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ABSTRACT: Coronary artery disease is a highly lethal cardiovascular condition, making early diagnosis crucial for
patients. Echocardiograph is employed to identify coronary heart disease (CHD). However, due to issues such as
fuzzy object boundaries, complex tissue structures, and motion artifacts in ultrasound images, it is challenging to
detect CHD accurately. This paper proposes an improved Transformer model based on the Feedback Self-Attention
Mechanism (FSAM) for classification of ultrasound images. The model enhances attention weights, making it easier to
capture complex features. Experimental results show that the proposed method achieves high levels of accuracy, recall,
precision, F1 score, and area under the receiver operating characteristic curve (72.3%, 79.5%, 82.0%, 81.0%, and 0.73%,
respectively). The proposed model was compared with widely used models, including convolutional neural network
and visual Transformer model, and the results show that our model outperforms others in the above evaluation metrics.
In conclusion, the proposed model provides a promising approach for diagnosing CHD using echocardiogram.

KEYWORDS: Computer-aided diagnosis (CAD); transformer; coronary heart disease; feedback self-attention
mechanism

1 Introduction
Coronary heart disease (CHD) is a highly fatal condition. According to World Health Organization’s

statistics, approximately 17.9 million people die from cardiovascular diseases annually, accounting for about
31% of total global mortality [1]. Cardiovascular diseases refer to a variety of conditions that impact the heart
and blood vessels, such as coronary artery disease, heart failure, and other related abnormalities. In light
of the challenges associated with these diseases, ultrasound imaging has gained substantial recognition as
a valuable tool. It is increasingly regarded as crucial in aiding radiologists with image analysis and other
diagnostic procedures. Its ability to enhance detection accuracy and lower false-positive rates is noteworthy,
demonstrating considerable potential for broad application.

With the ongoing advancements in deep learning, integrating ultrasound images with Artificial
Intelligence (AI) has become a key trend in medical image analysis. This collaboration is expected to
significantly improve the accuracy and efficiency of coronary heart disease detection. Research on the use of
ultrasound images for detecting coronary heart disease is advancing rapidly, presenting new opportunities
to enhance diagnostic precision and efficiency. For instance, a study by Alonso-Gonzalez et al. highlighted
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that the integration of artificial intelligence methods into ultrasound imaging allows for the automatic
identification of intricate scanning patterns, offering quantitative evaluations that ultimately improve both
diagnostic accuracy and reproducibility [2]. Similarly, Rana and Bhushan mentioned in their study that the
use of deep learning techniques for coronary heart disease detection can greatly improve the efficiency of
image processing and diagnostic accuracy. However, they also pointed out that the current study still faces
challenges in global information acquisition and processing complexity [3].

Conventional depth models and some visual Transformer architectures often struggle with specific
challenges, such as boundary blurring, intricate information structures, and motion artifacts in input images.
These issues can cause the model to overlook crucial data, leading to a drop in performance. To overcome
these limitations, we introduce a novel model designed to tackle these challenges, enhancing performance
in complex image environments.

To address the challenges encountered by existing models in recognizing ultrasound images, we
developed a Transformer-based backbone network tailored for computer vision tasks, with the following key
contributions:

(1) We propose an extraction algorithm, FSAM, designed to process ultrasound images of coronary heart
disease by extracting deep, complex features. Experimental results show that the algorithm is highly
effective in capturing these intricate features, significantly enhancing the model’s performance.

(2) A Transformer model based on the Feedback Self-Attention Mechanism (FSAM) is proposed, which
shows excellent results on relevant datasets and provides a new approach for identifying features and
biomarkers related to different types of cardiogenic diseases.

(3) Our experiments with the FSAM Transformer model show significant improvements over other
visual Transformer and traditional deep models in terms of accuracy, recall, precision, F1 score, and
AUC, promising better diagnosis and treatment of coronary artery disease and positively impacting
healthcare.

In the following sections, we will first discuss related work in Section 2 and describe the proposed
method in Section 3. Next, in Sections 4 and 5, we present experimental results and comparative analysis,
followed by a detailed discussion. Finally, in Section 6, we draw comprehensive conclusions.

2 Related Work
With the emergence of models such as Convolutional Neural Networks (CNN) and Transformer, the

performance of analyzing and recognizing medical ultrasound images has been greatly improved.
The development of artificial intelligence technology has facilitated research on its application in

echocardiography [4], and early examples of the combined application of echocardiography and machine
learning date back to 1978, when Fourier transforms were used to analyze M-mode ultrasound to assess ante-
rior mitral valve leaflet function and to confirm the effectiveness of this method for the adjunctive diagnosis
of mitral valve prolapse [5]. Prior to the introduction of deep learning in 2006, a large number of machine
learning algorithms had already been applied in the form of software or cutting-edge technologies for the
assessment of cardiac function in echocardiography, optimization of ultrasound images, and observation of
cardiac structure [6–8].

Arsanjani et al. [9] predicted hemodynamic reconstruction in patients with suspected coronary artery
disease by investigating machine learning methods to extract features from SPECT myocardial perfusion
images. Motwani et al. [10] predicted 5-year all-cause mortality from suspected coronary artery disease with
significantly higher accuracy than clinical or coronary computed tomographic angiography (CCTA) alone
predictors by machine learning methods. Khamis et al. [11] utilized a multi-stage classification algorithm
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to recognize apical two-chamber, apical four-chamber, and apical long-axis images, with a significant
improvement in recognition rate. Dezaki et al. [12] borrowed the research of Kong et al. [13] on the detection
of end-diastolic (ED) and end-systolic (ES) frames in magnetic resonance imaging (MRI), and combined
ResNet [14] and long short-term memory (LSTM) [15] to propose a deep residual recurrent neural network
to extract the spatio-temporal features of the fixed-length cardiac ultrasound image sequences, and to realize
the detection of ED and ES frame detection. Taheri et al. [16] improved on this by feeding variable-length
ultrasound sequences into a module combining DenseNet and a gating unit and proposed a global extreme
loss function to further improve the ED and ES frame detection performance. Fiorito et al. [17] applied
a hybrid model of 3D CNN and LSTM to spatio-temporal feature extraction of echocardiography videos,
classifying each frame in diastole and systole, and identifying the ED and ES frames as toggle frames between
the two states, which can be used for sequences of arbitrary lengths. Lane et al. [18] combined ResNet and
LSTM to extract the spatio-temporal information of ultrasound sequences and demonstrated the feasibility
of the DL technique for the recognition of ED and ES frames of arbitrarily-length ultrasound sequences that
contain multiple cardiac cycles, but it is computationally relatively complex and time-consuming to reason.
Sofka et al. [19] proposed a fully convolutional regression network for the detection of measurement points
in cardiac parasternal long-axis views, which consists of a Fully Convolutional Neural Network (FCN) for
regressing the position of the measurement points and an LSTM unit for optimizing the position of the
estimated points. Østvik et al. [20] collected 2D echocardiographic data from 470 patients and applied CNN
to build a classification model, while 3D echocardiographic data from 60 patients were collected for training
the model, and it was found that the classification model could predict up to seven different cardiac views. A
team of researchers at the University of California, San Francisco used a deep learning approach to classify
and label both static and dynamic raw images, using 15 standard cuts as classification criteria to construct an
automatic cut recognition model.

The primary challenges in classifying ultrasound coronary images involve effectively capturing relevant
information and ensuring computational efficiency. The ability to accurately capture critical lesion features
in coronary ultrasound images is crucial, which can be addressed by developing advanced feature extraction
algorithms or employing deep learning models to automatically learn these features. To maintain high
accuracy, it is also essential to design lightweight model architectures that minimize model parameters
and computational complexity, thereby enhancing the algorithm’s real-time performance and efficiency in
practical applications.

Another significant challenge in ultrasound coronary image classification is the presence of noise and
artifacts, which can negatively impact classification accuracy. To mitigate these issues, several techniques
have been proposed, including transfer learning, image decomposition and fusion, as well as convolutional
neural networks (CNNs).

However, models that employ transformer architectures, despite their breakthroughs in establishing
inter-data connections, still encounter challenges such as limitations on sequence length, high computational
demands, visual noise, and difficulties with memory management when handling high-definition images
and noise. Consequently, future research should focus on enhancing the efficiency and accuracy of models
for ultrasound coronary image detection.

3 Our Proposed Method

3.1 FSAM Model
Due to the ultrasound image itself, there are problems such as blurred boundaries, com plex information

structure, and motion artifacts. This will make some visual Transformers have the problem of poor
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recognition accuracy. To address this problem, we propose the FSAM (Feedback Self-Attention Mechanism)
Transformer model, as shown in Fig. 1. The corresponding layers and parameter settings are shown in Table 1.

Figure 1: FSAM transformer structure

Table 1: FSAM transformer layer setup

Stage Input size Output
channels

Window
size

Attention
heads

MLP
hidden

size

Downsampling

Stage 1 H ×W × 96 96 7 × 7 3 384 None (Patch Embedding)
Stage 2 H/2 ×W/2 × 192 192 7 × 7 6 768 2 × 2 Conv
Stage 3 H/4 ×W/4 × 384 384 7 × 7 12 1536 2 × 2 Conv
Stage 4 H/8 ×W/4 × 768 768 7 × 7 24 3072 2 × 2 Conv

The model adopts a design strategy that consists of a series of FSAM mechanisms to ensure that
information transfer is not “forgotten”, and the flow of information in the model is as follows:

The stage 1 pixel block embedding (patch embedding) module divides the input image rules into
non-overlapping equal-sized 3D pixel blocks notated as δ ∈ MH×W×C . The last three stages utilize the
downsampling module to perform 2 × 2 convolutional downsampling of the input pixel blocks to reduce
the number of pixel blocks and uplift the dimensionality to form a pyramid structure, and the output
dimensional information of each stage is listed at the top of each stage in Fig. 1. Subsequently, Feedback-
Block is superimposed on the input sequence of each stage to improve the utilization of multi-dimensional
information by the model. The individual-stage information transfer process is as follows:

MStage =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ = Patch Embedding (Input)
θ =Mapping (δ)
Output = Feedback − Blockn(θ)

(1)

where Mapping (⋅) = relu (Linear (⋅)) denotes a nonlinear high-dimensional sequence mapping.
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A fully connected layer is inserted at the tail of the network as a classification head for image
classification based on the number of dataset categories.

Classification head = Linearn (MStage1,2,3,4) (2)

3.2 Data Pre-Processing
Images are further preprocessed on the dataset before being sent to model training, including data

enhancement, data normalization processing, resize into a 2D matrix suitable for the model in this paper,
and each process is described as follows:

Data Enhancement: In this paper, we have used on-line enhancement, i.e., performing data enhance-
ment operations on small batches of images before they are fed into the model for training. Data enhancement
can produce more data and improve the robustness of the model. In the actual ultrasound image acquisition
process, the different acquisition methods may lead to different positions and brightnesses of the signs in
the ultrasound images. In the medical field, it is difficult to have a sufficiently large number of datasets.
Considering the practical factors, using data enhancement methods to randomly change the training samples
can reduce the model’s dependence on the attributes such as the position of the signs in the ultrasound images
and the brightness in the ultrasound images. The data enhancement methods used in this paper include the
following:

(1) Random cropping after filling around the image, filling 0 around the image first and then randomly
cropping the image to a size of 512 × 512;

(2) Flipping the image horizontally with a probability of 50%;
(3) Randomly rotating the image by an arbitrary integer angle between −360 and 360 to change the

orientation of the ultrasound signs in the image.

Normalization: normalization is an operation applied to an image before it is fed into the network
to start training. In this paper, the standard normalization method is used, where the processed data is
normalized, the mean is 0 and the standard deviation is 1. The data X is computed according to the channel,
and the variance mean (X) and the mean σ (X) are computed for each channel of the data, and the data in
each channel is subtracted from the mean, and then divided by the variance to obtain the final normalized
result X.

X′ = X −mean (X)
σ (X)

(3)

3.3 Feedback-Block
Feedback-Block in the FSAM Transformer model is an important part of the local and global interaction

of image features, and information feedback. It achieves deep iteration and a comprehensive understanding
of image information. W-MSA facilitates the interaction and integration of local information through win-
dowing. The proposed Feedback Self-Attention Mechanism realizes the capture of historical dependencies of
the current image block region by introducing iterative information enhancement. Fig. 2 shows the internal
structure of the feedback block.

ẑ l =W −MSA(LN (zl−1)) + zl−1 (4)
zl = MLP (LN (ẑ l)) + ẑ l (5)
ẑ l+1 = FSAM (LN (zl)) + zl (6)
zl+1 = MLP (LN (ẑ l+1)) + ẑ l+1 (7)



3440 Comput Mater Contin. 2025;83(2)

The information flows as follows: where zl−1 ∈ MN×d represents the 2D matrix processed by the
Transformer encoder, with M denoting a sequence of multidimensional matrices. LN(●) denotes the
normalization layer Layer-Norm [21], W −MSA(●) presents to the Windowed Multi-Scale Self-Attention,
and FSAM(●) presents to the Self-Attention Feedback Mechanism proposed in this paper. Furthermore, ẑ l ,
ẑ l+1, zl , zl+1 are the output features of the W −MSA, FSAM and MLP modules, respectively.

Figure 2: Structure of the feedback-block

3.4 Feedback Self-Attention Mechanism in Our Model
In this chapter, we introduce a novel attention mechanism called the Feedback Self-Attention Mecha-

nism (FSAM). This method aims to enhance the model’s capability to capture information and understand
the current block region by providing stronger attention. FSAM employs cyclic attention to enhance the
current attention information. We define the current epoch attention information as An . By leveraging the
attention information obtained from An−1 , An−2, and so on, the model can better capture the historical
dependencies of image regions. This fusion of information through attention allows the model to understand
deeper feature information in the image in more detail. Furthermore, by incorporating historical attention
information, FSAM enables the model to gain a more comprehensive understanding of the spatial location,
semantic, temporal, contextual, and hierarchical relationships in an image sequence. This enhances the
model’s comprehension of the current input, thereby improving its performance across various tasks and
ultimately enhancing the overall model performance. The structure of FSAM is illustrated in Fig. 3.

In Fig. 3, in each round of epoch, we add FSAM on top of the original attention mechanism, which saves
the results of the current epoch operation and participates in the operation of the attention mechanism of the
next epoch, and iteratively saves the results, which makes the attention gradually enhanced, and at the same
time, we introduce the γ parameter to regulate the attention weights, to avoid the occurrence of overfitting.
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Figure 3: FSAM structure

The FSAM method introduces a cyclic attention mechanism, enabling the model to comprehend the
current information by incorporating both historical and current attention during parallel training. We
define a feedback function that incorporates historical information to enhance the self-attention strength of
the current image block, as outlined below:

First, we define the attention matrix:

Qn = XnWQ
Kn = XnWK
Vn = XnWV

(8)

where Xn is the input, WQ, WK , WV ∈ Rd×d , and they are all learnable matrices.
Next, we construct the state feedback function and loop through the information with a linear

transformation as in the Eq. (9).

Sn = γl Sn−1 + QnKT
n Vn (9)

where γl is a variable factor used to continuously adjust the attention intensity during training. Sn represents
the current state attention, and Sn−1 denotes the historical attention information.

Next, we apply a regularization function aimed at enhancing the model’s ability to select relevant
features and improve its generalization performance. This involves applying penalties to complex models,
encouraging simpler and more robust feature representations. The final feedback function obtained is shown
below:

Sn = γl Sn−1 + QnKT
n Vn + λ∑

i
∣θi ∣ (10)

where θ represents the parameter set, λ denotes the strength of L1 regularization, ∣θi ∣ indicates the absolute
value of parameter θi , and∑i ∣θi ∣ represents the sum of the absolute values of all parameters.
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The FSAM approach allows each block to focus and enhance its attention based on historical informa-
tion in training. This enhanced block attention information is effective in improving the model’s performance
in certain scenarios because it effectively increases the model’s attention to key information, allowing the
model to have a memory of historical information, which enhances the model’s comprehension and mitigates
the problem of vanishing gradients to some extent. In the actual training process, we designed an iteration
limit for the mechanism to work, this iteration limit is that we make the FSAM mechanism work at the
beginning of the model training, and when the model is trained for a number of epochs, the mechanism
is canceled by the set epoch parameter. It is used to pay more attention to a certain domain in the initial
stage of model training, to notice deeper information, and when the number of training rounds exceeds
the set iteration limit, we cancel the mechanism, which helps to reduce the probability of overfitting and
the complexity of computation, and we can adjust the intensity of attention according to variable factors
during training.

4 Experimental Results

4.1 Datasets
The dataset consists of echocardiographic images of coronary heart disease, divided into two categories:

negative and positive.
The dataset comprises a total of 2160 echocardiographic images, with 664 images allocated for testing.

The distribution of images across specific categories and the total number of images are shown in Table 2.

Table 2: Distribution of the total datasets

Category Image number
Negative 1336
Positive 1488

4.2 Experimental Setup
In our experiments, we employed a 5-fold cross-validation approach to evaluate the performance of our

model. The dataset was divided into five distinct subsets, and in each fold, four of these subsets were used for
training, while the remaining subset was reserved for testing, maintaining a training-to-testing ratio of 4:1.
This method ensured that every data point was used for both training and validation, providing a compre-
hensive assessment of the model’s robustness and generalizability. Each round of experiments was conducted
for 500 epochs to allow sufficient time for the model to converge and achieve optimal performance.

We now present the hardware and software used for training and testing. Our processor is an Intel Xeon
Gold 6248R with 20 cores and 40 threads, accompanied by 128 GB of RAM and an A100-PCIE-40 GB (40 GB)
GPU, utilized for conducting experiments in training and testing deep learning models. During the training
phase, the following hyperparameters were employed: the number of epochs was set to 500, the batch size
(i.e., the number of input image batches) was set to 128, and the learning rate was set to 0.0001.

4.3 Evaluation Metrics
To assess the performance of the deep learning model in ultrasound image classification tasks, we utilize

the test set to compute the confusion matrix. This matrix enables the calculation of various classification
metrics such as Precision, Recall, F1 score, and Accuracy, providing a nuanced understanding of the model’s
performance. Additionally, it offers insights into which categories the model tends to confuse, aiding further
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performance improvement efforts. The confusion matrix displays the quantities of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN) for each category label. The specific calculation
formulas are provided below:

Accuracy = TP + TN
TP + TN + FP + FN

(11)

Precision = TP
TP + FP

(12)

Recall = TP
TP + FN

(13)

F1 = 2 × Precision × Recal l
Precision + Recal l

(14)

Additionally, the Receiver Operating Characteristics (ROC) curve is a graphical tool commonly used
to assess the performance of binary classifiers. It illustrates the relationship between the true positive rate
(TPR) and the false positive rate (FPR) at various classification thresholds. By adjusting these thresholds,
different points on the curve are generated, providing insights into the classifier’s behavior.

The ROC curve is created by incrementally increasing the threshold that defines an example as “positive”
(indicating the severity of the patient’s condition). As the threshold changes, the number of true positives
(TP) and false positives (FP) varies, generating a set of points that form the ROC curve in the ROC space.

To quantify the performance of the classifier, the Area Under the Curve (AUC) is calculated. An AUC
value of 1 represents a perfectly accurate model, while an AUC of 0.5 indicates that the model performs no
better than random chance. If the AUC is below 0.5, it suggests that the model is performing worse than
random guessing.

The ROC curve provides a clear visualization of the trade-off between true positives and false positives,
allowing one to evaluate the classifier’s performance across different thresholds. It also enables comparison
of different classifiers by examining their respective ROC curves. The AUC serves as a comprehensive metric
for classifier performance and is often used to compare the overall efficacy of different classification models.

4.4 Experimental Results
Our proposed model is a variant of the Swin Transformer architecture, with specific improvements

tailored to overcome previous difficulties and ultimately enhance the effectiveness of the classification task.
Through extensive experimentation, we have validated the effectiveness and importance of our approach.
Our model will be directly compared with the Swin Transformer, as shown in Table 5, with confusion
matrices provided in Tables 3 and 4, as well as with other state-of-the-art (SOTA) models. All models
are trained and evaluated on the same dataset. Our experimental results on the ultrasound coronary
artery disease dataset demonstrate that the FSAM mechanism significantly improves the model’s ability to
determine whether a patient has coronary artery disease. This serves as strong evidence for the effectiveness
of our proposed method.

In the context of ultrasound coronary image classification, we rigorously evaluated key performance
metrics such as accuracy, precision, recall, F1 score, and AUC metrics. The detailed results of these
comparisons are recorded in Table 6, while their performance metrics are visually depicted in Figs. 4
and 5, Importantly, these comparative results unequivocally highlight the superior performance of our
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proposed FSAM Transformer, consistently surpassing existing state-of-the-art (SOTA) methods across all
evaluation metrics.

Table 3: Confusion matrix obtained by the proposed FSAM Transformer model

Negative Positive Total
Negative 83 85 168
Positive 100 396 496

Total 183 481

Table 4: Confusion matrix obtained by Swin Transformer model

Negative Positive Total
Negative 73 95 168
Positive 109 387 496

Total 182 482

Table 5: Performance comparison in the 5-fold cross validation

Model Accuracy Precision Recall F1 AUC
FSAM Model 72.3 ± 0.3% 82.0 ± 0.1% 79.5 ± 0.5% 81.0 ± 0.3% 0.73 ± 0.01

Swin Transformer 69.0 ± 0.3% 79.8 ± 0.5% 77.6 ± 0.4% 79.0 ± 0.1% 0.67 ± 0.01

Table 6: Indicators for assessing the results of classification using different models

Model Accuracy Precision Recall F1 AUC
FSAM Model 72.3 ± 0.3% 82.0 ± 0.1% 79.5 ± 0.5% 81.0 ± 0.3% 0.73 ± 0.01

Swin Transformer [22] 69.0 ± 0.3% 79.8 ± 0.5% 77.6 ± 0.4% 79.0 ± 0.1% 0.67 ± 0.01
ResNet50 [23] 57.5 ± 0.2% 74.8 ± 0.3% 65.1 ± 0.2% 69.6 ± 0.2% 0.56 ± 0.02
RegNet [24] 54.4 ± 0.3% 77.2 ± 0.4% 55.2 ± 0.5% 64.4 ± 0.3% 0.54 ± 0.01

MobileNetV3 [25] 52.1 ± 0.2% 72.3 ± 0.1% 58.3 ± 0.1% 64.6 ± 0.2% 0.54 ± 0.04
EfficientNetV2 [26] 50.9 ± 0.2% 72.5 ± 0.3% 55.2 ± 0.2% 62.7 ± 0.4% 0.51 ± 0.05

ConvNeXt [27] 48.9 ± 0.3% 73.6 ± 0.2% 49.4 ± 0.1% 59.1 ± 0.5% 0.56 ± 0.05
EfficientNet [28] 42.2 ± 0.2% 71.7 ± 0.2% 37.3 ± 0.3% 49.1 ± 0.3% 0.53 ± 0.04

MobileNetV2 [29] 41.4 ± 0.3% 72.8 ± 0.2% 34.5 ± 0.3% 46.8 ± 0.3% 0.52 ± 0.04
GoogleNet [30] 41.1 ± 0.5% 69.0 ± 0.4% 38.5 ± 0.5% 49.4 ± 0.5% 0.52 ± 0.06

VGG16 [31] 38.9 ± 0.7% 78.5 ± 0.7% 21.4 ± 0.6% 33.6 ± 0.4% 0.56 ± 0.06

From Table 6 and Fig. 4, our proposed model shows significant improvement in precision, recall, F1
score and accuracy. In addition, we focus on the F1 score, which combines precision and recall for a
more comprehensive evaluation of the model’s performance. Compared to the comparison models, our
model significantly achieves higher F1 scores, which suggests that it has an advantage in balancing accuracy
and comprehensiveness.
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Figure 4: Performance comparison of classification results using different models

Figure 5: ROC graphs for different models

Fig. 5 illustrates that the area under the ROC curve (AUC) of our model is relatively high. This indicates
the model’s superior classification ability and discriminative power in diagnosing coronary heart disease
ultrasound images. Further analysis suggests that the high AUC value of our model may be attributed to
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its effective capture and representation of ultrasound image features. Additionally, our model’s ROC curve
exhibits a smoother shape, rather than sharp fluctuations or folds. This suggests that our model maintains
stability in classification results across different thresholds and performs well in various scenarios.

As shown in Fig. 6, In this classification task, to further analyze the basis of the model’s classification
decisions, we employed the Class Activation Map (CAM) method to visualize the model’s prediction results.
The heatmaps illustrate the regions of the input images that the model focuses on. The red regions represent
areas of high attention, indicating that these areas play a crucial role in the final classification results, while
the blue regions correspond to areas of lower attention.

Figure 6: Class activation map visualization for FSCAD and Non-FSCAD images

In this experiment, the classification results for two categories, FSCAD (Functionally Significant
Coronary Artery Disease) and Non-FSCAD (Non-Functionally Significant Coronary Artery Disease), were
presented. From the CAM heatmaps, it can be observed that the model focuses on critical lesion regions in
the coronary arteries for FSCAD images, particularly the narrowed or abnormal segments. This prominent
activation region aligns well with the clinical characteristics of functionally significant lesions, demonstrating
that the model can accurately capture the key features of the disease.

In contrast, for Non-FSCAD images, the model’s focus is more dispersed, with lower activation levels,
and does not concentrate on specific lesion areas. This indicates that the model can effectively identify
non-functionally significant lesions and exhibits a more uniform activation distribution in these images,
consistent with the characteristics of Non-FSCAD.

5 Discussion
Early detection is crucial in the prevention and treatment of cardiovascular diseases, but interpreting

ultrasound images is a challenging task due to the complexity and heterogeneity of coronary features.
Our proposed FSAM Transformer is better at capturing the spatial dependencies of regions and enhanc-
ing the model’s ability to capture complex features, which improves the classification performance of
coronary images.

We have conducted extensive experiments, and the results show that our proposed FSAM Transformer
outperforms the Swin Transformer model in terms of performance. Specifically, our method achieves 72.6%,
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80%, and 0.73% in accuracy, recall, and AUC score, respectively. This represents a significant improvement
compared to the Swin Transformer’s 69.3%, 78%, and 0.68%.

The FSAM approach we proposed has led to a significant improvement in the model’s classification
performance. However, it is worth noting that, through a large number of experiments, we found that
the introduction of multi-loop, multi-iterative attention computation increases the model’s complexity.
This results in a significant decrease in inference and training speed, makes the model’s hyperparameters
difficult to debug, and may lead to the loss of computational resources, among other issues. Nevertheless,
we are actively exploring optimization methods and ways to simplify the training process in order to
mitigate these limitations and achieve a more balanced trade-off between training efficiency and classification
ability. Table 7 presents the computational efficiency of the models.

Table 7: Model training and inference time comparison

Model Training time (Average per epoch) Inference time (Per image)
FSAM Transformer 8.031 s 14.14 ms
Swin Transformer 7.144 s 12.31 ms

ResNet 5.352 s 9.06 ms
ConvNeXt 6.981 s 10.87 ms

MobileNetV2 2.245 s 4.68 ms
MobileNetV3 2.175 s 4.65 ms
EfficientNet 4.182 s 7.41 ms

EfficientNetV2 7.313 s 11.56 ms
VGG 5.317 s 9.19 ms

RegNet 2.882 s 4.94 ms
GoogLeNet 3.315 s 6.04 ms

Our future work may involve applying the proposed method to other areas of medical image analysis,
such as ultrasound breast cancer detection, brain tumor detection, and more. Additionally, we plan to further
optimize this innovation to reduce the model’s complexity.

To perform a more comprehensive analysis and strengthen the robustness of our results, we plan
to conduct further validation on additional datasets, which will include data from a broader group of
patients. By introducing these changes to improve the generalization ability of our model, we aim for a more
comprehensive assessment of the applicability of our approach, which will also bring new challenges.

6 Conclusions
We introduced the FSAM and applied it to the Swin Transformer to create a new model variant called

the FSAM Transformer. This model is specifically tailored for diagnosing coronary heart disease using
ultrasound images. Building upon the Swin Transformer’s inherent window self-attention mechanism and
relative position coding, our approach enhances the model’s ability to extract and learn complex features
deeply. Thorough evaluations of positive and negative ultrasound coronary image datasets underscore the
effectiveness of our proposed method. Experimental validation demonstrates significant improvements in
accuracy, recall, F1 score, precision, and AUC value compared to established benchmark models.
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We emphasize our commitment to rigor through extensive experiments and careful comparisons.
Notably, our FSAM transformer not only achieves state-of-the-art results in performance metrics, but also
improves model identification performance. This helps practitioners and researchers gain deeper insights.
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