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ABSTRACT: Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and
optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning
models often have accurate results at the expense of high computational complexity. To address this problem, this
paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory
(LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an
adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures
fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still
maintaining a certain degree of accuracy. It also overcomes the problem of converging to local optima and avoids time-
consuming random search and, therefore, avoids high computational complexity in prediction accuracy. The proposed
scheme first performs data smoothing and normalization on the input data, which is then fed to the input of the TPE
for tuning the hyperparameters. The traffic data is then input to the LSTM model with tuned parameters to perform
the traffic prediction. The three optimizers: Adaptive Moment Estimation (Adam), Root Mean Square Propagation
(RMSProp), and Stochastic Gradient Descend with Momentum (SGDM) are also evaluated for accuracy prediction
and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model. Simulation results verify the
effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes.

KEYWORDS: Short-term traffic prediction; sequential time series prediction; TPE; tree-structured parzen estimator;
LSTM; hyperparameter tuning; hybrid prediction model

1 Introduction

Short-term traffic prediction is one of the crucial factors for urban transportation management that
provide significant benefits for efficient traffic control and optimization [1]. By accurately forecasting traffic
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patterns, authorities can proactively implement dynamic traffic signal adjustments, refine traffic management
strategies, and optimize resource allocation, to mention a few. These measures help mitigate congestion,
reduce travel time, and enhance the overall efficiency of the road networks [2,3]. Furthermore, precise traffic
predictions contribute to sustainability by minimizing fuel consumption through optimal route selection
and reducing emissions via adaptive traffic management systems [4].

Effective traffic management depends on accurate traffic flow prediction, among other critical factors.
The Long Short-term Memory (LSTM) network has emerged as a widely utilized deep learning algorithm
for capturing temporal dependencies in traffic data, enabling the forecasting of traffic conditions over both
short and long time intervals [5]. Additionally, the LSTM networks effectively model the sequential nature
of time-dependent traffic dynamics, making them well-suited for traffic prediction tasks [6-8].

Several researchers have developed LSTM-based models for short-term traffic prediction, achiev-
ing varying degrees of accuracy. In [9], a method is proposed that integrates Random Forest-Recursive
Feature Elimination (RF-RFE) for feature selection with the LSTM network optimized through Bayesian
optimization. This approach effectively addresses imbalanced traffic data using the Synthetic Minority Over-
Sampling Technique (SMOTE). A dynamically optimized LSTM model for short-term traffic flow prediction
isintroduced in [10]. The preprocessing phase employs Asym-Gentle Adaboost with a Cost-Sensitive support
vector machine (AGACS) to eliminate outliers. Additionally, the model’s hidden layer structure is optimized
using Chaotic Particle Swarm Optimization (CPSO), enhancing both efficiency and generalization. The study
in [11] presents a model that leverages Variational Mode Decomposition (VMD) with Improved Dung Beetle
Optimization to refine the LSTM-based approach (IDBO-LSTM), thereby improving predictive accuracy.
Furthermore, reference [12] proposes an Improved Particle Swarm Optimization (IPSO) with radial basis
function combined with LSTM model. This method incorporates the Support Vector Machine (SVM) for
feature fusion, further strengthening its predictive capabilities.

To address the aforementioned challenges, this research proposes a Tree-structured Parzen Estimator-
optimized LSTM (TPE-LSTM) model for short-term traffic prediction. The input data undergoes
preprocessing, including data smoothing and normalization, before being fed into the TPE-LSTM model.
The core of the model is the LSTM network, which directly processes the input data streams. The Tree-
structured Parzen Estimator (TPE) iteratively optimizes the hyperparameters of the LSTM by evaluating
performance at the hidden layer. It employs two probability density functions—one representing well-
performing hyperparameters (classified as “good” when their probability is below a predefined threshold)
and the other capturing suboptimal configurations (classified as “bad” when their probability meets or
exceeds the threshold). This optimization process enhances the model’s predictive accuracy and efficiency
in traffic forecasting. Such combinations enable selecting the best setups for improved and accurate output
predictions. The contributions of this work are:

o The Tree-structured Parzen Estimator (TPE) is utilized with the LSTM to tune its hyperparameters that
are involved in the hidden layers and affect traffic prediction at the output. This optimization dynamically
adjusts the hyperparameters of the LSTM unless the accuracy of the prediction reaches the desired limit.

o A comparison of optimizers: Adaptive Moment Estimation (Adam), Root Mean Square Propagation
(RMSProp), and Stochastic Gradient Descend with Momentum (SGDM) is performed to choose the
most accurate optimization for the LSTM to perform the traffic prediction.

o Comparison of the proposed model with the latest deep learning hybrid algorithms involving LSTM is
performed to validate its accuracy.

The remaining part of this paper is organized as follows: Section 2 explains related work, while Section 3
introduces the methodology description of the proposed model and describes the performance evaluation



Comput Mater Contin. 2025;83(2) 3371

indicators. Section 4 presents the simulation results and discussion, while Section 5 concludes the paper and
highlights future investigations.

2 Literature Review

This section studies the latest deep learning algorithms used for traffic prediction involving LSTM. The
scheme in [13] optimizes toll lane schedules with a Particle Swarm Optimization-Long Short-term Memory
(PSO-LSTM) model, but oversimplifies traffic dynamics and convergence to local minima issues. The
model in [14] performs short-term traffic prediction by integrating attention mechanism and convolutional
networks with LSTM. The Tent mapping-enhanced Dung Beetle Optimization (TDBO) is utilized for feature
selection and parameters optimization in [15]. However, these methods are complex in terms of processing
and convergence. The Whale Optimization Algorithm (WOA) and LSTM with self-attention, as explained
in [16], optimize traffic flow forecasting by incorporating spatial, temporal, and weather-related features.
But the focuses majorly remain on long-term data trends. The method in [17] employs the LSTM merged
with the Dijkstra algorithm for optimizing real-time route guidance to avoid congestion and pollution.
However, the algorithm convergence is time-consuming. The authors in [18] utilize three algorithms: the
Empirical Mode Decomposition (EMD), which decomposes traffic data into components, the LSTM network
to predict telecom base station traffic and a Whale optimization with the LSTM for improved accuracy.
Also, the Empirical Mode Decomposition (EMD) decomposes non-smooth telecom base station traffic data
into intrinsic mode functions, which is often devoid of distinct physical or practical meanings. However, it
has a high computational time. The scheme in [19] proposes an Autonomous Underwater Vehicle (AUV)
trajectory prediction model called the Nonlinear Kepler Optimization-BiLSTM Variable Attention for
capturing temporal and variable dependencies alongside with the Nonlinear Kepler Optimization (NKO)
for hyperparameters tuning. However, it requires prior knowledge of the underwater route. The authors
propose an LSTM-based prediction model optimized by the Improved Genetic Algorithm (IGA) to enhance
road traffic flow forecasting accuracy in [20]. It prioritizes enhancing the LSTM parameters through the
Improved Genetic Algorithm (IGA), which leads to complexity of computation. In [21] and [22], the authors
propose Cosine Adaptive Particle Swarm Optimization with LSTM (CAPSO-LSTM) for urban green area
prediction and Particle Swarm Optimization with LSTM (PSO-LSTM) for short-term urban rail passengers
flow forecasting. However, the algorithms tend to convergence to local extrema. The study in [23] evaluates
YOLOVS for vehicle detection in Intelligent Transportation System (ITS), demonstrating an 18% precision
improvement and faster inference times compared to YOLOVS5, using aerial drone data. However, factors
such as a vehicle shape, lighting conditions, and relative sizes affect the performance. The scheme in [24]
explores vehicle detection in ITS using YOLOVS, focusing on aerial images captured via modified unmanned
aerial vehicles (UAVs) to enhance algorithm adaptability across varied scenarios. YOLOv8x outperformed
YOLOv8n with higher precision, recall, and F1 scores, highlighting its superior detection capabilities.
However, the study’s limitations include the lack of exploration of computational efficiency and real-world
deployment challenges for unmanned aerial vehicles-based ITS applications.

The reviewed literature explores various LSTM-based optimization techniques applied to traffic and
route prediction. However, these methods often suffer from high computational complexity, convergence to
local optima during hyperparameter tuning, limited generalizability of input data, and restricted prediction
accuracy. To address these challenges, this paper proposes the TPE-LSTM model, which enhances road
traffic forecasting while reducing computational overhead. The model leverages the Tree-structured Parzen
Estimator (TPE) to optimize the LSTM hyperparameters through a probabilistic approach with adaptive
search, distinguishing between favorable and unfavorable objective function values. This optimization
strategy ensures faster and more accurate convergence. Subsequently, the optimized LSTM model performs



3372 Comput Mater Contin. 2025;83(2)

accurate traffic prediction. Furthermore, the study compares three optimizers: Adam SGDM and RmsProp,
for the LSTM to determine the most effective optimizer for the model.

3 Methodology Description of the Proposed Model

In this section, the proposed model is described that consists of a description of the data preprocessing
TPE and LSTM.

3.1 Data Smoothing

Gaussian smoothing, also known as Gaussian blur, is applied to the traffic dataset to reduce noise and
discrepancies in data. This technique is particularly effective for datasets contaminated with random noise.
The foundation of Gaussian smoothing lies in the convolution of the dataset with a Gaussian function [25],
which is a bell-shaped curve defined by the following probability density function:

2

e 27 (1)
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where G(x) is the Gaussian function, x is the variable, and o is the standard deviation of the distribution.

The parameter o controls the width of the Gaussian curve; a large o results in high smoothing, while
a small o preserves the detail in the proportional manner. For the noisy traffic dataset, we apply Gaussian
smoothing by convolving the dataset with the Gaussian function. Mathematically, the convolution of a
dataset f(x) with a Gaussian function (x) is formulated as follows:

(f+6) @)= [ (OG-t @

This convolution integral effectively weights the nearby values of the dataset according to the Gaussian
function, thereby averaging out noise. In discrete form, for a dataset represented as a sequence of values f;,
the convolution can be expressed as:

k
(f G)i = Zj:_kfi‘jGj (3)
here, k is the number of points over which the Gaussian function is defined (usually determined by the

standard deviation o), and Gjis the discrete value of the Gaussian function.

In this convolution, we obtain an entirely new dataset, all points being averages of their neighboring
points within a weighted context that can be computed using the Gaussian function. This process smooths
out abrupt changes, reduces the effect of random noise, and produces a clean and easily interpretable dataset.

3.2 Data Normalization

After smoothing the original traffic data to reduce discrepancies in the dataset, it is streamlined and
normalized to ensure that it falls within a standard range, making it easy to compare and process [25].

Data normalization is a method used to scale data to a specific range, typically [0, 1] or [-1, 1].

Given a smoothed dataset f/, Min-Max normalization can be performed using the formula below:
fi = min (f")
max (f') — min (f')

here, f! represents the smoothed data points, while min(f') and max(f’) are the minimum and maximum
values of the smoothed dataset, respectively. The parameter f;” denotes the normalized data point. This

ﬂ": (4)
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conversion rescales the data such that the minimum value becomes 0 and the maximum value becomes 1,
and all other value are proportionally adjusted between these limits. If a different range is desired, such as
[-1, 1], the corresponding mathematical formula is:

p fl:,—min(f’)
i :z(max(f’)—min(f’))_1 ®

3.3 Long Short-Term Memory (LSTM)

The LSTM network is used to overcome the vanishing gradient problem in Recurrent Neural Networks
(RNNs). It is designed to predict both long and short-term time-series data [26]. The network consists of
memory cells with self-connected recurrent units that can store information over time and are controlled by
three gates: the input gate, the output gate, and the forget gate, as shown in Fig. 1 [27]. These gates control the
flow of information into, out of, and within each cells to select, recall, or forget information depending on the
context of the input sequence. The formulated expressions of the internal process of the LSTM framework
are [28,29]:

fr=0[(Wpn * heey) + (Wpe * x¢) + by ] (6)
cl=Coixfi (7)
ir =0 [(Wip * hor) + (Wix * X)) + by ] (8)
g¢ = tanh [ (W hp) + (W * X, ) + by 9)
Ci =i % g (10)
C,=Ci+c/ a1)
O =0 [(Wop * hy—y) + (Woy * X;) + bo ] (12)
h; = tanh (C;) * O (13)

where f;, i, g and O, represent the forget gate, input gate, input node and output gate, respectively, with
corresponding weights Wy, W;, W, and W,. In ¢ time step, cell memory C; represents the updated state.
The final state of the cell memory at the time step ¢ is C;, which is utilized in subsequent time step memory
operations, and h; denotes the ultimate output memory unit. The parameters Wy, Wiy, Wy, and W, are the
weights from the previous hidden state, while bf, b;, bg and b, are used as biases in the LSTM cell memory.
The symbol * shows element-wise multiplication. The sigmoid function (x) and the tanh function tanh(x)
are given by:

0(x) = 4)
tanh (x) = Lz (15)

1+e*
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Figure 1: Framework structure of the LSTM network, demonstrating full process of input data through gates (forget
gate, input gate and output gate) and activation functions (sigmoid and tanh)

3.4 Tree-Structured Parzen Estimator

The TPE is an advanced and modified Bayesian optimization method. Traditional Bayesian optimization
method relies on Gaussian Processes (GPs) to model the surrogate function, which is used to predict
the performance of hyperparameters [30]. However, the TPE uses a different approach by modeling the
Probability Density Function (PDF) of good and bad hyperparameters separately using Kernel Density
Estimation (KDE) [31].

The TPE structure, depicted in Fig. 2, involves defining hyperparameters within a search space, sampling
points, and refining them based on model performance. Initially, hyperparameters to be optimize are
identified. Gaussian Mixture Models (GMMs) generate random samples, and the acquisition function
determines the next sampling points for performance evaluation.

Fig. 3 outlines the mathematical workflow of TPE, from initialization to optimization [32]. The process
begins with an initial hyperparameter set D = {(x1, y1), (x2, y2), - . ., (X4, ¥u) }> evaluated against the objective
function. A threshold/partitions the data into good points D; (objective values below I) and bad points
D, (above I). The KDE estimates PDFs I(x) and g(x). The acquisition function is optimized to find the
next configuration x* by implementing (17), which is evaluated iteratively until optimal configurations are
achieved.

()
“0)=

x* =arg maxa(x) 17)

(16)

Mathematically, TPE reformulates the optimization problem by expressing it in terms of two densities
in Egs. (18) and (19): I(x) for the hyperparameters that result in losses less than a certain threshold [, and g(x)
for the hyperparameters that result in losses greater than or equal to L.

Hx)=p(xly <) (18)
glx)=p(xly 2 1) (19)
where x represents the hyperparameters, and y represents the loss or performance metric of the model.

The threshold [ is often set to a quantile of the observed losses, ensuring a balance between exploration
and exploitation.
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Figure 2: The Tree-structured Parzen Estimator (TPE) structural scenario. This structure illustrates the steps involved

in the TPE for optimizing the GMMs to enhance the accuracy of predicted outcome
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Figure 3: Algorithmic flowchart of the Tree-structured Parzen Estimator TPE for optimizing hyperparameters

The Expected Improvement (EI) criterion is used to select the next hyperparameters to evaluate, which
are formulated as follows:

B = [ (- pOlndy 20

Using Bayes’ theorem, the EI can be expressed in terms of /(x) and g(x) as:

I(x)
g(x)

Eq. (21) allows the TPE to efficiently balance between exploring new hyperparameters and exploiting

EI(x)a

[I-E[ylx,y<I]] (21)

known good regions.

3.5 TPE-LSTM (Proposed Model)

The TPE and LSTM models are integrated to construct the TPE-LSTM model to predict short-term
traffic flow as shown in Fig. 4. First, in data preprocessing, data smoothing is applied, specifically the
Gaussian smoothing technique, to reduce noise and severe fluctuations in the data. This produces a more
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stable and continuous dataset. The smoothed data is then fed into the Min—-Max normalization method,
which transforms the data to a common scale without distorting differences in the ranges of values. Before
feeding it into LSTM network further, pre-processed output captures how time series data changes over time
while TPE uses an efficient way of exploring hyperparameters by modeling objective function distributions
and focusing on regions that look promising.

§
i
L

Input data 1 (Smoothing and LSTM

Normalization)

-

Output

Tree-Structured Parzen Estimator

Hidden Layer

Figure 4: Block architecture of the proposed framework, showing the implementation process from input to output

The combination of the TPE with LSTM helps to optimize hyperparameters and improve time series
prediction. We fine-tune parameters like number of hidden layers, total epochs count, LSTM optimizer and
learning rate, all aimed at improving accuracy in traffic flow measurements.

3.6 Error Evaluation Indicators

Three evaluation indices are used to verify the performance of the suggested hybrid prediction model
for short-term traffic flow. These evaluation metrics include Mean Square Error (MSE), Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE), defined as follows:

1 X X
MSE = S (yi— i)’ (22)
i=1
Y (Gi-y)
RMSE = | Y 2 (23)
i=1 N

(24)

1 N
MAE = — S |y, - §,;
N;b’z Pi

here, N denotes the traffic volume (number of vehicles flowing per day), y; represents the real traffic flow, y;
is the predicted traffic flow, y is the mean of the observed traffic data.

4 Simulation Results and Discussion
4.1 Dataset Description

The original traffic datasets from the Great Britain Traffic Database contain daily vehicles flow data
spanning from 2000 to 2023. However, for this study, only the most recent traffic data from the past four
years (2020-2023) is utilized for traffic flow prediction. The yearly traffic flow data was collected from various
roads across England, UK, and is freely accessible [33].
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The datasets contain traffic volume data from UK roads for the years 2020-2023, as shown in Table 1.
In Dataset 1, the recorded traffic volumes were 27,000 (2020), 32,811 (2021), 26,196 (2022), and 23,364 (2023).
Dataset 2 shows consistent traffic levels of around 22,373, 22,297, 22,240, and 22,257 for the respective years,
while Dataset 3 recorded the respective values of 42,674, 42,562, 42,455, and 42,508.

Table 1: Classification of the UK’s roads traffic datasets based on the years 2020 to 2023, with the data further divided
into subsections to enhance understanding

UK’s roads traffic volume (number of vehicles) on the basis of year

Dataset 1 27,000 32,811 26,196 23,364

Dataset 2 22,373 22,297 22,240 22,257

Dataset 3 42,674 42,562 42,455 42,508
Year 2020 2021 2022 2023

Table 2 includes a Ryzen 5 5600X processor, AMD Radeon RX 5600 XT GPU, 16 GB RAM (3200 MHz),
and a 256 GB SSD. An adequate air cooling system, and a 650-watt power supply supports the components.
The system runs on Windows 11 (x64 bit) and uses MATLAB R2021a with the DL and ML Toolboxes.

Table 2: Key components utilized to perform the analysis and simulations experiments

Category Resource Details
CPU Multi-core processor (AMD Ryzen 5 5600X)
GPU AMD Radeon (RX 5600 XT)
Hardware RAM 16 GB (3200 MHz)
Storage SSD (256 GB for fast read/write operations)
Cooling system Adequate Air cooling for CPU and GPU during

intensive computation

Power supply 650 wattage is sufficient
Operating system Windows 11 (x64 bit)
Software Programming language MATLAB R2021a
a Deep learning libraries MATLAB DL and ML Toolboxes
GPU driver Latest AMD driver (Adrenaline Edition 24.6.9)

4.2 Simulation Plots with Explanation

In the proposed research study, first data is preprocessed using Gaussian smoothing and data normal-
ization methods. Fig. 5 demonstrates that the original traffic data exhibits high variability with sharp spikes,
reflecting sudden traffic volume changes due to factors like peak hours, events, or accidents. In contrast,
the smoothed data, obtained through Gaussian smoothing, shows a more uniform pattern with reduced
fluctuations. This technique minimizes noise from random variations, sensor inaccuracies, and transient
events, making it easier to identify underlying traffic trends.

Fig. 6 shows normalized transport data on a scale from 0 to 1, facilitating input into an LSTM network
for easier training. The peaks in the chart represent periods of high transportation activity, typically during
rush hours, special events, weather-related disruptions, or accidents. These peaks reflect increased traffic
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due to factors like morning and evening commutes, large events, or adverse weather conditions, leading
to higher traffic volumes or congestion. The variability in the data highlights the dynamic nature of
transportation patterns.

Original Traffic Data vs Smoothed Data

— Original Data _l
9000 Smoothed Data

8000 [ 1
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Figure 5: Gaussian smoothing technique is applied to the actual traffic volume
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Figure 6: Data normalization method is implemented to measure and place the traffic data into a common range

After preprocessing steps were applied on actual traffic from 2020 until 2023, the data is smoothed and
normalized for better readability and scalability prior to implementing the main model. Then the TPE is
applied to measure the minimum observed objective and estimate the minimum objective in a probabilistic
manner to guide the search for optimal hyperparameters. During optimization by TPE, the minimum
observed objective reflects the actual minimum values of the objective function. It starts from a high
value and then decreases. Initially, both the observed and estimated objectives drop rapidly, demonstrating
significant early progress. As the process progresses, stress fluctuations suggest potential minima in different
solution regions, causing some misalignment. As the process continues, both estimated and observed values
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converge to similar values that shows the stability of the algorithm to convergence. Table 3 highlights
convergence values for the Adam, SGDM and RMSProp, with Adam showing the fastest performance.

Table 3: Performance comparison of TPE-LSTM internal optimizers in terms of convergence and efficiency

TPE-LSTM with  Convergence  Function Percentage (%) of improvement
value evaluations
Adam 1185 30 40% faster than SGDM, 60% faster than RMSProp
SGDM 1.975 30 33% slower than Adam, 33% faster than RMSProp
RMSProp 2.962 30 60% slower than Adam, 33% slower than SGDM

Table 4 summarizes the key parameters used at each data processing stage, comparing the proposed
model with counterpart schemes. It highlights optimization frameworks for training LSTM models, includ-
ing TPE-LSTM, BO-LSTM, GA-LSTM, Att-LSTM, and TF-LSTM. All models utilize 40 hidden-layer
neurons, a learning rate of 0.001, 20 epochs (8000 iterations), 125 dense layers, and mini-batches of 400.

Table 4: The TPE-LSTM (proposed model) and benchmark simulation parameters

Platform Model
Parameter TPE-LSTM BO-LSTM  GA-LSTM  Att-LSTM  TF-LSTM
Neurons 40 40 40 40 40
Lr. 0.001 0.001 0.001 0.001 0.001
Epochs 20 20 20 20 20
Dense layers 125 125 125 125 125
Mini-batch size 400 400 400 400 400
Matlab R2021a Iterations 8000 8000 8000 8000 8000
Optimizer Adam/ Adam/ Adam/ Adam/ Adam/
SGDM/ SGDM/ SGDM/ SGDM/ SGDM/
RMSProp RMSProp RMSProp RMSProp RMSProp
Lr. Dropout 0.7 0.7 0.7 0.7 0.7
Activation o/tanh o/tanh o/tanh o/tanh o/tanh

The impact of a 0.7 dropout rate on the performance of the TPE-LSTM model is illustrated through
error loss during training and testing with three optimizers: Adam, SGDM, and RMSProp. A 0.7 dropout rate
deactivates 70% of the network’s neurons during training to prevent overfitting. Adam demonstrates rapid
error loss reduction and quick convergence, effectively mitigating overfitting. SGDM occasionally shows slow
and noisy error reduction, but benefits from dropout in controlling overfitting. RMSProp achieves stable
gradient updates with low training and testing errors, indicating effective regularization.

The consistent use of a 0.7 dropout rate across Adam, SGDM, and RMSProp effectively reduces
overfitting by encouraging the network to learn redundant representations, enhancing robustness and
generalization. Among these, Adam achieved the best results on all traffic datasets, as shown in Table 5.

The TPE-LSTM model optimized with the Adam optimizer outperforms SGDM and RMSProp in
predicting vehicle counts, as shown in Table 6. Adam’s adaptive learning rates and momentum enable
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superior generalization, allowing it to accurately capture traffic trends with minimal deviation during
testing. In contrast, SGDM struggles due to fixed learning rates and slow convergence, while RMSProp
underperforms because of its limited adaptability and lack of momentum.

Table 5: Impact of dropout on TPE-LSTM performance across Great Britain traffic datasets

Metric (Best results (Adam)) Datasets TPE-LSTM (0.7 dropout) TPE-LSTM (No dropout)

Training loss Datasets 1, 2, 3 0.034, 0.044, 0.036 0.023, 0.031, 0.021

Testing loss Datasets 1, 2, 3 0.033, 0.043, 0.035 0.056, 0.067, 0.060
Training accuracy % Datasets 1, 2, 3 96.5, 93.2, 93 97.7,94.2, 94
Testing accuracy % Datasets 1, 2, 3 95.5,94.2,94 85.5, 84.2, 84

Table 6: Comparison of error losses during the training and testing phases for TPE-LSTM model using three
optimizers: Adam, SGDM and RMSProp

Great Britain datasets TPE-LSTM with Iterations Trainingloss Testingloss

Adam 0.0346 0.0337

Dataset 1 SGDM 0.0348 0.0340
RMSProp 0.0347 0.0338

Adam 0.0445 0.0438

Dataset 2 SGDM 8000 0.0448 0.0435
RMSProp 0.0456 0.0443

Adam 0.0363 0.0355

Dataset 3 SGDM 0.0365 0.0352
RMSProp 0.0364 0.0356

Adam achieves the lowest training and testing losses for dataset 1 (0.0346 and 0.0337, respectively),
compared to SGDM (0.0348 and 0.0340) and RMSProp (0.0347 and 0.0338). Error losses for datasets 2 and
3 are displayed in Table 6. Therefore, Adam is selected to enhance the accuracy of the TPE-LSTM model in
traffic flow prediction.

The proposed TPE-LSTM model utilizes the TPE for optimization. To evaluate its performance in
traffic prediction, the TPE is replaced by alternative optimizers in the counterpart schemes. These optimizers
include Bayesian Optimization (BO), Genetic Algorithm-based Optimization (GA), Attention Optimiza-
tion (Att), and Transformer-based (TF) prediction models. The Transformer-LSTM and Attention-LSTM
approaches are implemented in [31,32], respectively, for predictive purposes.

Fig. 7 presents the actual and predicted traffic data from 2020 to 2023 for the proposed framework
and other schemes. A refined search space for hyperparameters is built using the Tree-structured Parzen
Estimator (TPE), which outperforms other methods by effectively identifying optimal regions for hyperpa-
rameters. This improves the LSTM network’s ability to capture complex temporal relationships. In BO-LSTM,
the balance between exploration and exploitation is crucial; improper tuning may lead to local minima
or inefficient exploration. In GA-LSTM, random mutations or premature convergence can slow down the
search. While Att-LSTM’s attention mechanism helps focus on key features, they tend to cause overfitting
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or inefficiency with long sequences. Similarly, TF-LSTM’s self-attention mechanism may fail to capture
high-frequency traflic variations, especially during peak times.

Comparison of the Proposed and Benchmark Models

E— GA-LSTM BO-LSTM
0000 b | At-LSTM TF-LSTM
Original Traffic Data —&— TPE-LSTM (proposed model)

Traffic Volume (number of vehicles per day)

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Iterations

Figure 7: Traffic volume prediction (number of vehicles/day) comparison between the proposed model and counter-
part of last four years (2020-23)

The prediction performance of traffic flow is evaluated using three metrics. MSE (Fig. 8a,b) calculates
the average squared differences between predicted and actual values. RMSE (Fig. 9a,b) gives more weight to
large errors due to squaring. MAE (Fig. 10a,b) measures the average magnitude of errors without considering
their direction.
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Figure 8: (a, b): Comparison of the MSE across training and testing lengths for the TPE-LSTM and counterpart

The MSE values for TPE-LSTM, BO-LSTM, Att-LSTM, TF-LSTM, and GA-LSTM on dataset 1 are
0.0012, 0.0114, 0.0125, 0.0329, and 0.0341, respectively, while the results for datasets 2 and 3 are detailed
in Table 7.
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Testing of the Proposed and Benchmark Models
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Figure 9: (a, b): Comparison of the RMSE across training and testing lengths for the TPE-LSTM and counterpart

schemes
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Figure10: (a,b): Comparative analysis of MAE for the proposed and benchmark architectures over training and testing
lengths

The TPE-LSTM model outperforms the counterpart schemes in MSE due to its probabilistic search,
effectively locating optimal hyperparameters by modeling their likelihood in good or bad regions. The BO-
LSTM, using Bayesian Optimization with a surrogate model, struggles with high-dimensional, noisy datasets
like traffic data, resulting in suboptimal configurations and high MSE. GA-LSTM, which optimizes hyper-
parameters through selection, crossover, and mutation, faces premature convergence in complex datasets,
reducing population diversity and increasing MSE. While Att-LSTM improves accuracy by prioritizing
relevant inputs, its attention mechanism is prone to overfitting in noisy datasets. Similarly, TF-LSTM,
despite its ability to model complex dependencies through self-attention and sequential patterns with LSTM,
struggles with computational inefficiencies and overparameterization in high-dimensional traffic data.
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Table 7: Performance comparison of LSTM-based models on Great Britain traffic datasets across metrics

Great Model  Accuracy (%) MSE RMSE MAE  Training Epochs to
Britain time (h) converge
datasets

TPE-LSTM 95.5 0.0012 0.0354 0.0214 6 11
BO-LSTM 91 0.0114 0.1068 0.0854 10 13
Dataset]  Att-LSTM 90.2 0.0125 0.1118 0.0892 11 14
TF-LSTM 90 0.0329 0.1813 0.1447 13 16
GA-LSTM 88.7 0.0341 0.1846 0.1477 15 16
TPE-LSTM 94.2 0.0032 0.0566 0.0452 7 12
BO-LSTM 92.4 0.0124 0.1113 0.0888 9 14
Dataset 2 Att-LSTM 89.5 0.0218 0.1476 0.1178 10 15
TE-LSTM 87 0.0352 0.1876 0.1497 14 17
GA-LSTM 86.2 0.0634 0.2518 0.2009 16 17
TPE-LSTM 94 0.0026 0.0510 0.0407 6 1
BO-LSTM 91.4 0.0245 0.1565 0.1249 8 12
Dataset 3 Att-LSTM 89 0.0237 0.1539 0.1228 12 14
TF-LSTM 88.7 0.0466 0.2159 0.1723 13 14
GA-LSTM 86 0.0773 0.2780 0.2219 14 16

Fig. 9a,b compares the RMSE during training and testing for the proposed and counterpart models on
dataset 1, with values of 0.0354, 0.1068, 0.1118, 0.1813, and 0.1846 for TPE-LSTM, BO-LSTM, Att-LSTM, TE-
LSTM, and GA-LSTM, respectively. RMSE values for datasets 2 and 3 are provided in Table 7. The RMSE
and MSE values are lower for TPE-LSTM indicating better accuracy than the counterpart methods. This is
done through the usage of TPE which efficiently explores hyperparameter space. Fig. 10a,b demonstrates the
MAE comparison of all the models with the same training and testing lengths, respectively.

The results of all error indicators proved that the TPE-LSTM on all traffic datasets achieved better results
in testing phase, indicating improved accuracy for traffic prediction, as shown in Table 7. This suggests that
the model effectively avoids overfitting.

To handle traffic data, the proposed model incorporates an adaptive mechanism within the TPE
framework, which dynamically optimizes hyperparameters to maintain efficiency even if data volumes
increase. This ensures the model’s ability to process and analyze large-scale traffic data streams without
significant latency, a critical requirement for smart city systems.

To address noisy or incomplete traffic data, robust preprocessing techniques are used such as Gaussian
smoothing and data normalization. Gaussian smoothing helps mitigate the impact of outliers and abrupt
fluctuations by applying a weighted average to the data points. Data normalization further ensures that all
input features are scaled to a uniform range. By combining these techniques with the sequential learning
capability of the LSTM architecture, the TPE-LSTM model can effectively reconstruct reliable patterns and
maintain prediction accuracy even when faced with noisy or incomplete data. The TPE-LSTM has diverse
applications in ITS, including traffic flow prediction and dynamic route optimization to reduce congestion
and improve travel time reliability, to mention a few.
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The developed TPE-LSTM model demonstrates significant potential for improving short-term traffic
flow predictions in ITS. However, like any machine learning approach, it has certain limitations that
must be acknowledged and critically examined. One key challenge lies in the model’s black-box nature,
as LSTM networks, combined with the TPE optimization process, do not inherently provide insights
into how predictions are made. This lack of interpretability can hinder trust and adoption in critical ITS
applications where transparency is essential. Additionally, the model might struggle to adapt to rapid changes
in traffic behavior caused by long-term infrastructural developments or policy changes, such as new traffic
regulations or the introduction of autonomous vehicles. These scenarios may require continuous retraining
and validation, which could be resource-intensive and time-consuming. Furthermore, the reliance on
historical data may limit the model’s ability to predict unprecedented traffic scenarios or disruptions. Finally,
while TPE helps in optimizing hyperparameters efficiently, it might overlook unconventional or highly
specific hyperparameter settings that could yield better performance for niche ITS scenarios. Addressing
these issues may involve incorporating explainable techniques, developing adaptive learning mechanisms,
and combining data-driven approaches with rule-based systems to improve robustness and flexibility.

To evaluate the contributions of different preprocessing techniques, optimization methods, and model
architectures, comprehensive ablation studies are conducted. Table 8 summarizes the performance of various
configurations, highlighting the incremental improvements achieved through specific modifications. These
experiments were conducted on three traffic datasets to ensure robustness and generalizability.

Table 8: Ablation study results showcasing the impact of modifications and components on LSTM model

Model Modification/ Dataset Accuracy MSE RMSE MAE Remarks
Component (%)
Baseline None 1,2,3 85,81, 83 20,26,24  4.4,51,49 35,4.0,39 LSTM
(LSTM)
+Data Add smoothing 1,23 86.2,82,84 31,55,4 17,2.3,2  14,18,1.6  Reduces noise
smoothing
+Data Replace with 1,2,3 85, 81, 82 9.4,11.2,10 3,33,31 2.4,2.6,25 Stabilizes
normalization — normalization
Data Both 1,2,3 88, 86, 87.5 11,14,2 1,12,1.4 08,09 114 Improved
smoothing techniques
+Normalization
Adam 1,2,3 89.5,89,89 0.1,0.3,01 03,0503 0.2,04,0.3 Learning
+Change .
training efficiency
ontimizer SGDM 1,23 88.7,88,87 0.2,0.4,0.3 04,0.6,0.6 0.3,0.504 Stabilizes
P RMSProp 1,23 89,88,89 0.,03,01 0.3,0503 0.2,04,03 Balances
BO 1,23 91, 92.4, 0.01, 0.01, 0.11, 0.11, 0.09,0.09, Hyperparameter
91.4 0.02 0.16 0.13 tuning
Int Att 1,23 90.2,89.5, 0.01,0.02, 0.11,0.16, 0.09, 0.13, Temporal
+integrate 89 0.02 0.16 0.13 feature
Architecture .
ith LSTM extraction
wit TF 1,2,3 90, 87,88.7  0.03, 0.03, 0.18, 0.18, 0.15, 0.15, Captures
0.04 0.22 0.19 dependencies
GA 1,2,3 88.7,86.2, 0.03,0.06, 0.18,0.25, 0.15,0.20, Genetic search
86 0.07 0.28 0.31
Proposed TPE + LSTM 1,2,3 95.5,94.2, 0.001, 0.035, 0.021, Best accuracy
Hybrid Model 94 0.003, 0.056, 0.051 0.045,
TPE-LSTM 0.002 0.040

Setup
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The results demonstrate that each modification positively impacts the model’s performance, with the
proposed Hybrid TPE-LSTM setup achieving the highest accuracy and the lowest error metrics across all
datasets. This indicates the effectiveness of combining TPE-based optimization with LSTM architecture,
showcasing its potential as one of the state-of-the-art solutions for traffic flow prediction.

5 Conclusions and Future Work

The short-term traffic prediction in intelligent transportation is performed by optimizing the hyperpa-
rameters of the LSTM using Tree-Structured Parzen Estimator (TPE) making TPE-LSTM as the proposed
model. The TPE reduced the error accuracy by an adaptive probabilistic research and divided the objective
function into good and bad values. This also reduced the computational efficiency by avoiding convergence to
local optima and performing random search, which is generally time-intensive with reduced error accuracy.
The comparison of the proposed model verified its accuracy over benchmark schemes, achieving an accuracy
of 95.5%, with MSE (0.0012), RMSE (0.0354), and MAE (0.0214) for traffic dataset 1. For dataset 2, the model
achieved an accuracy of 94.2%, with corresponding values of 0.0032 (MSE), 0.0566 (RMSE), and 0.0452
(MAE). Dataset 3 reported an accuracy of 94%, with 0.0026 (MSE), 0.0510 (RMSE), and 0.0407 (MAE). The
model is capable to predict traffic for transportation networks and can be effectively used within an acceptable
threshold of accuracy for short-term traffic prediction. To make the model further effective, it could be
utilized in future investigation for real-time traffic flow prediction by using the convolutional networks for
features extraction directly from the real-time traffic data.
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