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ABSTRACT: Reference Evapotranspiration (ETo) is widely used to assess total water loss between land and atmosphere
due to its importance in maintaining the atmospheric water balance, especially in agricultural and environmental
management. Accurate estimation of ETo is challenging due to its dependency on multiple climatic variables, including
temperature, humidity, and solar radiation, making it a complex multivariate time-series problem. Traditional machine
learning and deep learning models have been applied to forecast ETo, achieving moderate success. However, the
introduction of transformer-based architectures in time-series forecasting has opened new possibilities for more precise
ETo predictions. In this study, a novel algorithm for ETo forecasting is proposed, focusing on four transformer-based
models: Vanilla Transformer, Informer, Autoformer, and FEDformer (Frequency Enhanced Decomposed Transformer),
applied to an ETo dataset from the Andalusian region. The novelty of the proposed algorithm lies in determining
optimized window sizes based on seasonal trends and variations, which were then used with each model to enhance
prediction accuracy. This custom window-sizing method allows the models to capture ETo’s unique seasonal patterns
more effectively. Finally, results demonstrate that the Informer model outperformed other transformer-based models,
achieving mean square error (MSE) values of 0.1404 and 0.1445 for forecast windows (15,7) and (30,15), respectively. The
Vanilla Transformer also showed strong performance, closely following the Informer model. These findings suggest that
the proposed optimized window-sizing approach, combined with transformer-based architectures, is highly effective
for ETo modelling. This novel strategy has the potential to be adapted in other multivariate time-series forecasting tasks
that require seasonality-sensitive approaches.

KEYWORDS: Reference evapotranspiration; ETo; transformer; informer; autoformer; FEDformer; timeseries forecast-
ing; self-attention

1 Introduction
Evapotranspiration is the mechanism through which water evaporates from the surface of the soil,

groundwater, and land-based water reservoirs, as well as from the surface of plants as a result of transpiration
and evaporation. This parameter varies for each crop; however, it is easily computed by multiplying the
evapotranspiration of a reference crop and the crop constant for that crop. Reference evapotranspiration
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(ETo) is measured from the reference crop, such as grass [1]. As a result, precise ETo calculations are essential
for improving water resource management and setting more accurate irrigation plans [2]. Furthermore, it has
much influence in arid and semi-arid countries, where high crop water demands and low precipitation limit
crop growth and agricultural output, as water access is the most pressing issue in these areas. It is important
that semi-arid zones cover 15.2% of the planet’s land surface and are the majority of the surface area1. Hence,
accurate ETo forecasting is critical for meeting the water needs of these arid lands to meet their needs.

FAO-56 Penman-Monteith (PM) (FAO stands for United Nations Food and Agriculture Organization)
is the most extensively used strategy for calculating ETo and testing other ETo methods [3]. FAO-56 PM
calculates ETo using semi-empirical as well as semi-physical methods; however, it requires a handful of input
parameters such as average, minimum and maximum temperature, average wind speed, relative humidity
(RH), and hours of sunlight (n). Building and maintaining equipment that can measure all necessary factors,
such as atmospheric temperature, humidity level, wind speed, and solar irradiance, is prohibitively expensive.
It is required to investigate a less complex model to estimate future ETo values with an outstanding level
of accuracy while using minimal meteorological features. In addition to the FAO method, there are other
methods that are also expensive [1].

With the recent advances in artificial intelligence concepts and computing capacity, the challenge of
computing ETo from meteorological data has been viewed as a time series regression/forecasting problem
that can be addressed by certain deep learning (DL) and machine learning (ML) models [4,5]. The aim
was achieved by using various ML algorithms. For example, Youssef et al. [6] employed three ML models,
namely SVM (Support Vector Machine), M5P and RF (Random Forest) with some empirical models for
monthly ETo prediction in two regions of India using monthly climate data from 2009 to 2016 (8 years). The
findings showed that the SVM model outperformed the other ML and empirical models at every station.
Another study by Saggi et al. [7] on meteorological data from several places in India and Spain discovered
that machine learning models outperformed traditional methods of estimating ETo. Kumar [8] developed
multiple ML algorithms using meteorological data from January 1985 to December 2010, with the RF and
gradient boosting regression (GBR) doing well.

Artificial neural networks (ANN) are popular ML models and deep learning (DL) that perform well
compared to traditional machine learning models for time series prediction. For monthly ETo in India and
Algeria, Tikhamarine et al. [9] utilized an ANN with five distinct optimizers, while the results demonstrated
the efficiency of the grey-wolf optimizer (GWO). Chen et al. [10] employed a deep neural network (DNN), a
Long short-term memory (LSTM) and a temporal convolution neural network (TCNN) model to estimate
ETo in China’s Northeast Plain using meteorological data, with TCNN being better than standard ML models.
Kahn et al. [11] also explored the estimation of evapotranspiration (ET) for saline soils, by introducing an
IoT (Internet of Things)-enabled architecture that used crop field contexts, such as soil and irrigation water
salinity, and temperature, to predict monthly ET for saline soils using Long Short-Term Memory (LSTM)
and ensemble LSTM models.

1https://news.globallandscapesforum.org/50717/everything-you-need-to-know-about-drylands/#:˜:text= Semi%2Darid%20lands%2C%20which%20stretch,
aridity%20index%20of%200.2%E2%80%930 (accessed on 05 September 2024).

https://news.globallandscapesforum.org/50717/everything-you-need-to-know-about-drylands/#:~:text=Semi%2Darid%20lands%2C%20which%20stretch,aridity%20index%20of%200.2%E2%80%930
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Many studies used the Ensemble learning technique, combining predictions from multiple models to
provide an improved and effective final prediction. Salahuddin et al. [12] employed ensemble learning to
conduct sensitivity analysis, applying ML techniques such as a single decision tree, a tree boost, and a decision
tree forest. Sharma et al. [13] presented a method named DeepEvap. It is a deep reinforcement learning-based
method that outperforms the prediction results of four different deep neural network-based models CNN-
LSTM, Convolutions with LSTM, CNN with support vector regression, and CNN (Convolutional Neural
Network) with GBR for ETo estimation using meteorological dataset.

Although machine learning (ML) and deep learning (DL) models have shown good performance
across various datasets, recently developed transformer models have also been proven to be state of art.
Transformers that were crafted initially for natural language processing (NLP) problems [14], since been
modified for use in computer vision applications [15,16] and have now been enhanced and utilized for time
series forecasting as well [17,18]. Bellido-Jiménez et al. [19] also computed daily ETo from an Andalusian
meteorological dataset using two networks: CNN-transformers and LSTM-transformers. CNN-transformers
employed CNN in their feed-forward layers, whereas LSTM-transformers utilized LSTM.

After the advent of transformers in time series, several models were built based on its architecture.
For instance, the informer replaced the self-attention mechanism with sparse attention [20]. Then, there is
an architecture called Autoformer [21] in which auto-correlation was used instead of self-attention. Then
comes FEDformer [22] which claims to be more efficient than all discussed previously. This paper uses four
different transformer-based models: transformer with self-attention, informer with prob-sparse attention,
Autoformer with autocorrelation mechanism, and FEDformer to model daily ETo.

Existing approaches to ETo forecasting have achieved only moderate success, as traditional machine
learning and deep learning models struggle to fully capture the complex multivariate and seasonal depen-
dencies inherent in ETo data. While transformer-based architectures have shown promise in time-series
forecasting, their potential remains underexplored in ETo, with limited comparative analysis of advanced
variants like Informer, Autoformer, and FEDformer. Additionally, many existing methods employ fixed
or arbitrary window sizes, neglecting the importance of optimizing window selection based on seasonal
trends and variations, which is critical for improving predictive performance. This gap in leveraging
advanced models and optimized window-sizing strategies motivates the need for a more systematic and
effective approach to ETo forecasting. A workflow of the proposed research is given in Fig. 1. The primary
contributions of this study are:

• The predictability of the time-series problem was increased by capturing distinct long-range dependen-
cies between inputs and outputs in long-sequence time-series tasks using transformer-based models.

• Various transformer-based methods were investigated to analyse forecast efficiency based on the
dataset’s features.

The following sections of this paper are arranged as follows. Section 2 provides a discussion of the dataset
and technique used in this analysis. In Section 3, experiments are discussed. The results and discussions
about the experiments are presented in Section 4. Section 5 concludes the paper.
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Figure 1: Workflow diagram of the proposed research

2 Materials and Methods
This section discusses the dataset with its preprocessing steps and methods for time series forecasting.

2.1 Dataset
Aroche is located in Andalusia, southwest of Europe. Its latitude and longitude are 37.9437○ N and

6.9545○ W, respectively. It is the dry sub-subhumid area with an aridity index of 0.555 [21]. The dataset
contains statistical distributions of data such as minimum, mean, maximum, and standard deviation
values for daily atmospheric temperatures (T_min, T_max, and T_med), relative humidity levels (RH_min,
RH_max, and RH_med), wind velocity (U2), solar irradiance (Rn), and reference evapotranspiration (ETo)
(see Table 1 for detailed statistics). This allows for a clearer understanding of the variability and patterns
in the data. This enriched information helps contextualize the model’s performance and ability to handle
diverse climatic conditions present in the dataset. The dataset duration is from 2000 to 2023, down-
loaded from the Agroclimatic Information Network of Andalusia (RIA) at https://www.juntadeandalucia.
es/agriculturaypesca/ifapa/ria/servlet/FrontController (accessed on 15 June 2024).

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
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Table 1: Minimum (min), Maximum (max), Mean, Standard deviation (std) of Julian Day, Maximum, minimum
and medium atmospheric temperature (T_max T_min, T_med), Maximum, minimum and medium Humidity levels
(RH_max, RH_min, RH_med), wind velocity (u2), wind direction (θ(u2)), solar radiation (Rn), Precipitation (Pr) and
reference evapotranspiration (ETo)

Julian Day T_max T_min T_med RH_max RH_min RH_med u2 θ(u2) Rn Pr ETo
Min 1.0 2.6 −8.0 −0.3 27.20 5.10 17.20 0.30 0.20 0.30 0.0 0.10
Max 366.0 44.3 25.0 35.3 115.3 100.0 100.0 5.80 357.1 34.3 128.4 8.90

Mean 182.2 23.5 8.9 16.3 89.5 38.5 65.6 1.24 206.0 17.6 1.78 3.34
Std 105.3 8.18 5.6 6.8 11.0 19.3 17.6 0.53 69.25 8.72 6.09 2.08

2.2 Data Preprocessing
Data preprocessing involves the removal of missing values, data scaling, and selection of input attributes

using correlation analysis.

• Data-scaling: Due to network transmission difficulties or equipment failure, there is a chance of missing
data during the data-gathering process. The missing data was filled with the most recent rows of data.
To handle highly varying magnitudes or values across the dataset, the variables are standardized to
[0, 1] before input into the model. This normalization ensures that all input values fall within the range
[0, 1], improving model stability, as shown in Eq. (1):

Xscal ed =
X − Xmin

Xmax − Xmin
(1)

Here X is the original value, Xmin and Xmax are the minimum and maximum values of the
features, respectively.

• Correlation analysis: The impact of several meteorological conditions on daily ETo values varies,
including sun irradiation, temperature, humidity, and atmospheric pressure. The Pearson correlation
coefficient is calculated for each pair of variables to quantify these relationships. The correlation coeffi-
cient helps determine the magnitude and orientation of the linear relationships between the variables.
The coefficient ranges between −1 and 1, indicating the strength and direction of the correlation. The
resulting Pearson correlation matrix is used to select the model’s input parameters as presented in Eq. (2):

rx y =
∑(Xi − X)(Yi − Y)√
∑(Xi − X)2

√
∑(Yi − Y)2

(2)

In this equation, rx y represents the Pearson correlation coefficient between variables X and Y, where
Xi and Yi are individual data points, and X and Y are their respective means. The coefficient ranges
between −1 and 1, indicating the strength and direction of the correlation as shown in Fig. 2. It shows
that date and Julian day have no correlation, temperature, wind and radiation variables have positive
correlation. In contrast, humidity and precipitation have negative correlation with ETo. Therefore, Julian
day is not selected as input to variable while all other variables were input to model and output variable
was ETo.



2856 Comput Mater Contin. 2025;83(2)

Figure 2: Correlation analysis matrix of ETo dataset

2.3 Transformer Based Models
2.3.1 Vanilla Transformer

Transformers were first employed in NLP but are now utilized for image classification, time series
forecasting, and other applications. One of the primary functions of transformers when working with
prolonged sequences is to tackle the vanishing gradient problem of LSTM. Because the vanishing gradient
problem makes it difficult for LSTMs to successfully propagate essential information across arbitrarily long
sequences, they tend to focus on more recent tokens and eventually disregard older tokens. On the other
hand, transformers use an attention mechanism to learn the relevant subset of sequences needed to do the
defined task. The value of the basic attention mechanism can be calculated as a scale dot product, as shown
in Eq. (3):

Attention (K , Q , V) = so f tmax ( QKT
√

datt
)V (3)

The letters Q, K, and V stand for query, key, and value, respectively and datt is the dimension of queries
and keys. In the context of ETo forecasting, the model can focus on the most relevant historical climatic
data (such as temperature or humidity) when making predictions for future ETo values. For instance, during
periods of drought, the model may assign higher attention to past data that indicates extreme temperature
or low humidity, as these factors significantly impact evapotranspiration rates. The transformer model can
improve prediction accuracy by effectively learning the importance of different time steps, particularly in
capturing seasonal patterns and long-term dependencies that simpler models might miss. Transformers
specifically employ a multi-head attention mechanism, which is stated mathematically as follows given
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in Eqs. (4) and (5), respectively:

MultiHead (K , Q , V) = [Head1 , . . . , Headn]Wo (4)
Headi = (QWi , KWi , V Wi) (5)

W signifies all learnable parameter matrices. Transformer uses multi-headed attention, an addition,
a normalizing, and a fully linked feed-forward layer to map input into a higher-dimensional space in an
encoder-decoder style architecture. The encoder module’s abstract vector is supplied into the decoder, which
uses it to generate output.

2.3.2 Informer
The informer is a modified version of the transformer with an encoder-decoder structure. A potential

design for a ProbSparse self-attention mechanism proposed by informer architecture that could effectively
take the place of canonical self-attention defined in Eq. (2). It achieves O (L log L) time complexity and O
(L log L) memory use on dependence alignments. ProbSparse self-attention can be defined as follows given
in Eq. (6):

A(Q , K , V) = so f tmax ( QKT
√

datt
)V (6)

where Q is a sparse matrix with size as that of the size of q and it only contains the Top-u queries under the
sparsity measurement M(q;K) and defined as below in Eq. (7):

M (qi , K) = ln
LK

∑
j=1

e
qi kT

j
√

d − 1
LK

LK

∑
j=1

qi kT
j√

d
(7)

where qi, ki, vi stand for the i-th row in Q, K, V, respectively.
Encoder: The encoder’s objective is to extract the reliable long-range dependency from the prolonged

sequential inputs. Distilling the self-attention is involved at decoder to privilege the superior combinations
for value V gained as a result of prob sparse attention. The attention output can be mathematically represented
as in Eq. (8):

Z = A(Q , K , V) + X (8)

The necessary processes and the Multi-head ProbSparse self-attention are contained in the encoder. The
total memory use was decreased to O((2 − ε) L log L) where ε is a tiny number, by stacking a layer followed
by a max-pooling layer with stride 2 and downsampling Xt to its half.

Decoder: The decoder structure is a stack of two identical multiheaded attention layers, as described by
Vaswani et al. [14]. To counteract the speed drop in extended predictions, generative inference is used. The
final output can be mathematically represented as in Eq. (9):

Yout put = FC(MultiHead (Z , Z , Z)) (9)

where Z is the output from the encoder or previous decoding step. A fully connected layer acquires the final
output, and its outsized based on the output window.
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2.3.3 Autoformer
Autoformer extends the standard way of breaking down time series into seasonality and trend-cycle

components. This is accomplished by incorporating a Decomposition Layer, which improves the model’s
capacity to accurately capture these components. The decomposition of a time series can be mathematically
represented as in Eq. (10):

Y (t) = T (t) + S (t)+ ∈ (t) (10)

where Y(t) is the observed time series, T(t) is the trend component, S(t) is the seasonal component, and
∈ (t) is the error term. Two key contributions of Autoformer are the Decomposition Layer/architecture and
the Attention (Autocorrelation) Mechanism.

Decomposition Architecture
It contains the first inner series decomposition block, which can divide the series into trend-cyclical

and seasonal/periodic parts. The encoder concentrates on seasonal/periodic component modelling. The
encoder’s output comprises previous seasonal data, which will be used as cross-information to help the
decoder refine forecast findings.

Auto-Correlation Mechanism
The Auto-Correlation mechanism maximizes information consumption by connecting in series. The

autocorrelation function can be expressed as in Eq. (11):

ACF(k) = ∑
N−k
t=1 (Yt − Y)(Yt+k − Y)
∑N

t=1(Yt − Y)2
(11)

It has been observed that identical sub-processes naturally arise from the same phase position through-
out time. The aforementioned periods provide the basis of the period-based dependencies, which can be
weighted using the corresponding autocorrelation.

2.3.4 FEDformer
FEDformer (frequency-enhanced decomposed transformers) combined the power of Transformers

with the seasonality breakdown method. In this hybrid architecture, Transformers concentrate on collecting
more intricate structures, whereas the decomposition method gathers the overall profile of the time series.
Furthermore, the sparse modelling property of well-known bases, such the Fourier transform, is used to
improve the performance of transformers. The Fourier transform can be mathematically represented as
in Eq. (12):

X( f ) = ∫
∞

−∞

x (t) e− j2π f tdt (12)

This equation describes how a time-domain signal x(t) can be transformed into its frequency-domain
representation X( f ). The Fourier transform decomposes the signal into its constituent frequencies, which
enables the model to capture the frequency components essential for effective time series analysis. The result-
ing FEDformer achieves state-of-the-art performance in long-term series forecasting while maintaining
linear computational complexity and memory cost. Through the random selection of a limited-size subset
of frequencies, linear complexity is achieved.
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2.4 Window Sizing
Domain-specific considerations and experimental objectives guided the selection of forecast windows

(15,7) and (30,15). First, evapotranspiration (ETo) is influenced by seasonal and short-term climatic patterns.
Selecting windows of 15 days (approximately two weeks) and 30 days (one month) allows us to capture both
shorter-term variations (e.g., weekly weather changes) and longer-term trends related to monthly climatic
cycles. The input-output configurations (15,7) and (30,15) were chosen to ensure a balance between sufficient
historical context (input) and a meaningful prediction horizon (output). Secondly, these window sizes align
with agricultural and water resource planning needs. A 7-day forecast (from the 15-day input) provides
actionable short-term predictions for weekly irrigation planning, while a 15-day forecast (from the 30-day
input) supports medium-term decision-making for crop and reservoir management.

Third, during the exploratory phase of this study, multiple input-output configurations were tested to
evaluate the trade-offs between model complexity, training stability, and prediction accuracy. The (15,7)
and (30,15) configurations demonstrated the best performance in capturing temporal dependencies while
maintaining computational efficiency. Finally, it will be observed later that the larger input windows (beyond
30 days) were found to increase noise sensitivity, while smaller input windows (below 15 days) failed to
provide adequate historical context. The chosen windows strike a balance between these extremes.

3 Experimentations
For time series prediction, a window is defined, a tuple of past values that are used as history for the

model to learn and a forecasted future horizon. This study compares four different transformer-based model
using three windows, i.e., (15,7), (30,15) and (96,30). First, data was shaped in particular tuple and different
experiments were run to get the best results. For Vanila transformer model, number of attention heads was 8;
2 decoder layers and one encoder layer was used. After the basic architecture the linear layers with different
number of neurons were applied. For informer, Autoformer and FEDformer same configuration was used
as well. However, FEDformer Fourier transforms and cross-activation using tanh were done. Loss function
Mean Squared Error (MSE) was calculated as given in Eq. (13) and optimizer Adam with a learning rate of
0.0001. All experiments were performed using batch-size of 32, 100 epochs, and early stopping and learning
rate schedular was applied. All training was done using Google Colab. The dataset was split into train, test
and validation with a split of 70, 15 and 15 precent.

MSE = 1
N

N
∑
i=1
(Yo − YP)2 (13)

where N is total samples of dataset, Yo are observed values and YP are predicted values.

4 Results and Discussion
In Table 2, results obtained after experimentation are provided. Mean absolute error (MAE), mean

squared error (MSE), root mean squared error (RMSE), mean absolute percentage error (MAPE), mean
squared prediction error (MSPE), and coefficient of determination (R2) for each experiment were recorded.
According to these results, the informer model has achieved the best results on this dataset. Then comes the
vanilla transformer, Autoformer, and FEDformer, respectively. The vanilla transformer and informer have
almost the same results. The dataset used is not too complex, and the proposed forecasted windows are not
very large. This is why the vanilla transformer and informer are performing well for the experimented dataset.
An interesting observation is that the informer model improved in terms of MAE as the forecasting window
enlarged whereas the same is not the case with other models. However, the vanilla transformer has achieved
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superior performance for all metrics. It can be seen that MAE values are consistently low as compared to
other models, however, in terms of MSE transformer model improves as the forecasting window increases.
FEDformer has the highest values of error among all models due to its complexity and simplicity of data.
However, for both Autoformer and FEDformer, all error metrics increased

Table 2: Results for the transformer-based model in terms of MAE, MSE, RMSE, MAPE, MSPE

Model Forecasting window MAE MSE RMSE MAPE MSPE R2

LSTM
(15,7) 0.6165 0.6846 0.8274 1.6254 50.2145 0.8609

(30,15) 0.6014 0.6454 0.8017 1.6714 50.1474 0.8415
(96,30) 0.6544 0.6667 0.8958 1.7458 54.7872 0.8079

FEDformer
(15,7) 0.6036 0.8282 0.9101 1.6349 50.5548 0.8544

(30,15) 0.5857 0.8002 0.8945 1.59612 47.7767 0.8775
(96,30) 0.8999 1.3581 1.1653 1.8251 39.6912 0.7841

Autoformer
(15,7) 0.5866 0.7993 0.8940 1.5888 49.4655 0.8769

(30,15) 0.5730 0.7705 0.8778 1.6481 52.297 0.8840
(96,30) 0.8999 1.3581 1.1653 1.8251 39.6912 0.7941

Informer
(15,7) 0.2821 0.1404 0.3748 0.7672 14.5980 0.9254

(30,15) 0.2820 0.1445 0.3802 0.8087 15.7709 0.9258
(96,30) 0.3040 0.1650 0.4063 0.7646 7.01106 0.9020

Transformer
(15,7) 0.28204 0.1445 0.3802 0.8087 15.7709 0.9301

(30,15) 0.28712 0.1538 0.3921 0.9306 21.2616 0.9144
(96,30) 0.2816 0.1484 0.3853 0.7208 6.2172 0.9158

FEDformer performs well with shorter windows (15,7) and (30,15) however experiences performance
degradation as the window size increases as can be seen in Table 2. Similarly, Autoformer is effective with
shorter windows while underperforming with longer forecasting windows, as with FEDformer. Informer has
stable performance with all windows and is especially effective with long forecasting windows, showcasing
it as the most robust model among the four. While the transformer is not suitable for short-term forecasting.
The LSTM model is also experimented with to provide a comparative analysis with transformer-based
models. It can be seen that the LSTM model has not performed well in terms of each evaluation metric as
compared to the rest of models.

In Table 3, predicted and actual graphs of the model used are displayed. It can be seen that predicted and
actual graphs for ETo estimation differ in most cases. However, the informer model has performed best in
terms of capturing seasonality. One limitation here is that the informer model does not capture the changes
that occur daily, although it achieved very low values for loss metrics such as MSE, RMSE, etc. The rest of
the methods capture daily changes; however, the values vary greatly from the actual value that has generated
too much loss as in the case of FEDformer and Autoformer. However, the transformer model also generated
accurate graphs but is less efficient computationally.

In this section results generated from various methods were discussed and it is concluded that the
informer model outperforms others in terms of better efficiency and computational affordability. This
study’s results demonstrate the proposed methodology’s effectiveness in improving the accuracy of ETo
forecasting. The implications of this study extend beyond ETo forecasting. First, the window-sizing approach,
informed by seasonal trends, climatic patterns and empirical testing, provides a framework for handling
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other multivariate time-series forecasting problems, such as weather prediction, hydrological modeling, and
energy demand forecasting. The ability to customize window sizes ensures that models effectively capture
temporal dependencies while avoiding overfitting or underfitting issues.

Table 3: Predicted and actual graphs against several models

FEDformer
(15,7) (30,15) (96,30)

Autoformer
(15,7) (30,15) (96,30)

Informer
(15,7) (30,15) (96,30)

Transformer
(15,7) (30,15) (96,30)

Second, the application of transformer-based architectures like Informer, Autoformer, and FEDformer
highlights their suitability for handling large, multivariate datasets with intricate temporal dependencies.
These models offer robust alternatives to traditional machine learning and deep learning approaches,
especially in domains requiring accurate long-term forecasting. Furthermore, these architectures’ scalability
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and computational efficiency make them suitable for real-time applications, such as dynamic irrigation
scheduling and climate risk assessment.

From a practical perspective, this study has significant applications in agricultural and environmental
management. Accurate ETo predictions support optimized irrigation planning, ensuring efficient water use
and sustainable crop production. Moreover, the approach can aid policymakers in assessing water resource
availability and implementing strategies to mitigate the impact of climate variability on agricultural systems.
Additionally, the proposed approach significantly contributes to water resource planning and climate adap-
tation strategies by enabling accurate and seasonally sensitive ETo forecasting, which is critical for efficient
irrigation and reservoir management. The 7-day and 15-day forecast configurations align with practical
planning horizons, supporting informed water allocation and reducing risks of over-irrigation or scarcity.
Finally, the proposed methodology offers a replicable framework for researchers and practitioners addressing
forecasting challenges in other domains. Integrating domain knowledge, data-driven optimization, and
cutting-edge architectures provides a blueprint for advancing the state-of-the-art in time-series modeling,
paving the way for more reliable and actionable predictions in diverse fields.

The proposed ETo prediction method can be adapted to different geographical contexts by incorporating
region-specific climatic and agricultural conditions. Additional meteorological variables like wind speed, soil
moisture, or extreme weather indicators can improve accuracy for areas with high climate variability. In arid
or semi-arid regions, focusing on drought-related parameters can support better water management, while
in contrast regions, refining window sizes to capture short-term fluctuations typical of such climates could
enhance performance. The model could also be tailored using localized datasets, including historical climatic
records and crop-specific water needs, and integrating geographic information system (GIS) or satellite-
based data for regions with sparse ground-level observations.

5 Conclusion
Reference Evapotranspiration (ETo) is a crucial measure of water loss from plant surfaces and land,

calculated by setting a reference plant to estimate the water demand for vegetation in a particular environ-
ment. Accurate ETo prediction is vital for effective water resource management, especially in agriculture and
environmental conservation. This study evaluated four transformer-based architectures—namely, Vanilla
Transformer, Informer, Autoformer, and FEDformer—on an ETo dataset from the Andalusian region, aiming
to identify which architecture is most suitable for ETo modelling. The experiments demonstrated that the
Informer model consistently performed best across various metrics, showing strong predictive accuracy and
stability when applied to the dataset. The Vanilla Transformer also showed promising results, ranking second
after Informer, likely due to its simpler structure and robustness. Although Autoformer and FEDformer
are the most recent advancements in transformer-based architectures, their performance did not match
the Informer and Vanilla Transformer on this dataset, possibly due to limitations in adapting to the ETo-
specific temporal patterns. Based on these results, future work could focus on developing a hybrid model
that combines the strengths of these architectures. By leveraging the predictive capabilities of Informer and
Vanilla Transformer with the innovations of Autoformer and FEDformer, a more accurate and efficient model
for ETo prediction can be achieved. Such a hybrid model would offer enhanced performance and adaptability,
supporting more effective water resource management in agriculture and other fields where ETo modelling
is essential. Moreover, detecting extreme weather events or periods of rapid climatic change can enhance
prediction capability.
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