2 746.89 976.95 1030.6 1330.9 1464.9 1608.3 1770.9 1856.6 2038.4 2243.7 59640

R[m] = 1; ϕ1[deg] = 23.4577; ϕ2[deg] = 22.6170
Case 1 1194.6 1203.5 1257.4 1494.8 1573.8 1774.7 1827.4 1942.0 1993.7 2250.9 59640
Case 2 1198.7 1231.77 1270.2 1536.8 1651.7 1807.7 1924.5 2006.1 2155.5 2369.5 59640

Table 14: Natural frequencies (Hz) of a shell with Geometry 2

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Rectangul ar Cel l

R[m] = 2.0025; ϕ1[deg] = 11.451; ϕ2[deg] = 11.451
Case 1 749.21 1008.5 1020.7 1346.5 1531.9 1580.5 1825.6 1849.5 2154.0 2227.3 59640
Case 2 749.20 1008.4 1020.7 1346.4 1531.9 1580.5 1825.5 1849.5 2153.9 2227.2 59640

R[m] = 1; ϕ1[deg] = 22.93; ϕ2[deg] = 22.93
Case 1 1200.7 1257.3 1263.2 1549.9 1698.2 1794.0 1977.7 1996.1 2269.8 2333.4 59640
Case 2 1200.7 1257.3 1263.2 1549.8 1698.2 1794.0 1977.6 1996.1 2269.7 2333.4 59640

Reentrant Cel l
R[m] = 2.0025; ϕ1[deg] = 11.451; ϕ2[deg] = 11.451

Case 1 729.30 928.57 980.0 1247.8 1356.9 1503.3 1630.8 1720.7 1848.2 2054.3 59640
Case 2 720.76 892.57 930.04 1174.9 1283.6 1387.0 1522.9 1584.2 1730.1 1887.3 59640

R[m] = 1; ϕ1[deg] = 22.93; ϕ2[deg] = 22.93
Case 1 1175.7 1190.9 1230.6 1463.2 1557.6 1714.0 1794.9 1879.4 1977.4 2188.7 59640
Case 2 1166.7 1167.4 1196.0 1404.9 1492.3 1626.5 1700.0 1757.4 1869.7 2033.8 59640

Hexagonal Cel l
R[m] = 2.0025; ϕ1[deg] = 11.451; ϕ2[deg] = 11.451

Case 1 743.55 950.77 1002.6 1282.5 1397.5 1547.4 1682.5 1775.0 1910.9 2124.5 59640
Case 2 748.81 994.59 1021.4 1336.6 1501.4 1585.3 1796.2 1846.6 2095.3 2243.7 59640

R[m] = 1; ϕ1[deg] = 22.93; ϕ2[deg] = 22.93
Case 1 1196.6 1212.5 1252.4 1497.8 1596.1 1758.1 1845.4 1932.4 2037.4 2257.9 59640
Case 2 1200.7 1243.3 1265.1 1541.6 1676.1 1794.1 1947.3 1996.8 2208.6 2353.2 59640
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Table 15: Natural frequencies (Hz) of a shell with Geometry 3 studied with only Case 2

Mode 1 2 3 4 5 6 7 8 9 10 DOFs
Rectangul ar Cel l

R[m] = 2.0025; ϕ1[deg] = 11.451; ϕ2[deg] = 11.451
Case 2 749.20 1008.4 1020.7 1346.4 1531.9 1580.5 1825.5 1849.5 2153.9 2227.2 59640

R[m] = 1; ϕ1[deg] = 22.93; ϕ2[deg] = 22.93
Case 2 1200.7 1257.3 1263.2 1549.8 1698.2 1794.0 1977.6 1996.1 2269.7 2333.4 59640

Reentrant Cel l
R[m] = 2.0025; ϕ1[deg] = 11.2861; ϕ2[deg] = 11.3012

Tornabene
et al. cells

727.42 906.99 945.06 1195.2 1306.2 1410.7 1550.0 1611.9 1761.2 1920.4 59640

R[m] = 1; ϕ1[deg] = 22.6004; ϕ2[deg] = 22.6306
Tornabene
et al. cells

1174.4 1177.9 1208.1 1422.0 1511.9 1645.2 1724.3 1782.4 1898.4 2064.5 59640

Hexagonal Cel l
R[m] = 2.0025; ϕ1[deg] = 11.4506; ϕ2[deg] = 11.4591

Case 2 748.60 994.40 1020.7 1335.9 1501.3 1583.9 1795.6 1845.3 2095.2 2241.5 59640
R[m] = 1; ϕ1[deg] = 22.9298; ϕ2[deg] = 22.9468

Case 2 1200.5 1243.3 1264.0 1540.7 1676.4 1791.8 1949.3 1991.7 2211.5 2347.3 59640

In Table 11, the influence of cell shape within the core of the sandwich structure is explored, while
keeping constant the plate dimensions. Despite the uniformity in plate dimensions, the core material
comprises cells with equal volumes but varying shapes. This manipulation allows for a nuanced investigation
into how the geometric characteristics of the core cells impact the overall behavior of the sandwich structure.
The observed results underscore the significance of cell shape in governing the global response of the
sandwich panel. By keeping the plate dimensions consistent, any variations in the structural response can
be attributed primarily to differences in cell shape. This finding highlights the intearaction between material
microstructure and macroscopic behavior, revealing how minor differences in cell characteristics can result
in significant alterations in the overall performance of composite structures.

The findings from Table 12 align with those of Table 10, reinforcing the observed trend regarding the
impact of shell curvature on the overall behavior of the plate studied with only Case 2. Once again, the data
suggest a direct correlation between increasing curvature and changes in the global response of the plate.
This consistency across different modeling setups underscores the robustness of the observed phenomenon
and highlights its significance in understanding the structural behavior of these composite systems.

The results reported in the tables of the current section reveal an increase in the natural frequency values,
as the curvature radius decreases. This trend is particularly pronounced in spherical panels, where curvature
exists in both directions of the panel, contributing to increase the overall structural stiffness.

Additionally, there is a notable alignment between the results obtained for rectangular cells com-
pared to hexagonal or re-entered cells. This alignment stems from the regular geometry of rectangular
cells, allowing for a more precise approximation of mechanical properties through various analytical or
numerical formulations.

This consistency across different cell types suggests that, despite differences in shape and structure,
the resulting homogenized properties are coherent and reliable, providing a solid foundation for the design
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and optimization of curved lattice panels. The first four freqencies are also shown in Figs. 9 and 10,
referred to a sandwich shell with an honeycomb core modeled with homogenized properties deriving from
rectangular cells.

Figure 9: First four frequencies (Hz) of a cylindrical panel with radius R = 1.00 m. The core has homogenized properties
deriving from rectangular cells

Based on the results obtained, it was found that the frequencies increase with the increase in curvature.
This suggests a direct relationship between curvature and frequency, where an increased curvature leads
to an increased in frequencies. Moreover, despite variations in size of the plates used in the study, the
size differences seem to have a minimal effect on the results. The relationship between curvature and
frequency appears to be robust and independent of plate size, reinforcing the reliability and generalizability
of the observed trend across different plate formats. This behavior suggests that plate dimensions do not
significantly alter the overall behavior of the structure. In a subsequent analysis, the influence of the cell shape
within the core of the sandwich structure was investigated, keeping the plate dimensions constant. Despite
the uniform plate dimensions, the core material consists of cells with equal volumes but varying shapes. This
targeted manipulation allowed for investigating how the geometric characteristics of the cells influence the
overall behavior of the sandwich structure. Based on the main results of this analysis, it has been observed
that the variations in cell shape affect significantly the structural behavior while keeping the volume constant.
In addition, differences in structural responses can be attributed mainly to the variation in cell shape,
confirming the importance of the material microstructure in the overall behavior of the composite structure.
This highlights the interaction between cell geometry and macroscopic behavior of the structure, suggesting
that even small differences in microstructure can lead to significant changes in the global performance of
the structure.
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Figure 10: First four frequencies (Hz) of a spherical plate with radius R = 1.00 m. The core has homogenized properties
deriving from rectangular cells

A final analysis was conducted on the influence of core material and geometry, with particular attention
to the cell shape. The results of this analysis showed slight variations between the different core materials
and geometries. In particular, frequency variations were relatively subtle compared to the previous cases
but still significant. Differences in structural behavior were more evident in the geometric configurations,
suggesting a certain sensitivity of the system to geometric modifications. This aspect is crucial during
the design optimization phase, as small changes in geometric configuration can affect the structural
performance, necessitating careful balancing between form and material to optimize the design according
to performance criteria.

4 Conclusions
This study provides a comprehensive analysis of honeycomb sandwich panels, employing advanced

numerical homogenization techniques to model their core lattice structures. Several key findings emerged,
offering significant insights for engineering applications:

• Enhanced Predictive Modeling: The developed homogenization approach demonstrated its capability
to accurately predict the mechanical behavior of honeycomb cores, aligning well with existing literature,
particularly for geometries like rectangular cells. This highlights its potential for reliable applications in
structural design optimization.

• Material and Geometry Influence: A systematic relationship was identified between material stiffness
and natural frequencies of the panels. The study established that stiffer materials reduce the natural
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frequencies, while less stiff materials have the opposite effect. This insight is critical for tailoring material
properties to achieve desired vibrational characteristics.

• Efficiency in Material Substitution: The study introduced a material normalization strategy, enabling
efficient derivation of equivalent properties for diverse materials without repetitive simulations. This
approach significantly reduces computational costs and time, fostering faster prototyping and mate-
rial testing.

• Impact of Curvature on Structural Performance: The analysis revealed that higher panel curvature
(smaller radii) leads to increased natural frequencies, with doubly curved panels exhibiting superior
stiffness and vibrational properties compared to singly curved ones. These findings underscore the
importance of curvature in optimizing structural performance for specific applications.

• Practical Applications: The insights gained from this study are directly applicable to designing
lightweight, high-performance structures in aerospace, automotive, and civil engineering domains. By
understanding the interaction of material properties, geometry, and structural behavior, engineers can
make informed decisions to enhance performance and reliability.

The proposed RVE methodology offers several significant advantages, primarily its ability to provide
a comprehensive description of material heterogeneities at multiple scales while maintaining the compu-
tational efficiency. This approach enhances the accuracy of the predictions for mechanical properties and
facilitates the design of advanced materials with tailored properties.

Furthermore, the method is designed to yield the equivalent constants of the core efficiently, with a
minimal computational effort. This is achieved through systematic modeling and normalization strategies
that eliminate the need for repetitive simulations for different configurations. Consequently, the methodol-
ogy is both practical and versatile, suitable for a wide range of engineering applications where accuracy and
efficiency are paramount.

The study paves the way for further exploration into more complex geometries, material combinations,
and experimental validation to enhance the reliability of predictive models. Additionally, extending the
framework to dynamic loading scenarios could broaden its applicability.
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