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ABSTRACT: As a form of discrete representation learning, Vector Quantized Variational Autoencoders (VQ-VAE)
have increasingly been applied to generative and multimodal tasks due to their ease of embedding and representative
capacity. However, existing VQ-VAEs often perform quantization in the spatial domain, ignoring global structural
information and potentially suffering from codebook collapse and information coupling issues. This paper proposes
a frequency quantized variational autoencoder (FQ-VAE) to address these issues. The proposed method transforms
image features into linear combinations in the frequency domain using a 2D fast Fourier transform (2D-FFT) and
performs adaptive quantization on these frequency components to preserve image’s global relationships. The codebook
is dynamically optimized to avoid collapse and information coupling issue by considering the usage frequency and
dependency of code vectors. Furthermore, we introduce a post-processing module based on graph convolutional
networks to further improve reconstruction quality. Experimental results on four public datasets demonstrate that the
proposed method outperforms state-of-the-art approaches in terms of Structural Similarity Index (SSIM), Learned
Perceptual Image Patch Similarity (LPIPS), and Reconstruction Fréchet Inception Distance (rFID). In the experiments
on the CIFAR-10 dataset, compared to the baseline method VQ-VAE, the proposed method improves the above metrics
by 4.9%, 36.4%, and 52.8%, respectively.
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1 Introduction
In recent years, the rapid development of deep learning technologies has brought increasing attention

to discrete representation learning. Variational Autoencoders (VAE) [1] introduced a probabilistic approach
to learning compressed latent representations, laying the foundation for discrete representation learning.
The advent of Generative Adversarial Networks (GANs) [2] and Transformers [3] further enriched the
downstream tasks of discrete representation learning, achieving stunning results. For instance, the Vector
Quantized Generative Adversarial Network (VQGAN) [4] architecture, which combines the strengths of
VAEs and GANs, has demonstrated remarkable performance in high-resolution image synthesis. More
recently, the popularity of diffusion models has led to significant advancements in generative modeling.
By incorporating discrete representation learning, such as in the Vector Quantized Diffusion [5] model,
these techniques have not only enhanced the quality of generated samples but also greatly improved
model efficiency. The success of these approaches underscores the importance and potential of discrete
representation learning in the field of deep learning.
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Among the various discrete representation learning methods, Vector Quantized Variational Autoen-
coders (VQ-VAE) [6] have gained prominence due to their advantages in representative capacity and ease
of embedding. VQ-VAE maps continuous feature vectors into discrete spaces through vector quantization
and employs a nearest-neighbor algorithm to select the most appropriate discrete vector, simplifying
the optimization problem. This approach enables the model to more efficiently capture the fundamental
structure and features of the data, leading to its widespread application across multiple domains [7].

Although VQ-VAE has been integrated into various deep learning models as a mature machine learning
method, challenges remain regarding the efficiency and accuracy of quantization. In VQ-VAE, the encoder
divides the input image into a regular fixed grid, segmented into multiple units, considered “tokens,” to
represent the image’s features. During the quantization process, these tokens interact with a set of vectors
known as a codebook, optimized such that the codebook captures as much of the image’s representational
information as possible, thereby improving the expressive power of the quantized encoding. However, this
process introduces a significant issue: disrupting the global relationships within the image.

Unlike the independence of words in natural language processing, image features are typically inter-
related holistically. Processing individual image patches not only smooths out high-frequency information,
causing blurring during reconstruction but also increases the difficulty of training for downstream tasks such
as image generation. To address these issues, Tian et al. [8] designed a multi-scale VQ-VAE model, which
quantizes data at different scales into latent vectors and shares a single codebook. On the other hand, Huang
et al. [9] proposed a progressive quantization autoencoder from the perspective of maximizing information
in limited discrete codes, aligning the codebook dimensions with the latent feature dimensions generated by
the encoder. To some extent, these methods have preserved the global correlation of features, but progressive
quantization increases the training complexity, undermining the advantages of parallel training in neural
networks. Moreover, since code vectors are directly mapped from globally unseparated features, this leads
to an information coupling issue—similar code vectors tend to capture redundant information. This reduces
the amount of practical information in the codebook and limits the diversity in downstream tasks such
as generation.

The efficiency of the codebook is one of the critical factors influencing the quality of representa-
tion learning in models. Several studies have explored the codebook collapse issue [10] to improve the
reconstruction quality of models. Codebook collapse refers to a scenario where only a small subset of
codevectors are co-optimized with latent features, leaving most of the entries in the codebook unused. The
literature [10–12] has proposed various approaches to mitigate this problem, including random initialization,
random quantization, and latent clustering. While these methods have improved codebook utilization to
some extent, they are still based on spatial domain partitioning quantization, which neglects the global
correlation of image features, thus limiting the model’s expressiveness and increasing the difficulty of training
for downstream tasks such as image generation.

This paper proposes a Frequency-Quantized Autoencoder (FQ-VAE) to preserve images’ global rela-
tionships through frequency domain feature extraction while achieving high-quality image reconstruction.
The core of this method lies in utilizing the 2D Fast Fourier Transform (2D-FFT) to encode the original data
as a linear combination of different feature components in the frequency domain, with these components
subsequently quantized. To further optimize the codebook, this paper dynamically updates it by considering
both the usage frequency and dependency of codevectors. Moving codevectors with low usage frequency
ensures that all codevectors are updated, effectively preventing codebook collapse. Codevectors with high
dependency are significantly updated to avoid information coupling within the codebook. Additionally, this
paper introduces graph convolution theory to design and solve correction weights for the quantized features,
which helps refine the quantized features and further reduces quantization loss.



Comput Mater Contin. 2025;83(2) 2089

By performing quantization and encoding in the frequency domain, the proposed method effectively
avoids the loss of global relationships caused by spatial domain partitioning, significantly enhancing the
model’s expressive power and reconstruction quality while improving its applicability to downstream tasks.

The main contributions of this paper are as follows:

1. Proposed a novel frequency-quantized variational autoencoder (FQ-VAE) method: This method quan-
tizes image features by transforming them from the spatial domain to the frequency domain, effectively
preserving the global relationships among image features.

2. Designed an adaptive quantization encoder based on 2D-FFT: The encoder uses 2D-FFT to convert
spatial domain feature maps into a combination of essential features in the frequency domain, enabling
the adaptive extraction of more effective feature information.

3. Optimized the structure of the codebook: During the dynamic update of the codebook, both the
usage frequency and dependency of code vectors were considered, preventing issues such as codebook
collapse and information coupling.

4. Introduced graph convolution theory to refine quantized features: Using a Graph Convolutional Model
(GCM), the method obtains correction weights for different frequency features, further reducing the
information loss caused by quantization.

5. Validated the method’s effectiveness: In image reconstruction tasks, the proposed method was compared
with state-of-the-art methods on four benchmark datasets, demonstrating superior performance.
Additionally, it proved capable of generating high-quality images in generative tasks.

The remainder of this paper is structured as follows: Section 2 provides an overview of related work,
focusing on VQ-VAE and its variants, as well as recent advances in 2D-FFT-based neural networks and
graph convolutional networks. Section 3 presents the proposed FQ-VAE in detail, including the adaptive
quantization encoder based on 2D-FFT, the codebook optimization strategy, and the graph convolution-
based feature refinement module. Section 4 reports the experimental results on image reconstruction and
generation tasks, along with relevant ablation studies. Finally, Section 5 summarizes the entire paper and
discusses the limitations of the method and potential future research directions.

2 Related Work

2.1 Vector Quantised Variational Autoencoder
VQ-VAE is a generative model combining Variational Autoencoders principles with vector quantization

techniques. By quantizing continuous feature vectors into discrete representations, it learns and generates
using a codebook composed of a finite set of codevectors. This approach not only enables the model to
learn compact representations of data but is also widely applied across various downstream tasks, such
as image generation [13], video generation [14], audio generation [15], communication systems [16], and
recognition [17].

The reconstruction quality of VQ-VAE directly reflects the model’s ability to learn from the original
data and, at the same time, sets an upper bound for performance in downstream tasks. To improve image
reconstruction quality, several research works have proposed different enhancements. Razavi et al. [18]
improved the VQ-VAE model by designing a multi-scale hierarchical structure, separating global infor-
mation at the top layers from local information at the bottom layers, which enabled the generation of
globally coherent and locally high-resolution images. Additionally, VQGAN and Vision-Transformer-based
VQGAN (ViT-VQGAN) [19] introduced Generative Adversarial Networks and Transformer architectures
into the training process, further enhancing reconstruction quality. Residual-Quantized VAE (RQ-VAE)
and Modulating Quantized Vectors (MoVQ) [20] improved reconstruction by utilizing multi-channel
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representations, though at the cost of increasing the dimensionality of latent features, which reduces the
model’s compression efficiency.

Recently, several methods have been proposed to address the codebook collapse issue. Williams et al.
proposed Hierarchical Quantized Autoencoders (HQ-VAE), while Dhariwal et al. [21] introduced Jukebox.
Both methods implement a codebook resetting mechanism, randomly reinitializing unused or infrequently
used codebook entries. Takida et al. introduced the Stochastically Quantized Variational Autoencoder
(SQ-VAE), which incorporates a self-annealing process to learn an effective codebook from the initial
stochastic quantization. Vuong et al. [22] proposed the Vector Quantized Wasserstein Autoencoder (VQ-
WAE), which replaces the KL divergence with the Wasserstein distance as a regularization term to ensure a
uniform distribution of discrete representations. The most relevant work is the Clustering VQ-VAE (CVQ-
VAE) proposed by Zheng et al., which takes into account the variability of features in deep networks by
employing running mean updates within training batches to capture the dynamic changes throughout the
training process. In contrast, CVQ-VAE achieves better reconstruction results while ensuring 100% codebook
utilization. Despite the improvements these methods offer in terms of encoding-decoding and codebook
utilization, they still suffer from issues affecting images’ global coherence. This paper maps latent features into
multi-frequency combinations in the frequency domain, ensuring global information preservation in the
images, thereby enhancing the codebook’s information capacity and the model’s representative capabilities.

2.2 Network Based on 2D-FFT
Fourier transform has been widely applied in neural networks to enhance feature extraction capabilities

in recent years. For instance, Lee-Thorp et al. [23] proposed the Filter Networks (FNet), which replaces the
self-attention sublayer in the Transformer encoder with a standard, unparameterized Fourier transform,
achieving competitive performance while accelerating the training process. Building on this, Sevim et al. [24]
further improved the approach by introducing Fast-FNet, significantly enhancing model efficiency. These
methods have been extensively applied in the field of natural language processing (NLP), and research on
Fourier transforms in the vision domain has also been gradually increasing.

Rao et al. [25] proposed Global Filter Networks (GFNet), which utilize the 2D Discrete Fourier
Transform (2D-DFT) to transform features into the frequency domain and multiply them with a global filter,
achieving a reasonable balance between accuracy and complexity in image classification tasks. Subsequently,
Rao et al. [26] applied this method to visual recognition tasks, improving efficiency while maintaining
accuracy. However, the global filters in GFNet are shared parameters used by all samples, which somewhat
weakens the model’s generalization ability. Wang et al. [27] designed an attention network based on multi-
scale fast Fourier transform, extracting global information from images using FFT and combining it with
spatial local information, further enhancing network performance. Building on this, Tatsunami et al. [28]
developed dynamic global filters, narrowing the gap between Fourier transform-based global filters and
the multi-head self-attention mechanism. These studies aim to enhance the feature extraction capability by
acquiring a global receptive field through Fourier transform, with the final output in the frequency domain
being a singular frequency domain feature map.

In contrast, the method proposed in this paper adaptively extracts multi-dimensional frequency domain
features based on dynamic filtering and maps image features as linear combinations of these features. This
provides new possibilities for feature quantization and better preserve information from the source data,
reducing information loss.
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2.3 Graph Convolution Networks
Graph convolution has emerged as a powerful tool for processing non-Euclidean data. By leveraging

graph structures, Graph Convolutional Networks (GCNs) can effectively capture the complex relationships
and dependencies among nodes in a graph, and have been widely applied in the field of computer vision.
In recent years, graph convolution techniques have been increasingly employed in various tasks, including
image classification [29], deep image clustering [30], feature fusion [31], and more.

In the context of feature optimization, graph convolution has shown great potential in enhancing
learned features. Cai et al. [32] generated directional relationships between features by combining the Cross-
Attention Mechanism and graph convolution techniques, thereby preserving image feature information to a
higher degree. Yang et al. [33] introduced Spatial Graph Attention (SGA) to encode feature correlations in the
spatial dimension, enriching feature representations and achieving significant performance improvements
in the single image super-resolution (SISR) task. While these studies primarily apply graph convolution
techniques in the spatial dimension, some research has also demonstrated promising results when applying
them in the channel dimension. Li et al. [34] proposed a dynamic-channel graph convolutional network to
map image channels to the topological space and synthesize the features of each channel on the topological
map, addressing the limitation of insufficient channel information utilization and further enhancing image
edge information. In the latest research, Xiang’s Adaptive Graph Channel Attention (AGCA) [35] introduces
graph convolution theory into channel attention, treating each channel as a feature vertex and performing
non-local operations on the features, significantly improving feature representation capabilities.

The proposed FQ-VAE method in this paper also leverages graph convolution to refine quantized
features. By constructing a graph convolutional module, FQ-VAE learns the correction weights of different
frequency components, which helps mitigate the information loss caused by quantization. The graph
convolution operation enables the model to capture the relationships among frequency components and
adaptively adjust their weights, resulting in more accurate and informative quantized features.

3 Method

3.1 VQ-VAE
Given an image x ∈ RH × W × c , VQ-VAE uses an autoencoder to encode the input as ze(x) ∈ Rh × w × D ,

and then quantizes the latent features into the codebook space zq(x) ∈ Rh × w × D , where h ×w represents the
dimensions of the basic blocks to register codebook entries, and D is the dimensionality of each codebook
entry. The quantized encoding vectors can be used to generate new images.

VQ-VAE is trained by optimizing the following loss:

L = ∣∣x − x̂∣∣22 + ∣∣sg[ze(x)] − zq(x)∣∣22 + β∣∣sg[zq (x)] − ze(x)∣∣22 (1)

where sg[.] denotes the stop-gradient operation, and β is a weighting hyperparameter. The loss func-
tion comprises a reconstruction loss, which measures the difference between the observed x and the
reconstructed x̂; a codebook loss, which forces the codevectors to approach their original features; and
a commitment loss, which brings the encoder’s output features closer to the chosen codevectors. In this
paper, we focus on optimizing the model from the perspective of quantization methods, hence we follow the
VQ-VAE loss function, with the detailed methodology discussed in Section 3.2.
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3.2 FQ-VAE
3.2.1 Overview

Our method is based on the VQ-VAE architecture, where the process from the original image input
to the reconstructed image output passes through the encoder, quantizer, and decoder. As shown in Fig. 1,
the encoder utilizes a 2D-FFT to transform image features into a representation in the frequency domain,
forming a linear combination of frequency components. These components are then quantized in the
quantizer. To avoid codebook collapse and mitigate potential information redundancy, we dynamically
optimize the codebook by considering the usage frequency and dependencies among codevectors. In the
decoder, we apply graph convolution theory to refine the quantized features and minimize quantization loss.
The specific implementation details are provided in the subsequent sections.

Figure 1: Architecture of the frequency quantized variational autoencoder (FQ-VAE)

We utilize 2D-FFT to transfer image features into the frequency domain and extract their components,
quantizing these frequency domain features. During decoding, we use 2D-IFFT to return the image features
back to the spatial domain, followed by convolution to complete the reconstruction. Additionally, we
optimize the codebook and apply a Graph Convolutional Module (GCM) to generate corrective weights,
reducing quantization loss. Compared to other VQ-VAE architectures, our method preserves the global
relationships within the image, resulting in improved reconstruction performance.
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3.2.2 Encoder
Compared to traditional methods, which typically map raw data into a set of regular image blocks in the

high-dimensional spatial domain and then quantize these blocks, such grid-based partitioning often disrupts
the global relationships within the image, leading to information loss. In contrast, the method proposed in
this paper preserves the image’s global characteristics throughout the encoding process. The encoder encodes
the raw data as a linear combination of various frequency components in the frequency domain. Our method
is based on the 2D-FFT, but a thorough understanding of the 2D-DFT is essential before implementing the
2D-FFT effectively.

For a given 2D signal x(h, w), the 2D-DFT is defined as:

x̃(h′, w′) = 1√
HW

H−1
∑
h=0

W−1
∑
w=0

x(h, w)e−2π j( hh′
H +

ww′
W ) (2)

where H, W ∈ N, h, h′ ∈ {z ∈ Z∣0 < z < H} , w , w′ ∈ {z ∈ Z∣0 < z <W}.
The 2D-DFT maps the data from the spatial domain to the frequency domain, where x̃(h′, w′) belongs

to the frequency domain. The 2D-DFT produces a complete complex matrix; however, due to the conjugate
symmetry of real-valued inputs, half of this matrix is redundant, leading to a time complexity of O(H2W2)
for direct implementation. In contrast, the 2D Fast Fourier Transform (2D-FFT) reduces the number of
required multiplications and additions by leveraging the symmetry and periodicity inherent in the DFT
computation, lowering the time complexity to O(HW log2(HW)).

As illustrated in the encoder module in Fig. 1, our method initially adheres to the conventional process
of downsampling through convolution to map raw data into latent space, where the channel dimension is
emphasized, resulting in latent features z (x) ∈ RD×h×w , where each channel corresponds to a standard 2D
signal. For each channel, distinct frequency transformations are employed to decompose and extract features
from the frequency domain, specifically implemented as follows:

ze(x) = K ⊙F(x) (3)

where ⊙ represents element-wise multiplication. K ∈ CD × H × ⌈W
2 ⌉ is a learnable filter. F(x) denotes the

features after the 2D-FFT, and ze(x) is the final latent feature of the encoder, where each element serves
as the minimum unit for quantization. The purpose of K is to dynamically generate filters based on data
characteristics, capturing important frequency components across different data, thus exhibiting dynamic
and adaptive properties.

In this paper, we utilize a multilayer perceptron (MLP) to generate a set of N filter coefficients mi , (i ∈
0, 1, . . . , N), and we define a set of filter bases K = {K1 , . . . , KN}, where K1 , . . . , KN ∈ CH×W

2 . For different
frequency-domain feature filters, the following definition applies:

Kmi(x)D ,∶,∶ = (
emi(D−1)N+i

∑N
n=1 emi(D−1)N+n

)Ki (4)

Finally, the combination of learnable filters is:

K =
N
∑
i=1

Kmi(x) (5)

The encoder extracts frequency-domain features from the channel dimension of the latent feature z (x),
and ultimately quantizes the image features with different frequency components from various channels
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as the minimum unit. Unlike spatial domain partitioning, this approach preserves the global relationships
within the image. Furthermore, the global dynamic filter-based feature extraction scheme, based on the FFT
employed in this paper, exhibits lower time complexity compared to other global feature extractors (e.g.,
Transformer), with a complexity of O(HWD log2 (HW) +HWD).

3.2.3 Codebook Construction
To optimize inactive codevectors in the codebook, this paper proposes an improved dynamic codebook

updating method. This approach updates the codebook dynamically based on the usage frequency of code
vectors and their dependencies. The updated code vector e(t)

k is calculated as follows:

e(t)
k = (1 − α(t)

k ) e(t−1)
k + α(t)

k ẑ(t)
k (6)

where ẑ(t)
k is the resampled anchor vector, which provides the correct update direction for the code vector,

obtained by identifying the nearest latent vector. α(t)
k is the decay value, calculated using the following

formula:

α(t)
k = exp−N(t)

k δk M 10
1 − γ
− ε (7)

where M is the number of anchor vectors, and ε is a constant (set to 0.001). N(t)
k represents the average usage

of the k-th entry after step t and is updated according to the following formula:

N(t)
k = γN(t−1)

k + (1 − γ)
n(t)

k
Bhw

(8)

where n(t)
k is the usage count of the k-th entry in the mini-batch at step t, N(t)

k is the average usage of the
k-th entry after step t, γ is the decay hyperparameter (set to 0.99), and B is the batch size.

In addition, to reduce the dependency between codevectors in the codebook and better represent
the quantized data with linear combinations, while avoiding excessive information coupling, the approach
introduces the Pearson correlation coefficient δ. This term is used to evaluate the linear correlation strength
between each code vector and the rest of the vectors in the codebook. For any code vector ek , the Pearson
correlation coefficient δk is defined as:

δk = max
j∈{0,1, . . . ,M}, j≠k

(δk , j) = max
j∈{0,1, . . . ,M}, j≠k

⎛
⎝

cov (ek , e j)
σek σe j

⎞
⎠

(9)

where j represents all codevectors in the codebook except ek . cov(ek , e j) is the covariance between ek and
e j, and σek σe j are their standard deviations. The covariance cov(ek , e j) is expressed as:

cov (ek , e j) =
1

n − 1

n
∑
i=1
(ek i − ek) (e j i − e j) (10)

where n represents the dimensionality of the codevectors. The magnitude of δk reflects the linear correlation
between the code vector and the other vectors in the codebook. The higher the correlation, the larger the
update for that codevectors. This dynamic learning process helps the codebook vectors better capture the
essential characteristics of the data and enhances their linear independence.



Comput Mater Contin. 2025;83(2) 2095

3.2.4 Decoder
In traditional quantization methods, information loss is inevitable, primarily due to the distance

discrepancy between the codevectors and latent vectors. In our method, the decoder’s input is a linear
combination of various frequency-domain features. Additionally, through the optimization of correlation
strength during codebook training, the codebook entries tend to form a linearly independent set. According
to a theorem in linear algebra, if a set of N-dimensional vectors is linearly independent and their number
exceeds N , any arbitrary N-dimensional vector can be represented as a linear combination of these vectors.
This provides a theoretical foundation for correcting quantized features. By solving for the weight coefficients
w, we can approximately reconstruct the latent feature ze(x) without loss. This is expressed as follows:

ze(x) = w1e1 +w2e2 + . . . +wn en (11)

Inspired by recent work of Xiang et al. [35], which models inter-channel relationships using a graph
structure, we introduce graph convolution theory to solve for the frequency feature coefficients w in
our method.

Specifically, we first apply global average pooling (GAP) to the feature map, reducing its dimension to
U × 1 × 1, where U = N × D is the product of the number of filter bases and the number of channels,
representing the number of frequency features (graph vertices). A subsequent 1 × 1 convolution operation
is employed to further enhance the feature representation, producing an initial set of feature maps. These
feature maps are then processed by a graph convolutional module to obtain the feature weights. The
architecture of the graph convolution module is illustrated in Fig. 2. Each frequency feature map is treated
as a graph node, and the graph convolution module can be expressed as:

f̂ =W f (A× B + C) (12)

here, W denotes the weights of different network layers, while f and f̂ represent the input and output
feature maps, respectively. A is initialized as an U × U identity matrix, representing the self-relationship of
each feature vertex. B is a diagonal U × U matrix representing the weights of the feature vertices, obtained
by applying a one-dimensional convolution followed by a softmax operation. This enables the network to
adaptively emphasize or suppress certain features. C is a learnable U × U adjacency matrix, optimized
through backpropagation to represent the relationship between feature vertices.

Figure 2: Architecture of the Graph Convolutional Module (GCM). After passing the input feature maps through the
GCM, the corresponding weights for the quantized feature components are learned, which are used to further minimize
the information loss caused by quantization

The feature weights obtained via the graph convolution operation are used to recalibrate the frequency-
level response. The weighted frequency features are then transformed back from the frequency domain to
the spatial domain using the 2D inverse Fourier transform.
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Subsequent operations are similar to those in traditional VQ-VAE. Through convolution operations,
the latent features in the spatial domain are restored to their original space, achieving high-quality
image reconstruction.

4 Experimental Results
In the experimental evaluation, this paper conducts experiments on both image reconstruction and

image generation tasks. To ensure fairness, all experiments utilize the same downsampling rates and
hyperparameter settings. In the image reconstruction experiments, the superiority of the proposed method
is validated by comparing the image reconstruction quality, codebook utilization rate, and codebook
information capacity. Ablation studies further confirm the significance and practicality of all components on
model performance, while determining the optimal combination of the number of channels and filters. In
the image generation task, the proposed method demonstrates advantages in preserving global relationships
for downstream tasks. Experimental results show that the proposed method outperforms current state-of-
the-art methods in codebook construction, reconstruction performance, and generation quality, achieving
significant improvements.

4.1 Experimental Setup
Datasets and Performance Measures. The models in this paper are trained on four publicly available

datasets: MNIST [36], CIFAR10 [37], CelebA [38], and LSUN Church [39].
The following metrics are utilized as performance evaluation indicators: Structural Similarity Index

(SSIM) at the image patch level, Learned Perceptual Image Patch Similarity (LPIPS) [40] at the feature level,
and Reconstruction Fréchet Inception Distance (rFID) [41] at the dataset level.

Implementation Details. For VQ-VAE, HQ-VAE, SQ-VAE, and CVQ-VAE, this paper utilizes the
official code and constructs models for all datasets except LSUN Church. LSUN Church was only applied
to the image generation task in the CVQ-VAE paper, however, to demonstrate the model’s generalization
capability, this paper includes this dataset in the image reconstruction task, using the same configuration
parameters as those for CelebA.

The proposed method first maps features through convolutional layers. For the MNIST, CIFAR10, and
CelebA datasets, the method modifies only the channel dimensions after resizing the images, without altering
their resolution. for the LSUN Church dataset, the h and w are adjusted to H/2 and W/2, respectively.

Regarding learning rates, a rate of 2 × 10−3 is set for MNIST, while a rate of 3 × 10−3 is set for
the reconstruction tasks on the other datasets. According to the study referenced in [12], the weight
hyperparameter β in the loss function is set to 0.25, and the decay hyperparameter γ is set to 0.99. All
experiments are conducted on an NVIDIA A800 PCIe with 80 GB memory.

4.2 Image Reconstruction
This paper conducts image reconstruction tasks on four datasets. For the MNIST and CIFAR10 datasets,

the experiments utilize their original resolutions of 28× 28 pixels and 32× 32 pixels, respectively. The CelebA
dataset is first center-cropped to 140 × 140 pixels and then resized to 64 × 64 pixels. The LSUN Church
dataset employs the official version and is split into training, validation, and test sets in an 8:1:1 ratio, with the
image size adjusted to 128 × 128 pixels. The training process continues until the model converges completely.
All data in the experiments undergo uniform standardization, with a mean of 0.5 and a variance of 0.5. To
ensure fairness, the number of encoded features in the proposed method is consistent with the number of
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latent vectors in the compared methods, which is one-quarter of the original resolution, corresponding to a
downsampling rate of f = 4, applied to all datasets.

Codebook Utilization. The codebook utilization rates are calculated and visualized on the MNIST and
CIFAR10 validation sets to verify the proposed method’s effective improvement of the codebook. Specifically,
the total number of times all entries in the codebook are utilized to reconstruct the validation set is counted.
As shown in Fig. 3, the orange curve represents the fitted curve of the codebook entries sorted by usage rate,
demonstrating that the codebook utilization rate of the proposed method is higher than both the baseline
VQ-VAE and the state-of-the-art CVQ-VAE. In the codebook of VQ-VAE, a large portion of the entries
remain unused or infrequently used, while a small number of entries are used very frequently, which is a result
of the codebook collapse problem. Compared to VQ-VAE, CVQ-VAE addresses this issue by introducing
anchor points to update unused or less frequently used codevectors, ensuring that all codevectors are utilized.
However, there still exists a subset of codevectors that are used with high frequency. The proposed method
demonstrates a more balanced usage of codebook entries compared to CVQ-VAE, indicating a more effective
utilization of the codebook.

Figure 3: Visualization of Codebook Utilization on MNIST (top) and CIFAR-10 (bottom) validation sets. The blue line
indicates the usage quantity of different code vectors in the codebook. The orange curve represents the fitted curve of
the codebook entries sorted by usage frequency. In VQ-VAE, a large portion of the codebook entries remain unused due
to codebook collapse. CVQ-VAE improves this issue by increasing codebook utilization. Our method further ensures
a more balanced usage of codebook entries, making the codebook more efficient

The more uniform distribution of codevector usage in the proposed method suggests that it effectively
captures a wider range of essential features and structures from the input data. This is achieved through
the frequency-domain quantization, which preserves global relationships and extracts more informative
features, as well as the dynamic codebook optimization, which prevents the dominance of a small subset
of codevectors. As a result, the codebook in the proposed method is more efficient and better equipped to
represent the complex characteristics of the data, leading to improved reconstruction and generation perfor-
mance.
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Unit Information Capacity of Codebook. Previous studies did not include calculations of the infor-
mation capacity of individual codebook entries. Referring to the study in [9], this paper calculates the
information capacity of codebook vectors by single codevector and measuring the change in mean squared
error (MSE) loss between the generated image and the original image before and after the removal. By
evaluating the MSE loss difference at the dataset level, the information capacity of individual code vectors
is quantified. This metric reflects the effectiveness and compactness of the codebook’s information. The
measurement results on the CelebA and LSUN Church datasets are presented in Fig. 4, showing that the
average information capacity per codebook entry generated by the proposed method is higher than that of
prior methods. This demonstrates that the frequency domain features introduced in this paper carry more
effective information than traditional image features obtained via spatial domain partitioning, resulting in a
more compact and efficient codebook.

Figure 4: Visualization of Codebook Unit Information Comparison on CelebA (top) and LSUN Church (bottom)
validation sets. The red dots and curve represent the information content of codebook entries and their fitting curve
in the proposed method, respectively. Blue, gray, and green indicate the measurement results of VQ-VAE, SQ-VAE,
and CVQ-VAE, respectively. Compared to other methods, the codebook generated by our approach exhibits a higher
average information per entry, indicating less information coupling within the codebook. This suggests that our method
captures richer and more compact data features in the codebook

Quantitative Evaluation. Table 1 presents the quantitative comparison results of image reconstruction
across four publicly available datasets: MNIST, CIFAR10, CelebA, and LSUN Church. The results are
compared with state-of-the-art quantized autoencoder models, including VQ-VAE, HVQ-VAE, SQ-VAE,
and CVQ-VAE. By quantizing frequency domain features, optimizing the codebook structure, and refining
the quantization of features, the proposed method significantly enhances image reconstruction quality,
outperforms the four baseline models across all performance metrics on all datasets (with the exception of
SSIM on MNIST and CelebA). Using the CIFAR-10 dataset as an example, the proposed method surpasses
all baselines across all metrics. Its SSIM (0.9012), LPIPS (0.1597), and rFID (18.88) scores are 0.0034, 0.0376,
and 6.01 points better than the best-performing baseline, CVQ-VAE, respectively. It is worth noting that
in experiments on the CelebA and LSUN Church datasets, the rFID scores of CVQ-VAE increased by 0.43
and 1.00 compared to the baseline VQ-VAE. This can be attributed to the increased information coupling as
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the dataset resolution increases, which affects the strategy of updating the codebook solely through anchor
points in CVQ-VAE. The proposed method avoids the issue of information coupling through its codebook
optimization strategy that reduces dependencies, gaining a significant advantage. It outperforms the second-
best method, SQ-VAE, by 15.1% and 18.8% on the rFID metric for the CelebA and LSUN Church datasets,
respectively. This demonstrates that the model effectively captures more valuable information from the
original images.

Table 1: Reconstruction results on CIFAR-10, MNIST, CelebA, and LSUN Church validation sets

Method MNIST CIFAR10 CelebA LSUN Church

SSIM↑1 LPIPS↓2 rFID↓ SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓
VQ-

VAE [6]
0.9776 0.0291 3.51 0.8595 0.2510 40.03 0.9481 0.0965 6.26 0.9065 0.1680 8.86

HVQ-
VAE [10]

0.9789 0.0268 3.15 0.8556 0.2546 41.08 0.9484 0.0963 6.25 0.9087 0.1668 7.90

SQ-
VAE [11]

0.9818 0.0243 3.21 0.8767 0.2305 37.98 0.9502 0.0882 4.43 0.9015 0.1642 6.93

CVQ-
VAE [12]

0.9833 0.0215 1.87 0.8978 0.1973 24.89 0.9447 0.1006 6.69 0.8978 0.1789 9.86

Ours 0.9824 0.01833 1.38 0.9012 0.1597 18.88 0.9500 0.0821 3.76 0.9119 0.1415 5.63
1Note: ↑ indicates that higher values correspond to better performance. 2Note: ↓ indicates that lower values correspond
to better performance. 3Note: Best results are bolded.

Qualitative Evaluation. Fig. 5 presents some example reconstruction results trained on the LSUN
Church dataset. We report reconstruction examples for VQ-VAE, HVQ-VAE, SQ-VAE, CVQ-VAE, and the
proposed method, FQ-VAE. It can be observed that the proposed method achieves better visual quality and
performs well even in challenging detailed areas.

Figure 5: (Continued)
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Figure 5: Qualitative comparison examples from LSUN Church validation set. The red box highlights areas in the
image containing fine details that are difficult to reconstruct. The results demonstrate that our method achieves superior
reconstruction performance compared to the baseline model in these regions

4.3 Ablation Experiments
Core Factors. The core components of the proposed method are evaluated in Table 2, demonstrating

that each designed components contributes significantly to the improvement of reconstruction quality.
We begin with the baseline configuration (A) implementing VQ-VAE. In configuration (B), spatial vector
quantization is replaced by frequency domain feature quantization, resulting in a notable performance
boost, indicating that frequency domain quantization is the key driver behind the method’s performance
enhancement. Configurations (C) and (D) evaluate the codebook optimization methods. Configuration
(C) reinitializes rarely used codevectors by selecting anchor points, yielding significant gains on small
datasets such as MNIST and CIFAR-10, with rFID reductions of 29.21% and 33.50%, respectively. However,
on larger datasets like CelebA and LSUN Church, the performance across all metrics slightly declines
due to more severe information coupling. Configuration (D) considers codebook dependencies on top
of (C), further reducing codebook information coupling and outperforming configuration (C) on various
datasets. For example, on LSUN Church, configuration (D) improves SSIM, LPIPS, and rFID by 1.01%, 9.67%,
and 25.05%, respectively, compared to configuration (C), highlighting the importance of addressing the
information coupling issue in the codebook. Configuration (E) employs a Graph Convolutional Module to
refine the quantized features and reduce information loss. Compared to the baseline configuration (A), on the
MNIST dataset, SSIM improves by 0.17%, while LPIPS and rFID decrease by 9.97% and 12.82%, respectively,
demonstrating the effectiveness of the Graph Convolutional Module. Similar improvements are observed on
other datasets.

Table 2: Evaluation of core component contributions on CIFAR-10, MNIST, CelebA, and LSUN Church validation sets

Method MNIST CIFAR10 CelebA LSUN Church

SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓
(A) 0.9776 0.0291 3.51 0.8595 0.2510 40.03 0.9481 0.0965 6.26 0.9065 0.1680 8.86
(B) 0.9791 0.0225 2.08 0.8856 0.2017 28.10 0.9467 0.0902 5.31 0.9096 0.1587 6.88
(C) 0.9817 0.0236 2.23 0.8991 0.1897 26.62 0.9445 0.1006 6.69 0.8978 0.1789 9.86
(D) 0.9818 0.0229 2.28 0.8995 0.1890 24.93 0.9487 0.0913 5.44 0.9069 0.1616 7.39

(Continued)
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Table 2 (continued)

Method MNIST CIFAR10 CelebA LSUN Church

SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓ SSIM↑ LPIPS↓ rFID↓
(E) 0.9793 0.0262 3.06 0.8659 0.2335 34.14 0.9483 0.0921 5.50 0.9074 0.1628 7.88
(F) 0.9816 0.0199 1.62 0.8963 0.1760 21.77 0.9492 0.0854 4.62 0.9110 0.1495 6.01
(G) 0.9811 0.0207 1.95 0.8893 0.1916 25.41 0.9488 0.0874 4.89 0.9101 0.1516 6.23
(H) 0.9819 0.0213 1.99 0.9002 0.1776 22.52 0.9491 0.0858 4.77 0.9106 0.1500 6.12
(I) 0.9824 0.0183 1.38 0.9012 0.1597 18.88 0.9500 0.0821 3.76 0.9119 0.1415 5.63

Configuration (F) combines the frequency-domain quantization method with the codebook optimiza-
tion method, achieving better results than individual components. Taking the CelebA dataset as an example,
configuration (F) achieves an SSIM of 0.9492, LPIPS of 0.0854, and rFID of 4.62, improving by 0.25%,
5.32%, and 13.00% compared to configuration (B), and by 0.05%, 6.46%, and 15.07% compared to configu-
ration (D), respectively. This indicates that codebook collapse and information coupling problems remain
major influencing factors under frequency-domain quantization. Moreover, configuration (G) combines the
codebook optimization method with the Graph Convolutional Module, while configuration (H) combines
the frequency-domain quantization method with the Graph Convolutional Module. Both configurations
outperform their respective individual components, suggesting that the interaction among these components
can generate positive gains.

Configuration (I) integrates all the proposed components and, as expected, achieves the best perfor-
mance across all metrics on all datasets. For instance, on the CIFAR-10 dataset, compared to the second-best
configuration (F), configuration (I) improves SSIM, LPIPS, and rFID by 0.55%, 9.26%, and 13.28%, respec-
tively. This fully demonstrates the effectiveness of the proposed components and the advantages of their
synergistic collaboration.

Balance between the Number of Channels and Filters. The proposed method quantizes raw image data
into a linear combination of frequency features across different channels, where the number of latent features
U is the product of the number of channels D and the number of global filter bases N . To ensure experimental
fairness, the number of quantized features is kept consistent with other baseline methods. Results from
various combination experiments on MNIST and CIFAR10 are shown in Table 3. For the MNIST dataset, the
configuration with D = 1 achieves the highest SSIM score of 0.9875. On the other hand, for the more complex
CIFAR-10 dataset, the configuration with D = 2 yields the best performance, with an SSIM score of 0.9012
and an rFID score of 18.88. This indicates that for datasets with higher complexity and diversity, a moderate
number of channels combined with an adequate number of filter bases is necessary to effectively represent
the data.
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Table 3: Evaluation of channel and filter count configurations on MNIST and CIFAR-10 validation sets

Configuration
(D × N)

MNIST CIFAR10

SSIM↑ rFID↓ SSIM↑ rFID↓
1 ×U 0.98751 1.41 0.8987 20.51

2 ×U/2 0.9824 1.38 0.9012 18.88
4 ×U/4 0.9801 1.79 0.8990 19.01
8 ×U/8 0.9816 2.35 0.8979 22.70

16 ×U/16 0.9824 3.38 0.8869 30.29
1Note: Best results are bolded.

It is worth noting that increasing the number of channels beyond a certain point does not always lead
to performance improvements. For example, in the CIFAR-10 experiments, the configurations with D =
4 and D = 8 result in lower SSIM scores and higher rFID scores compared to the optimal configuration
with D = 2. This suggests that an excessive number of channels may introduce redundancy and hinder
the model’s ability to learn compact and informative representations. The proposed method achieves its
best overall performance when D = 2, demonstrating its effectiveness in learning expressive and efficient
discrete representations.

Computational Efficiency Analysis. Theoretically, for a feature map of size H ×W with D channels,
the time complexity of a 2D-FFT-based feature extractor is O(HWD log2 (HW) +HWD), which is signifi-
cantly lower than the O((HWD)2) of a transformer. To verify this advantage, we use three different feature
extractors in the proposed FQ-VAE architecture: (1) a non-global, convolution-based feature extractor, with
its configuration derived from configuration (H) in Table 2, replacing the frequency-domain quantization
operation with the convolutional quantization operation from VQ-VAE; (2) a global, transformer-based
feature extractor, with parameter configurations mainly referencing ViT-VQGAN; (3) a global, 2D-FFT-
based feature extractor, which is the final version proposed in this paper. We evaluate the impact of these
three configurations on reconstruction quality (rFID), training time, throughput, and peak memory usage
on four datasets: MNIST, CIFAR10, CelebA, and LSUN Church. Training time refers to the time required for
the model to complete one training epoch, throughput refers to the number of images the model can process
in one second, and peak memory usage refers to the maximum amount of memory consumed by the model
during the testing process.

Table 4 shows the quantitative results of different feature extractors on the four datasets. From the
perspective of reconstruction quality, the 2D-FFT-based feature extractor achieves the best rFID scores on all
datasets, followed by the transformer, with the convolutional operation performing the worst. This indicates
that by performing global modeling in the frequency domain, FQ-VAE can better capture the global structure
and details of images, thus generating higher-quality reconstructed images. Taking the CIFAR-10 dataset
as an example, the training time of 2D-FFT is 3.81 s per epoch, which is only 30.8% of the transformer’s,
while the throughput reaches 369.48 images per second, which is 1.81 times that of the transformer. This
advantage is even more pronounced on the higher-resolution CelebA and LSUN Church datasets. It is worth
noting that 2D-FFT does not introduce additional memory overhead while significantly reducing training
time. Compared to the transformer, 2D-FFT has lower peak memory usage on all datasets. For example, on
LSUN Church, the peak memory usage of 2D-FFT is only 456.94 MB, while that of the transformer is as
high as 10,087.05 MB, with the former being only 4.5% of the latter. Overall, the 2D-FFT-based frequency-
domain quantization method significantly improves reconstruction quality while avoiding the complexity
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issues introduced by global feature extractors such as transformers, exhibiting significant computational
efficiency advantages.

Table 4: Quantitative analysis results of computational efficiency

Type Dataset rFID TrainingTime
(s/epoch)

Throughput
(img/s)

Peak memory
(MB)

+ Convolution MNIST 1.99 2.13 374.90 150.93
+ Transformer (28 × 28) 1.791 11.61 233.32 309.39
+ 2D-FFT 1.382 3.36 371.77 161.69
+ Convolution CIFAR10 22.52 2.43 373.13 158.76
+ Transformer (32 × 32) 20.24 12.38 204.23 360.22
+ 2D-FFT 18.88 3.81 369.48 170.90
+ Convolution CelebA 4.77 25.99 51.62 210.72
+ Transformer (64 × 64) 4.01 194.50 35.87 978.84
+ 2D-FFT 3.76 39.51 48.81 238.01
+ Convolution LSUN Church 6.12 43.25 44.78 407.32
+ Transformer (128 × 128) 5.73 768.40 24.72 10,087.05
+ 2D-FFT 5.63 73.56 40.65 456.94

1Note: The second best results are underlined.
2Note: Best results are bolded.

4.4 Image Generation
The model is trained on the CelebA dataset and applied to downstream generation tasks using the latent

diffusion model (LDM) [42]. Since the proposed method is largely consistent with the traditional VQ-VAE
architecture, it can replace the VQ-VAE component in LDM directly. Specifically, following the settings in
LDM, a cosine learning rate scheduler is used in the generation tasks, with a warm-up period set to 500 steps,
and the weight decay for the Adam optimizer is set to 1 × 10−6. Additionally, the number of sampling steps
is set to 1000, and mixed-precision training with fp16 is employed to enhance computational efficiency. The
batch size is set to 64, and the model is trained for 100 epochs in total.

Fig. 6 presents several examples generated by the baseline CVQ-VAE and the proposed method. As
expected, the images generated by the proposed method are sharper and more realistic compared to
those generated through spatial vector quantization. Benefiting from frequency feature quantization, which
preserves the global relationships within the image, the proposed method produces images with stronger
overall coherence and avoids the distortions commonly seen in other methods, such as misaligned facial
features, local ghosting, and facial warping.
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Figure 6: Qualitative comparison examples of generation experiments between CVQ-VAE and the proposed method.
The results indicate that the images generated by our method are more likely to preserve global relationships within the
image, resulting in a more realistic overall appearance

5 Conclusion
This paper introduces a frequency-quantized variational autoencoder, which utilizes 2D-FFT to

transform image features into the frequency domain for quantization, effectively preserving global image
relationships. The method also dynamically optimizes the codebook by considering the frequency and
dependency of code vector usage, preventing codebook collapse and reducing information coupling.
Moreover, the quantized features are refined using graph convolutional theory to minimize quantization
loss. Ablation experiments validate the effectiveness of each component, further confirming the key roles
of frequency feature quantization, codebook optimization strategies, and corrected quantized features in
enhancing model performance. Reconstruction and generation experiments show that the proposed method
excels in image reconstruction and generation tasks, surpassing existing state-of-the-art approaches.

However, since each codebook entry in the proposed method maintains global information, the
dimensionality of the codebook vectors increases dramatically as the image resolution rises. Unfortunately,
downstream tasks often prefer lower-dimensional codevectors. This may hinder the scalability of the method
on high-resolution datasets. Future work will explore more effective codebook compression techniques to
reduce the codebook dimensionality while maintaining reconstruction quality, adapting to larger-scale data
requirements and more downstream tasks.
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Furthermore, maintaining global relationships within data has been a long-standing challenge in video
and audio generation tasks. By addressing the above issues and adapting the method to capture temporal
information for video data or 1D signals for audio data, the FQ-VAE could be extended to these modalities.
Successful application of the proposed method to video and audio generation could lead to more coherent
and globally consistent outputs, advancing the state-of-the-art in these domains.
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