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ABSTRACT: Congestion control is an inherent challenge of V2X (Vehicle to Everything) technologies. Due to the use
of a broadcasting mechanism, channel congestion becomes severe with the increase in vehicle density. The researchers
suggested reducing the frequency of packet dissemination to relieve congestion, which caused a rise in road driving risk.
Obviously, high-risk vehicles should be able to send messages timely to alarm surrounding vehicles. Therefore, packet
dissemination frequency should be set according to the corresponding vehicle’s risk level, which is hard to evaluate. In
this paper, a two-stage fuzzy inference model is constructed to evaluate a vehicle’s risk level, while a congestion control
algorithm DRG-DCC (Driving Risk Game-Distributed Congestion Control) is proposed. Moreover, HPSO is employed
to find optimal solutions. The simulation results show that the proposed method adjusts the transmission frequency
based on driving risk, effectively striking a balance between transmission delay and channel busy rate.
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1 Introduction
Congestion control is crucial for achieving efficient and reliable cellular V2X (C-V2X) communication

in high-density traffic environments. As the major technical standard, C-V2X employs a resource pool
technique to reduce the congestion probability. In particular, the 3rd Generation Partnership Project (3GPP)
C-V2X standard Release 14 (Rel-14) [1] provides guidance on congestion control based on channel busy ratio
(CBR). In October 2020, a large-scale test done in the Songhong C-V2X demonstration area in Shanghai,
China, proved the validity of the guidance congestion control algorithm provided by Rel-14.

C-V2X employs a distributed congestion control (DCC) mechanism [2], which is done based on
participating nodes’ control by adjusting communication parameters such as transmission power, packet
generation rate, and data throughput [3,4]. 3GPP Rel-14 suggested a packet generation rate-based method [5],
which linearly adjusts packet dissemination frequency according to CBR.

However, various correlative factors, such as vehicle driving status, regional traffic conditions, inter-
vehicle relationships, etc., affecting the demand for message dissemination are not simple linear relations
but complex non-linear relations. When adjusting packet transmission frequency, potential safety issues
should be avoided to ensure that high-risk vehicles in high-density areas can promptly disseminate warning
messages to surrounding vehicles.
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The congestion control mechanism must guarantee that the appropriate vehicle receives the correct
message at the proper time. Finding an optimal algorithm or parameter configuration for various congestion
situations presents a challenging issue [6]. To achieve this, two major concerns are: 1) establishing the
criteria for reasonable transmission priority determination and 2) ensuring the effectiveness of the decision-
making approach.

The driving risk level holds significant implications for vehicle safety, and incorporating it as a parameter
for transmission priority aids in prioritizing high-risk vehicle data within the traffic network. Current
research on driving risk levels for vehicles primarily falls into two categories: single-factor and multi-
factor evaluations of driving risk [7]. With the advancement of Internet of Vehicles (IoV) technologies
and ongoing improvements in traffic data collection techniques within the “driver-vehicle-environment”
domain, researchers are gradually shifting towards multi-factor approaches for evaluating driving risk [8,9].
We present a combined fuzzy inference model consisting of two stages, which is grounded in driving risk
and integrates a ConvLSTM network for short-term driving risk prediction, thereby improving the reliability
of the evaluation.

On the other hand, a distributed congestion control mechanism should take into account cooperative
decision-making among vehicles. Artificial Intelligence (AI) based decision-making approaches are used to
achieve enhanced and flexible congestion control strategy [2]. However, it has a relatively high computational
complexity. Game theory is another viable approach to address congestion control issues, often applied
to solve power control problems [10]. Drawing on principles of game theory, this study introduces a
decentralized approach to congestion control, termed the Driving Risk Game-Distributed Congestion
Control (DRG-DCC) algorithm, aimed at enhancing the efficiency of message dissemination.

This paper uses SUMO+NS3 joint simulation, and the experimental results show that the method
proposed in our research can effectively alleviate network congestion and improve the communication
performance between vehicles; at the same time, when the number of vehicles is large, it can still ensure the
effectiveness and reliability of safety message propagation.

This paper is organized as follows. Related works are summarized in Section 2. Section 3 introduces
congestion control methods in C-V2X. The Section 4 introduces the driving risk and establishes a fuzzy
inference model for driving risk evaluation. In Section 5, we introduce the congestion control algorithm
based on the driving risk gaming. Section 6 provides the experimental parameters, discusses the results
obtained from the experiments, and validates the effectiveness of the DRG-DCC algorithm. Lastly, Section 7
presents the conclusions drawn from our research.

2 Related Works
The selection of communication parameters and determining message priority are essential aspects of

congestion control. In this section, we will analyze the related work from two aspects.

2.1 Congestion Control Method
Distributed congestion control is primarily achieved by controlling physical layer parameters, such as

transmission frequency and transmission power. Bazzi et al. [11] studied different congestion control methods
under IEEE 802.11p and C-V2X. The results show that in IEEE 802.11 p, parameters such as transmission
power, Modulation and Coding Scheme (MCS), and transmission frequency can be used to weigh the
relationship between congestion and transmission range or delay. In C-V2X, congestion control methods
based on transmission frequency are effective, while changes in others have minimal effect on congestion
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control. Therefore, in this paper, vehicle transmission frequency is taken as the research focus for C-V2X
congestion control.

Deep reinforcement learning (DRL) has a wide range of applications in intelligent communication
and the IoT [12,13]. Choi et al. [2] improved communication efficiency by controlling the use of channel
resources through DRL methods. Literature [14] also applies DRL to optimize Packet Delivery Rate (PDR)
and Packet Reception Rate (PRR), ensuring that Channel Busy Ratio (CBR) remains within a safe threshold,
thereby improving network performance. Shao et al. [15] introduced DRL into spectrum sharing to address
the network traffic issue. However, the above methods require a historical database, and the associated
computation delay makes it difficult to meet the requirements of C-V2X applications.

Game-theoretic approaches achieve optimal strategies through Nash equilibrium and have relatively
lower complexity. Hu et al. [16] proposed a congestion control method based on cooperative game theory,
combined with an ant colony routing algorithm to optimize congestion issues in data transmission. Kalita
et al. [17] employ a non-cooperative game approach to calculate the optimal transmission probability of
nodes, thereby reducing congestion. Liu et al. [18] reduced network congestion by making transmission
rates between distributed senders close to coordinated through a game theoretic approach. Amer et al. [19]
proposed a non-cooperative game method that designed a utility function based on contention delay, vehicle
priority, and data transmission frequency. They adjusted the transmission frequency by solving the model to
address the channel congestion problem in vehicular ad hoc networks.

In this paper, we draw on the principles of non-cooperative game theory to propose a congestion control
method based on driving risk gaming. By adaptively adjusting vehicle transmission frequencies, it aims to
alleviate channel congestion and enhance the reliability of vehicular network communications.

2.2 Priority Ranking
The transmission priority is determined based on the importance of the message. Relying solely on

communication evaluation metrics to adjust parameters is insufficient to meet the practical application needs
of C-V2X. It is essential to incorporate more driving and road information for message assessment. In our
study, the driving risk level is a key parameter for establishing transmission priority. Therefore, the issue of
determining transmission priority can be transformed into the problem of evaluating driving risk.

Driving risk is determined by a combination of factors, including the vehicle, the road, and the driver [8].
Kodithwakku et al. [9] analyzed the severity of road traffic accidents in Sri Lanka. They demonstrated a
significant correlation between factors such as road conditions, environment, vehicle characteristics with
driving risk. However, these factors are characterized by non-linearity, time-varying, and uncertainty, which
pose a significant challenge to driving risk evaluation.

Zheng et al. [20] conducted a comprehensive analysis of vehicle status, driving environment, road type,
and weather conditions and established a near-collision database for driving risk analysis. They use the K-
means clustering method to classify the driving risk. Shi et al. [21] proposed a real-time risk evaluation model
that combines deep learning with XGBoost, using continuous driving data for collision detection.

As fuzzy theory has advanced, the fuzzy comprehensive evaluation method has likewise evolved and
been utilized in the assessment of driving risks. In [7], a fuzzy inference system is used to predict the accident
rate on rural highways. The fuzzy comprehensive evaluation method can reveal the relationships between
variables and flexibly handle the complex and dynamic traffic environment. A driving risk assessment
model was developed by Zhu et al. [22] utilizing fuzzy comprehensive evaluation and hierarchical analysis,
grounded in a thorough examination of the ”human-vehicle-environment” factors.
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In view of this, this study presents a combinatorial fuzzy inference approach for assessing driving risk.
In addition, a ConvLSTM network is utilized to achieve short-term road risk prediction to meet the demands
for congestion control.

3 Congestion Control Methods in C-V2X

3.1 C-V2X Mode-4
The leading technologies of vehicle-mounted ad hoc networks include Dedicated Short-Range Commu-

nications (DSRC) and C-V2X. Before the rise of C-V2X, DSRC dominated the field. However, its underlying
technology based on the IEEE 802.11p protocol was limited by transmission distance and transmission power
and was not suitable for long-distance communication. Additionally, the high deployment costs of DSRC
have hindered large-scale commercial adoption. In contrast, C-V2X, as an extension of LTE technology, lever-
ages the widespread coverage and high utilization of cellular networks, offering a broader communication
range [23]. Our research revolves around C-V2X, focusing on the key topic of congestion control.

The network infrastructure of C-V2X is shown in Fig. 1.

Figure 1: C-V2X network infrastructure

In the 3rd Generation Partnership Project Release 14, two modes for allocating communication
resources are identified: mode 3 and mode 4. Additionally, a resource pool is utilized to enable resource
sharing.

However, all of the current C-V2X box vendors employ Mode 4, which allows the On-Board Unit (OBU)
to access communication resources through a distributed scheduling protocol known as Semi-Persistent
Scheduling (SPS) based on Sensing. Therefore, our study will focus exclusively on C-V2X mode 4.

Sensing-based SPS incorporates the idea of resource pooling, utilizing two sliding windows: a sensing
window and a resource selection window, as illustrated in Fig. 2.

The length of the sensing window is set at 1000 ms. Throughout the sensing interval, the User Terminal
(UT) detects the resource’s occupancy and creates a table representing the state of resource occupancy.
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Figure 2: Subchannel selection based on SPS

The protocol can be divided into three parts: sensing window, trigger resource selection/reselection, and
resource selection window. Trigger resource selection/reselection refers to the time point when SPS is actively
allocated or reassigned due to code rate changes or expiration of SPS resources that have been reserved for
allocation. In the sensing window, UT will continuously detect the transmission from other users. At the
trigger point, use the perception window before the trigger point to detect the resource occupancy status
and select the available resources in the later selection window. The upper bound of the resource selection
window is the delay limit of the current transmission load after the trigger time point, and the lower bound
is the User Equipment (UE) implementation process delay decision. If there are available resource (n + d)
subframes in this window, the subsequent (n + d + sps cycle) will be reserved at (n + d). The protocol realizes
the resource reservation mechanism and can sense time to avoid collision to improve the system.

3.2 Congestion Control Method in Rel-14
In Rel-14, it is said that higher CBR is usually measured when more UE transmits more V2X messages in

a given channel. Distributed congestion control can adjust the transmission parameters of each UE according
to CBR. More concretely, Rel-14 recommends a congestion control method for conventional BSM messages
based on vehicle density, as shown in Fig. 3. Corresponding parameters are listed in Table 1.

Figure 3: The relationship between VPERSubInterval, vPERInterval and vTxRateCntrlInt
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Table 1: Corresponding parameters table

Configuration Values Default values Unites Definition
vPERInterval 1000 to 10,000 5000 ms Duration time of PER (Packet Error

Rate) measurement period
vPERSubInterval 1000 to 2000 1000 ms Duration time of PER window

slides
vTxRateCntrlInt 50 to 100 100 ms Duration time of transmission rate

control period

It is essential to mention that upon concluding the vTxRateCntrlInt interval, the overall count of vehicles
within a 100 m radius circle is assessed. In other words, the calculation of vehicle density takes place.
Subsequently, a congestion control algorithm is presented, which modifies the transmission interval based
on the local vehicle density. It is shown as Eq. (1).

Max_ITT(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

100 Ns(k) ≤ B

100 × Ns(k)
B

B < Ns(k) <
vMax_ITT

100
× B

vMax_ITT vMax_ITT
100

× B ≤ Ns(k)

. (1)

Here, MaxI TT(k) represents the interval for message generation, measured in milliseconds, and B
denotes the density coefficient (25). The maximum threshold in the earlier computation is vMaxITT
(600 ms). Ns(k) indicates the density of vehicles in the specific region for the current time interval k. In the
subsequent step, the transmission interval (TI) will be updated as follows:

TI(n) = TI(n − 1) +Max_ITT . (2)

According to Rel-14, the transmission interval varies from 20 ms to 1 s. Considering the actual
application situation, in this paper, the range of transmission interval is set as [100 ms, 500 ms]. Then Eq. (1)
is reconstructed as:

ITT (k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

100 Ns(k) ≤ Bmin

20 ⋅ Ns(k) − 400 Bmin < Ns(k) < Bmax

500 Ns(k) ≥ Bmax

. (3)

where ITT (k) is the transmission interval of the security message at time k. Bmin and Bmax are density
coefficients. According to the US Highway Capacity Manual (HCM, 2010), the density coefficient Bmin of
this experiment is set to 25 pcu/(km.ln), and Bmax is set to 45 pcu/(km.ln).

As mentioned earlier, although the density-based congestion control method could reduce congestion
probability, it also leads to a degradation of message dissemination performance, thus decreasing road safety.
Hence, in this paper, we introduce a congestion control factor corresponding to vehicle status to prevent
high-risk vehicles from being unable to send messages in a timely manner.
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3.3 DRG-DCC
The congestion control mechanism must guarantee that the appropriate vehicle receives the correct

message at the proper time. We used driving risk as a congestion control factor to measure the importance
of messages and use it as a criterion for adjusting communication parameters.

Considering driving risk as a congestion control factor, we proposed a Driving Risk Game-Distributed
Congestion Control (DRG-DCC) algorithm based on Nash equilibrium.

The system framework of DRG-DCC proposed in this paper includes driving risk evaluation and
prediction, game model establishment, and Hybrid Particle Swarm Optimization (HPSO) algorithm, as
shown in Fig. 4.

Figure 4: The structure of DRG-DCC

Firstly, the driving risk is quantified by fuzzy inference as the standard for evaluating regional risk.
Considering the time delay defects caused by real-time evaluation, DRG-DCC selects the ConvLSTM model
that conforms to the characteristics of traffic flow time-space series for short-term prediction. More details
are given in the Section 4.

In the game model, the utility function is used to measure the benefits of transmission frequency and
driving risk for vehicles. This paper also proves that the constructed game model has Nash equilibrium.
Finally, the HPSO algorithm searches the game model’s solution space to obtain the vehicle’s equilibrium
strategy. More details are provided in Section 5.

4 Fuzzy Inference Based Driving Risk Evaluation and Prediction
Taking into account the complexity of influencing factors, our study utilizes a two-stage fuzzy inference

model to evaluate driving risk. In the first stage of the fuzzy inference model, we select three factors as inputs:
driver, vehicle, and environment.

4.1 Fuzzy Inference Model for Driving Risk Evaluation
In general, driving risk evaluation faces two main difficulties. One is the rationality and usability of

index factors, and the other is the method of evaluation.
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Driving risk is influenced by a large number of factors, and some can be collected while others cannot.
Therefore, in practical application, driving risk should be evaluated on the basis of collectible data. In this
paper, we categorize the index factors into three categories: driver factor, vehicle factor, and environment
factor, which correspond to riskdr iv er , riskv ehic l e and riskroad , respectively. Considering data collectible
features, driving behavior (DB) and driving time (DT) are selected as indexes of riskdr iv er , vehicle speed
(VS) and vehicle type (VT) are chosen as indexes of riskv ehic l e , road condition and weather condition are
selected as indexes of riskroad .

On the other hand, considering the risk level’s non-linearity, time-varying, and uncertain features, we
continue to use the literature [22]’s method and propose a combined fuzzy inference model to evaluate
driving risk.

The architecture of the fuzzy inference model is shown in Fig. 5, it illustrates that the suggested fuzzy
inference model is comprised of two phases.

Figure 5: Schematic diagram of combined fuzzy inference

4.1.1 The First Stage
The first stage consists of three fuzzy inference modules designed to evaluate riskdr iv er , riskv ehic l e , and

riskroad .
● riskdr iv er

The privacy of drivers can be protected while limiting public access. Consequently, the evaluation of
riskdr iv er must rely on data that is publicly accessible, such as the duration of driving. Furthermore, with
advancements in intelligent vehicles, methods for evaluating driving behavior are incorporated into onboard
intelligent systems. In our research, driving behavior (DB) and driving time (DT) have been chosen as input
variables for the driver risk module.

Here, we divide the fuzzy set of DT into three fuzzy linguistic variables: S, M, and B, with the universe
being [0, 4]. The longer the driving duration, the larger the value mapped to the universe. The fuzzy set of
DB is divided into three fuzzy linguistic values: S (normal), M (poor), and B (dangerous), with the universe
being [0, 1]. These can be obtained through onboard devices, smartphone applications, etc.

The membership functions for DB, DT, and riskdr iv er are illustrated in Fig. 6.
The number of inference rules within a collection can be determined by taking the Cartesian product of

membership sets and fuzzy linguistic variables. The relevant fuzzy inference rules for riskdr iv er are presented
in Table 2.
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Figure 6: Membership function

Table 2: Inference rules for driving risk evaluation on driver factors

Driver factor driving riskiness Driving behavior (DB)
Driving time (DT) S M B

B B B MB
M MB M MS
S MS S S

In this paper, we used the Mamdani model to perform fuzzy inference, as shown as follows:

X1 and Y1 → Z1

X2 and Y2 → Z2

⋮
Xn and Yn → Zn

X∗ and Y∗

Z∗
. (4)

For each rule,

X1 and Y1 → Z1

X∗ and Y∗

Z∗n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Xn and Yn → Zn

X∗ and Y∗

Z∗n
. (5)

Then, the results obtained from each inference are aggregated using ∪ to obtain the final fuzzy result.

Z∗ = Z∗1 ∪ Z∗2 ∪ ⋅ ⋅ ⋅ ∪ Z∗n . (6)

The centroid algorithm is employed in our study to remove fuzzy features while driving risk value
associated with the driver, referred to as riskdr iv er , is determined as follows:

riskdr iv er =
∑N

i=1 (riski
dr iv er μ∗Z (riski

dr iv er))
∑N

i=1 (μ∗Z (riski
dr iv er))

. (7)
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In the Eq. (7), N represents the total number of points in the universe, and point i is identified as
riski

dr iv er . The fuzzy solution’s membership function is represented as μ∗Z (riski
dr iv er).

● riskv e hi c l e

In road areas, different types of vehicles have varying impacts on driving safety [8,9]. Vehicle speed also
has a significant effect on driving safety and is one of the leading causes of traffic accidents. A 5 km/h increase
in speed can double the likelihood of a traffic accident [24]. In the module concerning vehicle risk, we choose
vehicle type (VT) and vehicle speed (VS) as our input parameters.

Vehicle types can generally be categorized into four groups: cars accommodating fewer than seven
passengers, small vans or passenger buses seating between 8 and 19 individuals, medium trucks or buses with
a capacity exceeding 20 seats, and large trucks. Consequently, we classify the fuzzy set associated with VT
into four fuzzy linguistic categories: S (small), M (medium), MB (medium to large), and B (large), with the
range defined as [0, 40].

VS serves as another input for the driving risk assessment model concerning vehicle factors. The fuzzy
set is divided into four linguistic values: Slow (S), Medium (M), Fast (MB), and Very Fast (B). Thus, the fuzzy
set for the input linguistic variable VS is {S, M, MB, B}. The universe of discourse is defined as [20, 120],
where larger values indicate a higher likelihood of driving risk at that speed.

Triangular and trapezoidal membership functions are used to describe the input variables of vehicle
speed and vehicle type, as shown in Fig. 7. The relevant fuzzy inference rule for riskv ehic l e is presented
in Table 3.

Figure 7: Membership functions of VT and VS

Table 3: Inference rules for driving risk evaluation on vehicle factors

Vehicle factor driving riskiness Vehicle type (VT)
Vehicle speed (VS) S M MB B

S S MS M M
M MS M MB MB

MB M MB MB B
B M MB B B



Comput Mater Contin. 2025;83(2) 2069

Similar to the calculation process of riskdr iv er , we can obtain the fuzzy inference results for riskv ehic l e .
● riskroad

In the environment risk module, we select road conditions and weather conditions as input variables.
The weather conditions are defined as an input linguistic variable with its fuzzy set as S, M, B,

corresponding to sunny, cloudy, and snowy or rainy days, respectively. The universe is defined as [0, 30].
Similarly, the road conditions are also defined as an input linguistic variable with the fuzzy set defined as

S, M, B based on the International Roughness Index, corresponding to poor, moderate, and good conditions,
which can be measured by vehicles. The universe for this variable is defined as [0, 10].

The membership functions for weather and road are illustrated in Fig. 8. And the appropriate fuzzy
inference rules for riskroad are presented in Table 4.

Figure 8: Membership functions of road and weather conditions

Table 4: Inference rules for driving risk evaluation on environment factors

Road factor driving riskiness Weather conditions
Road conditions S M B

S B MB M
M MB M MS
B M MS S

The process involved is similar to that of riskdr iv er , while riskroad is obtained.

4.1.2 The Second Stage
The second stage performs fuzzy inference based on riskdr iv er , riskv ehic l e , and riskroad , with the final

output being the overall risk value, Risko .
In the first phase of our work, we successfully obtained the fuzzy sets for riskdr iv er , riskv ehic l e , and

riskroad . These fuzzy sets are categorized as {S, MS, M, MB, B}, with the universe defined within the interval
[0, 1]. The membership functions related to these fuzzy sets are visually represented in Fig. 9.

Furthermore, the fuzzy inference rules that govern the relationships and interactions among these sets
are detailed in Table 5.

The corresponding process is as same as that of riskdr iv er . Consequently, the overall risk level for vehicle
i, referred to as Risko(i).
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Figure 9: Combined fuzzy inference

Table 5: Driving risk level evaluation rules

Driving risk degree Driver
Vehicle Environment S MS M MB B

S S S S MS MS M
MS S MS MS MS M
M S MS M M MB

MB MS M M M MB
B M MB MB MB MB

... ...
B S MS M M MB MB

MS M M MB MB MB
M M M MB MB B

MB M MB MB B B
B MB MB B B B

If we consider N vehicles in the target area, the regional risk level at time t can be expressed as follows:

[Riskt
o]Re g ion = [Riskt

o(1), Riskt
o(2), . . . , Riskt

o(N)]. (8)

In our study, SUMO is utilized to generate traffic scenarios randomly, illustrated in Fig. 10a. Sub-
sequently, the distribution characteristics of regional risk are evaluated, leading to the creation of the
corresponding risk heat map for the traffic scenario, as displayed in Fig. 10b.
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Figure 10: Combined fuzzy inference results

As depicted in Fig. 10, the highlighted region of the heat map is directly related to high-risk vehicles.
The value range of Risko obtained by combined fuzzy inference is [0, 1]. In this paper, the value range

of driving risk is divided into five levels, as shown in Table 6.

Table 6: Driving risk level and specific division

The value range of driving risk Transmission frequency Driving risk degree
(0.8, 1] 50 Very high

(0.6, 0.8] 40 High
(0.4, 0.6] 30 Moderate
(0.2, 0.4] 20 Low
(0, 0.2] 10 Minimal

We consider vehicles with moderate or higher driving risk levels as high-risk vehicles.

4.2 Short-Term Driving Risk Prediction
The prioritization of message dissemination is crucial in the congestion control strategy. Driving risk

is a complex interactive process that depends not only on the current driving conditions of the vehicle but
also on the interactions with nearby vehicles [25]. In addition, the road traffic environment is characterized
by diversity and uncertainty. The driving risk at the current moment cannot fully reflect the risk at the next
moment, leading to inaccuracies in adjusting communication parameters. Therefore, the congestion control
strategy needs to consider both the current risk factors and the expected risk factors in the future.

In this paper, we used the gravity model to calculate the interrelation between vehicles i and j.
Additionally, the Euclidean distance between them is denoted as d(i , j).

Riskt
i , j =

Riskt
o (i)Riskt

o ( j)
d (i , j) . (9)
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Thus, the cumulative risk for vehicle i at time t can be expressed as:

Riskt
A (i) = Riskt

o (i) +∑
N
i , j≠1, i≠ j Riskt

i , j . (10)

Next, the accumulative risk matrix for vehicles in the region at time t is:

[Riskt
A (i)] = [Riskt

A (1) , Riskt
A (2) , . . . , Riskt

A (N)] . (11)

A convolutional long and short-term memory neural network (ConvLSTM) is utilized in this context
for short-term risk prediction, as illustrated in Fig. 11. ConvLSTM combines the advantages of convolutional
neural networks and long short-term memory networks, enabling it to process both temporal sequence data
and spatial data simultaneously [26,27]. This aligns with the characteristics of road traffic and allows for more
accurate capture of the spatiotemporal distribution changes in driving risk.

Figure 11: Structure diagram of driving risk prediction

The risk levels of vehicle i for the next n time intervals are estimated based on the risk levels from the
preceding m time intervals, as detailed below:

Riskt ,t+n
A = Γ (Riskt−m+1,t

A ) . (12)

Here, m = 16 and n = 8 are set.
We used SUMO to generate a traffic scenario lasting ten hours, which serves as the basis for dataset D.

The traffic scenario is divided into 3600 data pieces, with each data piece having a duration of 10 s. The train
set, test set, and validation set consist of proportions of 70%, 15%, and 15%, respectively. Table 7 presents the
training parameters.

Table 7: Training parameters

Parameter Value
Training rounds 50

Input data dimensions 16 × 4 × 60
Layers of ConvLSTM 3

Number of hidden node 16, 8, 8
Convolutional kernel size 3 × 3

Output dimension 8 × 4 × 60

During the 50 training rounds, the training loss curve of the ConvLSTM model, which uses root mean
square error (RMSE) as the loss function, is shown in Fig. 12.
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Figure 12: Loss curve of ConvLSTM model training

To conduct a comparative study, the actual simulation data and predicted data for the next 8 moments
are used to construct driving risk heat maps, as shown in Fig. 13. It can be seen that the results obtained
from the predictions are generally consistent with the actual simulation results, verifying the effectiveness of
the model.

Figure 13: (Continued)
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Figure 13: Prediction results of road driving risk at time t

The accuracy of ConvLSTM prediction is 89.6%. This paper divides the value range of driving risk
into five levels, as shown in Table 6. To further evaluate the performance of ConvLSTM, we use precision
and recall to quantify the model’s effectiveness. The formula for precision is given in Eq. (13), and recall is
calculated using Eq. (14).

Precision = TP
TP + FP

. (13)

Recal l = TP
TP + FN

. (14)

where TP represents the number of samples correctly classified as positive, and FP denotes the number of
negative samples incorrectly classified as positive. FN indicates the number of positive samples incorrectly
classified as negative.

The ConvLSTM model performance in Table 8 shows a significant difference between the Macro
Average and Weighted Average due to the uneven distribution of vehicles with different driving risk
levels. Most fall under Minimal and Low, and only a few are in high-risk states. This reflects real-world
road conditions.

Table 8: Driving risk level and specific division

Indicator type Precision Recall
Macro average 0.785 0.871

Weighted average 0.932 0.894

5 Congestion Control Mechanism Based on Driving Risk Gaming
This study develops a congestion control strategy built on Riskt

A to guarantee the timely distribution of
critical messages when vehicle density is high. So, we proposed a risk-oriented gaming model.
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5.1 Gaming Model
The gaming rule focused on driving risk is described as follows:

G = {V , f1 , f2, ⋅ ⋅ ⋅ , fn , u1 , u2, ⋅ ⋅ ⋅ , un} . (15)

Here, V = {1, 2, ⋅ ⋅ ⋅ , n} denotes the vehicles in the region. F = { f1 , f2, ⋅ ⋅ ⋅ , fn} symbolizes the collection
of strategies pertaining to the transmission frequencies of vehicles. The range of fn is between fmin and fmax .
ui is the utility function of vehicle i:

ui = ( fi , f−i),∀i ∈ N . (16)

f−i = ( f1 , ⋅ ⋅ ⋅ , fi−1 , fi+1 , ⋅ ⋅ ⋅ , fn) represents the transmission frequency of other vehicles in the area,
excluding vehicle i.

It is assumed that each vehicle participant adheres to the principle of maximizing their individual
interests, and thus the problem is represented as follows:

f ∗i = arg max ui ( fi , f−i)
f i∈[ fL , fH]

,∀i ∈ N . (17)

The utility function ui is designed based on the driving risk in the vehicle’s region and the transmission
frequency of safety messages, it can expressed as:

ui = αi ln (1 + βi fi)
����������������������������������������������������������������������
bene f i t f unc t ion

− λi

Riskt
A (i)

⋅ fi

��������������������������������������������������������������
cost f unc t ion

. (18)

Here, αi represents the utility factor associated with vehicle i, βi denotes the growth rate of the benefits
provided by vehicle i. And λi denotes the strategy set of regional vehicles except for vehicle i, it can be
expressed as:

λi = (∑
N
k=1,k≠i fk)/N . (19)

The first term of the utility function is the benefit function, which increases as fi increases. This is
consistent with the fact that in the IoV, vehicles aim to obtain a higher transmission frequency to maximize
benefits. The second term of the benefit function represents the cost function, which is related to driving
risk. The higher the driving risk, the smaller the cost function. In this way, high-risk vehicles can obtain a
higher transmission frequency, meeting practical needs.

In IoV, vehicles need to control the transmission frequency to maximize the utility function, as expressed
in Eq. (15). In other words, by adjusting αi , βi and λi through the Nash equilibrium, a balance can be achieved
between the benefits and risk levels of the vehicle i.

5.2 The Existence and Uniqueness of Nash Solution
In game theory, a Nash equilibrium is a special stable state where no participant can improve their

outcome by unilaterally changing their strategy. In our research, the Nash equilibrium can be defined as
follows: when the transmission frequencies of other vehicles remain unchanged, no vehicle can achieve
higher benefits by changing its transmission frequency.
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The next two propositions will demonstrate the existence and uniqueness of the Nash equilibrium
within the risk-oriented game model.

Proposition 1. A Nash solution can be found for the risk-oriented game described by Eqs. (15) and (16) provided
that the following two conditions are met.

Condition 1: The strategy set F = { f1 , f2, ⋅ ⋅ ⋅ , fn} is both non-empty and bounded.
Condition 2: For the transmission frequency f , the utility function u is a continuous quasi-concave

function.
Proof of Proposition 1. Condition 1: The strategy employed by vehicle i is discrete, with the range of
transmission frequency is [ fmin, fmax]. Based on the definition of C-V2X message dissemination frequency,
fmin ≠ 0. Consequently, the strategy set F = { f1 , f2, ⋅ ⋅ ⋅ , fn} is non-empty and bounded.

Condition 2: Vehicle i’s utility function u exhibits continuous differentiability and is continuous
concerning its first-order derivative’s global convergence.

The expression for the second derivative can be found in Eq. (20).

∂2ui

∂ f 2
i
= − αi ⋅ βi

2

(1 + βi fi)2 < 0. (20)

Thus, the vehicle i’s utility function u qualifies as a continuous quasi-concave function within the
strategy space, ensuring that the risk-oriented game model has a Nash equilibrium solution. ◻

Proposition 2. The Nash solution associated with a risk-oriented game is unique.

Proof of Proposition 2. Assume there are two distinct Nash solutions ( fm , f−m) and ( fn , f−n), with
fi1 ≠ fi2 while all frequency selection events are completely independent, then

ui( fm , f−m) > ui( fn , f−m)
ui( fn , f−n) > ui( fm , f−n). (21)

According to the definition in Eq. (18), then

ui( fm , f−m) + ui( fn , f−n) = αi ln(1 + βi fm) −
λi

Riskt
A(i)

fm + αi ln(1 + βi fn) −
λi

Riskt
A(i)

fn . (22)

Based on the utility maximization principle, we can derive:

∂2ui

∂ fm
= αi ⋅ βi

(1 + βi fm)2 −
λi

Riskt
A(i)

= 0, ∂2ui

∂ fm
= αi ⋅ βi

(1 + βi fm)2 −
λi

Riskt
A(i)

= 0. (23)

Then 1 + βi fm = 1 + βi fn , therefore fm = fn . Thus, it can be proven that the Nash equilibrium solution
of the risk-oriented game model is unique. ◻

5.3 HPSO Algorithm Solving
In this study, we employ a Hybrid Particle Swarm Optimization (HPSO) algorithm that integrates the

exploration features of Particle Swarm Optimization (PSO) with the exploitation capabilities of the Genetic
Algorithm (GA) to identify the best possible solution.
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Here, vehicles are treated as particles, and the message dissemination frequency for vehicle i corre-
sponds to the velocity of the particle. Therefore, the solution is represented as the position of the particle.
The fitness function is defined by the utility function of vehicle i, as follows:

f itness(Riskt
A) = ui( fi , f−i). (24)

Algorithm 1 presents the pseudocode for the HPSO algorithm, and Table 9 explains its functions
and variables.

Algorithm 1: Pseudocode for particle swarm optimization.
Require: n (quantity of particles), m (count of iterations), ω (inertia weight), c1 and c2 (learning factors), p

(initial probability of variation), f (fitness function)
Ensure: gbest (group optimal position)

1: for i = 1 to n do
2: OldVelocity, OldPosition ← initParticl es()
3: end for
4: for i = 1 to m do
5: probabil it y ← ad justMutation(p)
6: p ← probabil it y
7: for j = 1 to n do
8: NewVelocity, NewPosition ← updateParticl es(OldVelocity, OldPosition, pbest, gbest, ω, c1, c2)
9: f itness ← calcFitness(NewPosition, f )

10: pbest, gbest ← updatePbestGbest(NewPosition, fitness)
11: if randomNumber() < probabil it y then
12: NewVelocity ← geneticO ps(OldVelocity, OldPosition, fitness)
13: end if
14: OldVelocity, OldPosition ← NewVelocity, NewPosition
15: end for
16: end for
17: gbest, g f itness ← returnRes(gbest, pbest)
18: return gbest

Table 9: Explanation of variables and functions in the HPSO algorithm

Function/Variable Explanation
initParticl es() Function to initialize particle positions and

velocities
OldPosition The old position of particle
NewPosition The new position of particle
probabil it y Mutation probability

ad justMutation(p) Function to adjust mutation probability
calcFitness(NewPosition, f ) Function to calculate fitness

updatePbestGbest(NewPosition, f itness) Function to update individual and global best
positions and fitness

(Continued)
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Table 9 (continued)

Function/Variable Explanation
OldVelocity The old velocity of particle
NewVelocity The new velocity of particle

updateParticl es(OldVelocity, OldPosition,
pbest, gbest, ω, c1, c2)

Function to update particle velocity and position

geneticO ps(OldVelocity, OldPosition,
f itness)

Function for genetic algorithm operations

randomNumber() Function to generate a random number
g f itness Global best fitness

pbest Individual best position

6 Simulation and Experiment Results

6.1 Simulation Parameter Setting
SUMO is an open source traffic simulation platform that can be used to simulate urban road networks,

vehicle movement, and traffic management strategies, and evaluate traffic flow, congestion, safety, and
environmental impact [28]. On the other hand, NS3 is an open source network simulation tool with a rich
library of network protocols, including TCP/IP, LTE, and WiFi, which can simulate and analyze the behavior
of complex computer networks [29]. These two tools are often combined for the research of intelligent
transportation systems. That is why we employ the SUMO platform to build road traffic scenarios, while NS3
is used to simulate V2X communication. The parameters for the road model are shown in Table 10.

Table 10: Parameter of SUMO platform

Parameter Value
Lane length 1000 m

Number of lanes 4
Lane width 3 m

Vehicle speed 20 km/h∼120 km/h
Vehicle count 20∼200

Simulation time 100 s

The corresponding communication and resource pool parameters are shown in Table 11 as below.
To evaluate driving risk, we randomly initialize the conditions of the vehicle, driver, and environment in

simulation experiments. Additionally, to simulate communication effects in real-world environments, this
study adopts the WINNER+ B1 path loss channel model as recommended by 3GPP [30]. Regarding the
scheduling of resource pools, neighboring PSCCH + PSSCH subchannels are designated. This experiment
assumes that all packets are of the same size and use the same Modulation and Coding Scheme (MCS). The
transmission frequency of vehicle BSM packets is adjusted based on the congestion control algorithm using
a driving risk game while ignoring the scenarios of BSM sending timeouts or error retransmission.
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Table 11: Communication parameters and resource pool parameters

Parameter Value
Communication frequency band 5.9 GHz

Channel bandwidth 10 MHz
Packet size 190 bytes

Data transmission power 23 dBm
Resource reselection probability 50%
Modulation and coding scheme 20

T1, T2 4 ms, 100 ms
RBs per subchannel 10

Number of subchannels 5
LOS Shaded Standard Deviation 3 dB

Inductive threshold for channel busy –94 dBm
Subchannel assignment scheme Adjacent PSCCH + PSSCH

6.2 Driving Risk and Transmission Frequency
Our research uses a hybrid particle swarm optimization algorithm to solve the game model and sets

the vehicle transmission frequency based on the equilibrium strategy obtained. During the simulation
experiment, the changes in the driving risk and safety message transmission frequency of the ego-vehicle are
recorded after entering the road area, as shown in Fig. 14.

Figure 14: Driving risk of road area and transmission frequency where ego-vehicle locates

As shown in Fig. 14, after the ego-vehicle enters the road area at 21 s, the trends in driving risk and
safety message transmission frequency are generally consistent. When the driving risk in the ego-vehicle’s
current road area increases, the ego-vehicle correspondingly increases the transmission frequency to ensure
timely delivery of safety information. Conversely, when the driving risk decreases, the ego-vehicle reduces
the transmission frequency. This is in line with the original intention of the utility function design and is also
in line with the actual situation.



2080 Comput Mater Contin. 2025;83(2)

6.3 Communication Performance Indicators
For comparative experiments aimed at validating the effectiveness of the congestion control strat-

egy proposed in our study, LTE-V2X protocol and standard-based congestion control algorithms have
been chosen.

6.3.1 PDR
The Packet Delivery Rate (PDR) is defined as the proportion of packets that successfully arrive at the

intended destination compared to the overall number of packets transmitted, and it can be used to measure
the quality of V2X communication. It is expressed as:

PDR = 1
N ∑

N
i=0

BSMrece iv e

BSMsend
. (25)

where N denotes the total count of experiments, BSMsend indicates the quantity of BSMs transmitted for
each experiment, and BSMrece iv e refers to the number of BSMs received for every experiment.

According to Fig. 15, it is evident that in scenarios with a rising number of vehicles, compared to the
other two methods in the figure, the DRG-DCC algorithm still achieves a relatively high PDR. This is due to
the fact that the DRG-DCC algorithm can flexibly modify the transmission frequency in accordance with the
driving risk of the vehicle, which guarantees an increased packet delivery rate. While the congestion control
algorithm base on the standard modifies parameters exclusively based on the correlation between CRl imit
and CBR. Even in the case of 200 vehicles, the DRG-DCC algorithm is able to maintain the PDR of over 98%.

Figure 15: Packet delivery rate, PDR

6.3.2 ARD
The Average Reception Delay (ARD) refers to the average time it takes for a packet to be transmitted

from the sender to the receiver, reflecting the timeliness of data transmission. It is defined as:

ARD = 1
N ∑

N
i=0 (trece iv e − tsend). (26)
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N denotes the count of BSMs that have been received, tsend indicates the moment at which the packet
was created and transmitted through the application layer, and trece iv e denotes the time at which the packet
was received and parsed.

Fig. 16 illustrates that increasing vehicle density results in a significant rise in the average reception
delay of BSM under the LTE-V2X standard. This phenomenon occurs because a more significant number
of resource blocks must be transmitted among vehicles, leading to prolonged resource allocation times.
Consequently, vehicles take more time to receive and process BSMs. Moreover, we can see that the average
reception delay of the DRG-DCC is more stable and lower than that of the standard-based congestion
control algorithm.

Figure 16: Average reception delay, ARD

This is because the DRG-DCC strategy can adaptively adjust the transmission frequency of data packets
based on the driving risk of different vehicles, thereby reducing the data volume in the network and lowering
the computation delay of the semi-persistent scheduling protocol used for resource block allocation. With a
total of 200 road vehicles, there is a decrease of 0.06 s in the average reception delay, a factor that is essential
for C-V2X, which demands both high reliability and low latency.

6.3.3 AT
Average Throughput (AT) refers to the average amount of data transmitted in the network over a period

of time, which can be used to evaluate the quality and efficiency of data transmission in V2X networks. It is
expressed as:

AT = BSMsuccess ⋅ τ
T ⋅ N . (27)

where BSMsuccess denotes the count of BSM packets that were transmitted successfully, and τ represents the
size of each packet. The total time needed to send and receive all BSM packets in the vehicle network is
denoted by T, while N signifies the overall number of nodes involved in the current simulation experiment.

Fig. 17 illustrates that with an increase in road vehicle density, the approach presented in this study
achieves greater throughput. Specifically, when the road vehicle count reaches 200, the average throughput
(AT) generated by our model surpasses that of the other congestion control strategy by approximately 55%.
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This indicates that our method can still ensure transmission efficiency under high vehicle density conditions.
This is because the technique proposed in this paper finds the optimal transmission frequency for each
vehicle through a non-cooperative game, resulting in fewer resource block conflicts, which increases the
packet reception success rate and thus improves the average throughput.

Figure 17: Average throughput, AT

6.4 Congestion Detection
The metric selected for evaluating network load is the channel busy rate (CBR). CBR indicates

the proportion of time within a designated detection period that a vehicle perceives the channel as
being occupied.

As illustrated in Fig. 18, as the vehicle density increases, the channel busy rate (CBR) of the LTE-V2X
standard, utilizing a fixed frequency of 10 Hz for message transmission, has already exceeded 70%. The
CBR based on the standard congestion control algorithm has also significantly increased. This indicates that
both methods experience congestion issues in high-density scenarios. The DRG-DCC algorithm presented
in our research proves to be more effective in mitigating congestion. In high-density situations, the CBR
value associated with the DRG-DCC algorithm stays at or below 0.5, ensuring the reliability and real-time
efficiency of the vehicle network.

Figure 18: Channel Busy Rate (CBR)
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The DRG-DCC strategy adjusts the packet transmission frequency based on vehicle driving risk, setting
a higher frequency for high-risk vehicles and a lower frequency for low-risk vehicles, thereby saving com-
munication resources, reducing data volume, lowering channel load, and preventing network congestion.

7 Conclusion
In our research, we proposed a Nash equilibrium congestion control algorithm based on the driving

risk evaluation. First, we establish a two-stage fuzzy inference model to evaluate driving risk. By performing
fuzzy inference on driver, vehicle, and environment factors, we obtain single-factor driving risk values, which
are then combined to derive the overall driving risk value. Additionally, we use ConvLSTM for short-term
prediction of driving risk, further enhancing the accuracy and effectiveness of the evaluation. Subsequently,
we employ a non-cooperative game framework to manage the driving risk along with the transmission
frequencies of BSMs, demonstrating both the existence and uniqueness of the Nash equilibrium. Ultimately,
the game model is resolved through the use of the HPSO algorithm.

The simulation results show that the driving risk evaluation method based on combined fuzzy inference
proposed in this paper can effectively reflect driving risk. Compared to the LTE-V2X standard without
congestion control mechanisms and the standard-based congestion control algorithm, the congestion control
strategy proposed in this paper adaptively adjusts the transmission frequency of vehicle safety messages based
on the driving risk of the ego-vehicle. This improves communication performance and alleviates channel
congestion. Even in the case of high vehicle density, the reliability of the message can still be guaranteed.

Looking ahead, we can consider incorporating more comprehensive factors for traffic risk evaluation.
On the other hand, our study focused solely on a four-lane straight-road scenario. Future work could explore
optimizing congestion control strategies for specific traffic scenarios, such as intersections and merge ramps.
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Nomenclature
3GPP The 3rd Generation Partnership Project
AI Artificial Intelligence
ARD Average Reception Delay
AT Average Throughput
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BSM Basic Safety Message
CBR Channel Busy Ratio
ConvLSTM Convolutional Long and Short-Term Memory
C-V2X Cellular Vehicle to Everything
DCC Distributed Congestion Control
DRG-DCC Driving Risk Game-Distributed Congestion Control
DRL Deep Reinforcement Learning
eNB evolved NodeB
GA Genetic Algorithm
HPSO Hybrid Particle Swarm Optimization
IoV Internet of Vehicles
LTE-V2X Long Term Evolution Vehicle to Everything
MCS Modulation and Coding Scheme
NS3 Network Simulator Version 3
OBU On-Board Unit
PC5 Proximity Communication 5
PDR Packet Delivery Rate
PER Packet Error Rate
PRR Packet Reception Rate
PSO Particle Swarm Optimization
Rel-14 The 3rd Generation Partnership Project Release 14
RMSE Root Mean Square Error
SPS Semi-Persistent Scheduling
SUMO Simulation of Urban Mobility
TCP/IP Transmission Control Protocol/Internet Protocol
UE User Equipment
UT User Terminal
V2I Vehicle to Infrastructure
V2P Vehicle to Pedestrians
V2V Vehicle to Vehicle
V2X Vehicle to Everything
WiFi Wireless Fidelity
XGBoost eXtreme Gradient Boosting
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