
echT PressScience

Doi:10.32604/cmc.2025.060134

ARTICLE

Cyclical Training Framework with Graph Feature Optimization for Knowledge
Graph Reasoning

Xiaotong Han1,2 , Yunqi Jiang2,3 , Haitao Wang1,2 and Yuan Tian1,2,*

1School of Artificial Intelligence, Jilin University, Changchun, 130012, China
2Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, Changchun, 130012, China
3College of Computer Science and Technology, Jilin University, Changchun, 130012, China
*Corresponding Author: Yuan Tian. Email: yuantian@jlu.edu.cn
Received: 24 October 2024; Accepted: 13 January 2025; Published: 16 April 2025

ABSTRACT: Knowledge graphs (KGs), which organize real-world knowledge in triples, often suffer from issues
of incompleteness. To address this, multi-hop knowledge graph reasoning (KGR) methods have been proposed
for interpretable knowledge graph completion. The primary approaches to KGR can be broadly classified into two
categories: reinforcement learning (RL)-based methods and sequence-to-sequence (seq2seq)-based methods. While
each method has its own distinct advantages, they also come with inherent limitations. To leverage the strengths of
each method while addressing their weaknesses, we propose a cyclical training method that alternates for several
loops between the seq2seq training phase and the policy-based RL training phase using a transformer architecture.
Additionally, a multimodal data encoding (MDE) module is introduced to improve the representation of entities and
relations in KGs. The MDE module treats entities and relations as distinct modalities, processing each with a dedicated
network specialized for its respective modality. It then combines the representations of entities and relations in a
dynamic and fine-grained manner using a gating mechanism. The experimental results from the knowledge graph
completion task highlight the effectiveness of the proposed framework. Across five benchmark datasets, our framework
achieves an average improvement of 1.7% in the Hits@1 metric and a 0.8% average increase in the Mean Reciprocal
Rank (MRR) compared to other strong baseline methods. Notably, the maximum improvement in Hits@1 exceeds 4%,
further demonstrating the effectiveness of the proposed approach.

KEYWORDS: Knowledge graph; reinforcement learning; transformer

1 Introduction
A knowledge graph (KG) organizes real-life knowledge by storing information in triples, each com-

prising two entities connected by a relation. KGs are crucial for various applications, including general
recommender systems [1], news recommendation [2], information retrieval [3] and language model train-
ing [4]. However, owing to the large scale and complexity of constructing KGs, they often exhibit some degree
of incompleteness, i.e., certain triples in the KGs are missing. To address this issue, researchers have proposed
the task of KG completion, which aims to infer missing triples from existing triples. This task enhances the
completeness of the KG and facilitates the discovery of new knowledge.

In order to tackle the task of KG completion, some researchers employ KG embedding methods [5]
or similar approaches [6] to predict facts by assigning scores to given triples, with higher scores indicating
a greater likelihood of the triple being valid. However, these methods lack interpretability because they do

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.060134
https://www.techscience.com/doi/10.32604/cmc.2025.060134
mailto:yuantian@jlu.edu.cn


1952 Comput Mater Contin. 2025;83(2)

not provide an evidential reasoning chain. Another study such as MINERVA [7] focuses on interpretable
KG completion via multi-hop knowledge graph reasoning (KGR). As shown in Fig. 1, given a query “(Tony
Romo, athlete_plays _sport, ?)”, the model infers the missing tail entity “American football” via a reasoning
path (<Leads_team, Team Dallas cowboys>,<plays_against, Team Seahawks>,<team_plays_sport, American
football>). Multi-hop KGR models not only identify correct missing entities but also provide reasoning paths
that justify their predictions.

Figure 1: Multi-hop reasoning and completion example within a subset of a knowledge graph (KG). Each rectangle
represents an entity, each solid arrow represents an existing relation in the KG, and the dashed arrow represents a
missing link between entities

In particular, multi-hop knowledge graph reasoning (KGR) approaches can be categorized into two
types: sequence-to-sequence (seq2seq) based methods and reinforcement learning (RL) based methods.
Seq2seq-based methods, such as SQUIRE [8], treat the multi-hop reasoning as a sequence-to-sequence
process. These models are designed to generate reasoning chains that connect the head entity to the missing
tail entity, using a training set containing entity-relation trajectories. A key advantage of these methods
is their ability to quickly learn from a large set of positive samples, resulting in faster learning compared
to reinforcement learning (RL) methods. Additionally, the output space in this approach encompasses all
entities and relations across the entire graph as potential targets. This enables the model to efficiently share
and transfer knowledge across different graph patterns, thereby developing an optimal reasoning strategy for
multiple patterns. However, these models are limited to learning from the positive samples in the training
set and cannot explore unannotated reasoning chains, making them dependent on the availability of high-
quality training datasets. On the other hand, RL-based methods use a neural network as an agent to walk and
explore within the knowledge graph, including MINERVA [7], Multi-HopKG [9], CURL [10], PS-Agent [11],
etc. For a query triple (eh , rq , ?) with a missing entity, starting from the head entity, the agent moves to
another entity through one of its relations and gradually reaches the final entity. During training, the rewards
are assigned based on whether the final entity matches the correct answer, which guides parameter updates.
As a result, RL-based methods excel at exploring unlabeled data and can function without being constrained
by pre-retrieved reasoning chains in the training set. Another advantage of RL-based methods is that it
demonstrates a strong specialization potential within specific graph patterns. However, RL methods struggle
to transfer knowledge across diverse graph patterns, which results in low learning efficiency compared to
seq2seq models. In addition, both methods share a common challenge: insufficient encoding of entities
and relations. Previous KGR models either overly rely on encoding only entity features as inputs to the
reasoning network, ignoring linear causal information and semantic correlations between relations in the



Comput Mater Contin. 2025;83(2) 1953

reasoning chain, or use shallow observation vectors derived from raw graph features with simplistic network
architecture, overlooking the structural information of the graph.

To address the above issues, we propose a novel multi-hop reasoning framework called CycDE, which
includes a cyclical training method that alternates between the seq2seq phase and the policy-based RL phase
during model training, as well as a multimodal data encoding module for optimizing and integrating entity
and relation features. Specifically, the main contributions of the proposed CycDE framework are as follows:

(1) A multimodal data encoding (MDE) module is introduced to optimize graph features. The proposed
module treats entities and relations as two distinct data modalities during representation. The MDE uses a
gated recurrent unit (GRU) [12] aided by text-based relation attention mechanism obtained via BERT [13] to
capture the linear temporal interactions among relations in the reasoning chain, and uses a graph attention
network (GAT) [14] to capture the graph structural connections between entities in the KG. A gating
mechanism is then introduced to dynamically fuse the entity and relation, minimizing conflicts between
different modalities of information and integrating more useful data, thereby resulting in a more informative
representation of entity-relation pairs.

(2) The CycDE framework provides a cyclical training strategy that alternates between the seq2seq and
RL training phases across multiple cycles. In the seq2seq phase, the model uses the retrieved trajectories as
supervised sequences for training, which enhances its adaptability to different graph patterns and accelerates
the overall training process compared to RL-only methods. In the RL phase, policy-based RL is employed,
which strengthens the model’s learning capabilities for specific graph patterns. Additionally, the RL phase
enables the model to explore unannotated reasoning chains, overcoming limitations in example path retrieval
and enhancing robustness, particularly when the training data is insufficient or of low quality. Moreover, the
cyclical alternation between the two phases over several cycles prevents the model from getting stuck in local
minima due to prolonged training in a single phase, ensuring that both approaches are fully leveraged.

(3) We validate the effectiveness of the proposed method by comparing CycDE against seq2seq-
based and RL-based baselines across five benchmark KG datasets. The experimental results demonstrate
that CycDE outperforms its counterparts. Furthermore, ablation studies and other analytical experiments
confirm the impact of the proposed components of the CycDE framework.

2 Related Works

2.1 Knowledge Graph Embedding
Standard knowledge graph embedding (KGE) methods, such as TransE [5], ConvE [15], Complex [16]

and CausE [17] embed high-dimensional, one-hot representations of entities and relations into a low-
dimensional space. These approaches typically use a scoring function to evaluate triples and determine their
likelihood of validity in the KG. Given the importance of online documents and text corpora as critical
data sources for KGs, and the success of pretrained language models (PLMs) like BERT [13], T5 [18], and
GPT2 [19] in processing such data, previous studies, such as KG-BERT [6], SimKGC [20], and KGT5 [21],
leverage PLMs to generate text-based embeddings for both entities and relations. These embeddings are then
used in downstream KG completion tasks with scoring functions similar to those in standard KGE methods.
In addition, some KGE methods, such as RotateQVS [22], PTBox [23], and TCompoundE [24] are applied
on temporal KGs to handle the completion of temporal KGs.

Despite KGE methods’ success in fact prediction, both standard and PLM-based embedding methods
have limitations. Specifically, they struggle to capture symbolic rules among entities and relations, which
undermines interpretability. Additionally, these methods involve scoring all candidate triples and selecting
the highest-ranked triple, which makes inference time consuming.



1954 Comput Mater Contin. 2025;83(2)

2.2 Multi-Hop KG Reasoning
Multi-hop KGR aims to complete the KG in an interpretable manner by inferring reasoning paths.

Xiong et al. introduce the first framework that applies RL to KGR across entire triples [25]. Building upon
Xiong et al.’s work, Wang et al. focus on refining entity representations but do not employ a dedicated
network for relation refinement [26]. Both of these frameworks face scalability issues with large KGs, as their
models require training a separate classifier for each relation type. In contrast, MINERVA [7] redesigns the
model to directly search for missing entities, eliminating the need to rank vast candidate triples repeatedly.
Following MINERVA, MultiHopKG [9] uses a KGE model to shape the reward and address reward sparsity.
CURL [10] clusters entities using the K-means algorithm and applies entity-cluster-level reasoning to guide
entity-level reasoning. PS-Agent [11] reduces the negative influence of spurious paths during policy learning.
AInvR [27] introduces adaptive learning rewards to optimize the policy network, while RKLE [28] uses
logical embedding to obtain logical rewards.

Inspired by previous study [29] that transforms RL problems into sequence modeling tasks via super-
vised sequence-to-sequence training on pre-obtained offline supervision data, SQUIRE [8] uses retrieved
entity-relation paths as supervision signals to train the KGR model. Although SQUIRE performs well on
datasets with high-quality reasoning paths, its performance is significantly reduced on graphs lacking high
quality reasoning paths for path training set construction.

2.3 Reinforcement Learning
RL methods can broadly be categorized into value-based and policy-based approaches. Value-based

methods, such as double-Q-learning [30], Deep Q-Networks (DQN) [31], and Rainbow [32], focus on
learning a value function that estimates the expected future rewards for each state-action pair. These methods
derive an optimal policy by selecting actions that maximize the estimated value. Policy-based methods, on
the other hand, directly optimize the policy by adjusting its parameters via gradient ascent on the expected
reward. Popular algorithms include REINFORCE [33], TRPO [34], and proximal policy optimization
(PPO) [35]. Unlike value-based methods, policy-based approaches are better suited for handling continuous
action spaces and stochastic policies. In KGR tasks, rewards are typically sparse, making it challenging
to learn an effective value function. Consequently, most RL-based KGR approaches favor policy-based
RL methods.

3 Method
To achieve more informative entity and relation encodings while effectively integrating the strengths

of seq2seq and RL-based models, we propose CycDE, which comprises three modules: the MDE, path
reasoning, and cyclical training modules. First, the MDE module encodes the first k segments of reasoning
paths, encompassing both the entities and relations. Next, the path reasoning module predicts the (k+1)-th
segment of the reasoning path based on the previous k segments. Finally, these two modules are optimized
through the cyclical training module, where the model alternates between seq2seq training phases and
policy-based RL training phases over multiple cycles. The architecture and training pipeline of the model are
illustrated in Fig. 2.

3.1 Preliminaries
Let a KG be denoted as G = {E ,R, T }, where E , R and T represent the set of entities, relations, and

triples, respectively. Given a triple query (eh , rq , ?), our objective is to develop and optimize a model that
performs multi-hop reasoning in the KG to infer the missing tail entity et . At the k-th step, the model predicts



Comput Mater Contin. 2025;83(2) 1955

a relation-entity pair < rk , ek > based on its reasoning. The complete reasoning path is then represented as
{eh , r1 , e1 , r2, e2, . . . , rK , eK}, where the missing tail entity et = eK .

Figure 2: Overview of the proposed CycDE framework. The left panel illustrates the model architecture, marked
as Fig. 2 (I), and the right panel depicts the training pipeline, marked as Fig. 2 (II)

3.2 Multimodal Data Encoding Module
The MDE module treats relations and entities in the reasoning chain as data of different modalities. In

the reasoning chain, relations primarily follow a linear structure, with subsequent relations being inferred
based on previous ones. Conversely, entities in the KG typically follow a graph structure. Therefore, we
treat them as data of different modalities and use a GRU for relations and a GNN for entities to capture
their representations.

Given the reasoning chain {e0, r1 , e1 , r2, e2, . . . , rk , ek} at step k, the rp is prefixed to the reasoning chain
to form an extended sequence {r0, e0, r1 , e1 , . . . , rk , ek}, where r0 = rp and e0 = eh . The attention mechanism



1956 Comput Mater Contin. 2025;83(2)

is then used to capture semantic interactions between different relations:

aattn
ri
=

i
∑
j=0

αi j ⋅ araw
r j

(1)

where araw
r j

is the raw embedding of relation r j; and αi j is the text-based semantic attention score between ri
and r j, which is calculated as follows:

αi j = queryr j
⋅ keyri

(2)

queryr j
= zr j ⋅Wquery (3)

keyri
=Wkey ⋅ (zri)T (4)

where Wquery and Wkey are trainable weights; and zrk represents the embedding of the text description of the
relation rk . Given the text description of the relation rk as textrk , zrk is obtained by BERT as follows:

zri = BERT(textri) (5)

The BERT model employs a Transformer encoder architecture [36], leveraging bidirectional attention
to encode contextual dependencies effectively. This enables it to encode relation descriptions from a holistic
perspective, thereby capturing connections between concepts effectively from a semantic standpoint.

Next, the GRU is selected to encode the relation embeddings in the reasoning chain by modeling the
temporal interactions from earlier to later relations as follows:

ar0 , ar1 . . . ark = GRU(aattn
r0

, aattn
r1

, ...aattn
rk
) (6)

The GRU is chosen because its use of update and reset gates helps mitigate overfitting during the
enhancement of relationship representation encoding. Moreover, its relatively low parameter count and
model complexity contribute to improve training and inference efficiency.

Entities are treated as modality distinct from relations. While relation encoding focuses on linear
temporal interactions, entity encoding emphasizes graph-based connections among entities in the KG. The
MDE module utilizes a Graph Attention Network (GAT) to enhance entity representation. GAT encodes
entities based on attention computation between entities and their neighbors, which helps capture the local
states of target entities. Additionally, GAT does not require a predefined graph structure, making it more
adaptable to incomplete knowledge graphs with missing edges. Given the set of original representations Braw

e
for all entities in G, the GAT computes optimized entities representations Bgat

e :

Bgat
e = GAT(Braw

e ,G) (7)

From Bgat
e , the representations of the entities within the reasoning chain are extracted and defined

as bgat
e0

, bgat
e1

, . . . , bgat
ek

. The MDE module then fuses the original entity representations with the entity
representations learned by GAT to obtain the final entity representations as follows:

bei = λbraw
ei
+ (1 − λ)bgat

ei
(8)

The hyperparameter λ is set to zero when the average degree of the nodes in the KG is no less than three;
otherwise, it is set to a value greater than zero.



Comput Mater Contin. 2025;83(2) 1957

After encoding both relations and entities, MDE module applies a gating mechanism to fuse their
information to obtain a representation of the relation-entity pair in the reasoning chain:

pi = β ⋅ p f us ion
i + (1 − β) ⋅ [ari ∣∣bei ] (9)

p f us ion
k =Wfusion ⋅ [ari ∣∣bei ] (10)

β = σ(Wgate ⋅ [ari ∣∣bei ]) (11)

where Wfusion and Wgate are trainable parameters; σ denotes the sigmoid function; and [⋅∣∣⋅] represents
the concatenation operation over two elements. Due to the distinct characteristics of relations and entities,
placing greater emphasis on simple concatenation helps prevent interference between entity and relation
features, while a higher proportion of mixed features more effectively captures interactions. The gating
mechanism dynamically adjusts the ratio between simple concatenation and mixed features at a fine-grained
level, determining which features should be fused and which should remain independent.

3.3 Path Reasoning Module
The path reasoning module takes the relation-entity pair embedding sequences p0, p1 , . . . , pk from step

0 to step k as input to calculate the prediction representation p̂k+1, which is then used to predict the entity-
relation pair for the next step in the subsequent process. The module is built on the decoder architecture of
the Transformer [36]:

p̂1 , p̂2, . . . , p̂k+1 = Transformer(p0, . . . pk) (12)

As observed by Dai et al. [37] and Geva et al. [38], the feed-forward layers of the Transformer act as a key-
value memory structure that stores factual knowledge, effectively capturing structured information similar to
triples in a KG. The residual connections and self-attention mechanisms of the Transformer further mitigate
gradient vanishing, enabling deeper layer stacking and larger-scale parameterization. These properties of the
Transformer enable us to construct a more extensive model architecture with additional knowledge neurons,
thereby enhancing the ability to store more triple knowledge from KGs and improve reasoning task.

In the cyclical training of CycDE, during the seq2seq training phase, the input relation-entity pairs given
to the reasoning module correspond to those in the ground truth paths from the training trajectory set.
In contrast, during the policy-based RL training phase, each pair in the input sequence corresponds to the
actual entity-relation pair decoded by the model in the previous reasoning step.

3.4 Cyclical Training Module
To leverage the strengths of both RL and seq2seq methods while mitigating their weaknesses, we

propose a cyclical training approach that alternates between the seq2seq and policy-based RL phases for
several loops. In the seq2seq phase, the training process features a set of pre-retrieved example paths that
accelerate model training, as well as a global candidate output space encompassing all entities and relations
in the graph for flexible knowledge transfer. In the policy-based RL phase, the model benefits from the
advantages of RL to enhance its specialization within graph patterns and strengthen its robustness against
low-quality seq2seq training data. During cyclical training, the model alternates between these two phases
over several cycles, gaining the benefits of both approaches. The continuous alternation between the two
phases helps prevent the model from training too long on a single phase and getting stuck in a local minima.
To ensure stability during phase transitions and prevent catastrophic forgetting, a Kullback-Leibler (KL)
divergence regularization term is introduced for both phases. The following sections first discuss the seq2seq
and policy-based RL phases separately, then explain how these phases are organized in cyclical training.



1958 Comput Mater Contin. 2025;83(2)

Finally, the KL divergence regularization term is described in detail. The cyclical training process is illustrated
in Fig. 2 (II).

3.4.1 Seq2seq Training Phase
During the seq2seq training phase, for each triple in the knowledge graph, we adopt an approach

inspired by previous seq2seq methods [8] to retrieve several multi-hop entity-relation trajectories that
connect the head and tail entities, forming the example reasoning trajectory training set. Each trajectory
in the training set is provided to the model with a causal mask. Unlike previous methods that assign
separate input positions to each entity and relation, each relation-entity pair is encoded into a single
embedding using the MDE module, effectively reducing the input sequence length by half. Subsequently,
the output representations of the reasoning module are decomposed into relation-entity prediction rep-
resentations. Let the relation-entity prediction representations for a complete reasoning path be defined
as {âr1 , b̂e1 , âr2 , b̂e2 , . . . , ârK , b̂eK}. An output prediction representation p̂i of the reasoning transformer is
decomposed into âri and b̂ei via computing:

âri = p̂i[de ∶ de + dr] (13)
b̂ei = p̂i[0 ∶ de] (14)

where de and dr are the dimensions of entity and relation features in the output representation p̂, respectively.
The loss function for seq2seq training is defined as follows:

Lseq = −
N
∑

1

K−1
∑
k=0
(∑

e∈E
ye log p(e ∣ p

≤k) + ∑
r∈R

yr log p(r ∣ p
≤k)) (15)

p(e ∣ p
≤k) =

b̂ek+1 ⋅ (b
raw
e )T

∑e′∈E b̂ek+1 ⋅ (b
raw
e′ )T

(16)

p(r ∣ p
≤k) =

ârk+1 ⋅ (araw
r )T

∑r′∈R ârk+1 ⋅ (araw
r′ )T (17)

where N is the batch size; if e is the ground-truth entity at the step k, then ye = 1; otherwise, ye = 0. Similarly,
if r is the ground-truth relation in the step k, then yr = 1; otherwise, yr = 0.

As demonstrated by Eqs. (16) and (17), during the seq2seq phase, the model defines a global output
candidate space that includes all the relations and entities in the graph. In contrast, during the RL phase,
the action space is restricted to the local neighbors of the current node. This global target space in the
seq2seq phase enables the model to learn reasoning strategies that consider the structure and information
of the entire graph. Consequently, the model becomes less influenced by the connectivity or sparsity of the
current graph when learning and transferring knowledge, thereby facilitating efficient knowledge transfer
across diverse graph patterns. In summary, the seq2seq phase employs a universal target space containing all
graph elements, rather than a unique target space determined by the graph’s connectivity. This design allows
the model to transfer knowledge with greater flexibility across different graph structures. Furthermore, the
availability of sufficient positive examples accelerates training, particularly during the early training epochs.

3.4.2 Policy-Based RL Phase
In the policy-based RL phase, the proposed model is optimized using a policy-based reinforcement

learning approach. Starting from the head entity, the model selects an entity-relation pair at each reasoning
step and moves to the next entity via the selected relation edge. This process is repeated until the model



Comput Mater Contin. 2025;83(2) 1959

reaches the final tail entity or exhausts the maximum number of reasoning steps. The reward is calculated
based on the validity of the tail entity, guiding parameter updates. Unlike the seq2seq phase, this approach
does not require reasoning trajectories from the training set, enabling the model to learn positive examples
that are not present in the trajectory training data. This feature addresses the robustness issue arising from
the seq2seq phase. Furthermore, by assigning negative rewards to incorrect reasoning results, the RL phase
functions as a mechanism for negative sampling and error correction, thereby enhancing the model’s ability
to specialize in specific graph patterns. This improvement is particularly significant when the model has
gained experience with a specific graph pattern. The following section outlines the construction and pipeline
of the RL phase.

State definition: Given a query (eh , rq , ?), the state sk ∈ S at reasoning step k in the RL phase consists
of the relation-entity pair embeddings generated by the MDE module. It is defined as follows:

sk = p0, p1 , . . . , pk (18)

Action definition: At reasoning step k, the candidate relation-entity pairs for the (k+1)-th step constitute
the potential action space Actionsk+1. These candidate pairs can be categorized into two types: positive pairs
{pairk+1 = (rk+1 , ek+1)∣(ek , rk+1 , ek+1) ∈ G}, which form valid triples in the knowledge graph, and negative
pairs {pairk+1 = (r

ne g
k+1 , ek+1)∣(ek , rne g

k+1 , ek+1) ∉ G}, which are artificially generated and form invalid triples
with the current entity. These negative pairs are used as negative samples to augment the training data.
Furthermore, a self-loop is added to Actionsk+1, allowing the model to remain at the current target entity
until the maximum reasoning step is reached.

Policy network definition: In this study, the policy network is the reasoning transformer module, which
is defined in Section 3.3.

Reward setting and reward shaping: Following previous study [9], for each query (eh , rq , ?), the
reward is 1 if the final reasoning result et of the model is correct, i.e., (eh , rq , et) ∈ G; otherwise, the reward
is a decimal number between 0 and 1, which is calculated based on the ConvE [15] scoring function
score(eh , rq , et) that evaluates the likelihood of the existence of a triple. However, we observe that even valid
triples in the KG exhibit variations in their KGE scores. Therefore, instead of applying a sigmoid function
directly to the raw KGE score as in previous studies, we first compute the average score of (eh , rq) with all
possible tail entities in the KG, denoted as scoremean . Subsequently, the average score of all tail entities that
forms valid triples with (eh , rq) is computed, denoted as scorev al id . Finally, the reward for the given query
(eh , rq , ?) is defined as:

RK = clip(
score(eh , rq , et) − scoremean

scorev al id − scoremean
, 0, 1) (19)

where clip(⋅, 0, 1) confines the value to the range (0, 1).
Policy based RL optimization: The path reasoning module serves as the policy network, calculating

the action distribution as follows:

actsk+1 = softmax(Actk+1 ⋅ p̂k+1) (20)
πθ(pairk+1∣sk) ∼ Categorical(actsk+1) (21)

where p̂k+1 is the prediction representation used for candidate pair prediction, calculated by the path
reasoning module for a given sk ; and Actk+1 is a matrix in which each row represents the embedding of a
candidate action from Actionsk+1. The softmax operation generates a normalized probability distribution



1960 Comput Mater Contin. 2025;83(2)

over the set of actions from which an action is selected. After reaching the maximum reasoning step, policy
gradient-based RL optimization is performed using the following loss function:

LRL = −
N
∑

1

K−1
∑
k=0
(Rsum

k+1 − Rmean) log πθ(pairk+1 ∣ sk) (22)

where N represents the batch size; Rmean denotes the average reward within a training batch; Rsum
k is the

accumulated reward from step k to the final step K which is defined as follows:

Rsum
k =

K
∑
i=k

Ri (23)

3.4.3 Process of Cyclical Training
In cyclical training, the model’s training process alternates between the RL phase and the seq2seq phase

for several cycles. In the early training epochs, the seq2seq method holds a relatively high proportion, as it
demonstrates higher learning efficiency. Additionally, the seq2seq method applies softmax over all entities
and relations in the entire graph. This expansive and universal output space enables the model to more
easily transfer learned knowledge across different graph patterns, while also improving the robustness of the
model’s parameters across diverse graph structures. Meanwhile, the RL method serves as a negative sample
mechanism to identify and penalize inference errors. We use an online, on-policy RL algorithm, so the
negative samples found during RL training are always relative to the current model parameters, enhancing
the immediacy and effectiveness of error correction. As training progresses, the number of RL steps increases.
Although RL exhibits less adaptability to various graph patterns compared to the seq2seq method, it shows
stronger learning potential for individual graph patterns. Therefore, after several RL training epochs, the
seq2seq phase is reintroduced to improve the model’s ability to adapt to a broader range of graph patterns.
The model is then switched back to the RL training phase to leverage its superior error correction capabilities,
thus enhancing the model’s learning potential within the graph patterns it has already mastered. If the model
fails to improve its performance on certain graph patterns during the RL phase, the subsequent seq2seq phase
helps prevent the model from forgetting knowledge of less dominant but learned graph patterns, enabling
continued improvement in the next RL phase. Moreover, periodically alternating between the RL and seq2seq
phases introduces variability in the model’s convergence goals, as the two phases differ in their input-output
spaces and training objectives. This prevents the model from getting trapped in a local optimum specific
to one phase due to prolonged training. In general, by cyclically switching between the two phases, our
training approach leverages the strengths of both methods while mitigating the risk of local minima caused
by extended training.

3.4.4 KL Divergence Regularization Term
The RL and seq2seq training phases differ in their input training trajectories and output target spaces,

which can lead to instability and catastrophic forgetting of previously learned knowledge when switching
between these phases. To address these issues, inspired by the PPO algorithm, which uses KL divergence [39]
to regulate parameter updates, we introduce a KL divergence regularization term that incorporates only the
correctly learned knowledge from both the seq2seq and RL phases.



Comput Mater Contin. 2025;83(2) 1961

To improve consistency between the RL and seq2seq training phases and mitigate catastrophic forgetting
during phase transitions, the KL divergence regularization term is incorporated into both the RL and seq2seq
loss functions. At each phase transition, a backup of the model parameters is created. As the model continues
to update its parameters, the backup and current models generate different output distributions for the
same input trajectory. Let dol d denote the output distribution of the model parameters preserved at the
training phase transition, and dcur represent the output distribution of the current model parameters. The KL
divergence regularization term is then calculated using the following equation:

KL(dol d ∥ dcur) = ∑
i

dol d
i log

dol d
i

dcur
i

(24)

where dol d
i is the i-th element of dol d . When computing the KL divergence, only the correct reasoning

trajectories (those with the correct tail entities) are sampled for the KL divergence term, rather than using all
input trajectories from the training set. When transitioning from the RL to the seq2seq training phase, the
correct reasoning trajectories identified by the model during the final RL epoch are first collected to form
the KL divergence input set. From this set, a batch of trajectories is sampled to compute the KL divergence
regularization term during the seq2seq training phase. When switching from the seq2seq to the RL phase,
the correct reasoning trajectories are also sampled for KL divergence computation of the RL training process.
The KL divergence regularization term is incorporated into the loss function with a regularization coefficient
as follows:

L′RL = LRL + γKL(dol d ∥ dcur) (25)
L′seq = Lseq + γ(KLent(dol d ∥ dcur) +KLre l(dol d ∥ dcur)) (26)

where γ is the regularization coefficient. The KLent and KLre l are the KL divergence terms corresponding
to the entity and relation output distributions during the seq2seq training phase, respectively. In practice,
this regularization term is applied throughout the entire seq2seq phase, whereas in the RL phase, it is
only activated during the initial epochs, making the RL loss function similar to that used in the PPO
algorithm [35].

4 Experiments

4.1 Datasets
We evaluated the proposed CycDE on five KGs, each with a distinct structure: (1) FB15K-237 [40],

(2) WN18RR [15] (dataset based on wordnet [41]), (3) DBP-5L-English [42] (DBP_EN for short), (4)
YAGO39K [43] and (5) NELL-995 [25]. The statistical information about these KGs is provided in Table 1.

Table 1: Statistics of knowledge graph datasets

Datesets #Ent #Rel #Fact Mean degree
FB15k-237 14,505 237 27,2115 19.74
WN18RR 40,945 11 86,835 2.19
NELL-995 75,492 200 154,213 4.07
DBP_EN 13,132 861 48,652 3.70

YAGO39K 39,374 37 354,996 9.02



1962 Comput Mater Contin. 2025;83(2)

4.2 Baseline Methods
We compared the proposed CycDE with seven baselines, all of which perform multi-hop KGR:

MINERVA [7], CURL [10], MultiHopKG [9], Ps-agent [11], AInvR [27] and RKLE [28] are based on policy-
based RL methods; whereas SQUIRE [8] is based on sequence to sequence paradigm. In the aforementioned
methods, for those that require the additional use of a KGE model as an auxiliary component, we consistently
use the results obtained by employing ConvE as an auxiliary KGE component to ensure fairness and
consistency in the comparison.

4.3 Evaluation Metrics
We use the Mean Reciprocal Rank (MRR) and Hits at One (Hits@1) metrics for evaluation. Following

previous multi-hop reasoning studies, for a given triple query (eh , rq , ?) with the tail entity et missing, the
proposed model generates several candidate answer entities via beam search. The rank of the ground-truth
tail entity among the candidate entities is calculated after filtering out the other correct entities. Based on
this rank, two evaluation metrics are calculated: (1) MRR, which calculates the average reciprocals of the
ranks for the ground-truth tail entities, and (2) Hits@1, which measures the proportion of test cases where
the ground-truth tail entities are ranked first.

4.4 Main Results
Table 2 presents the results of knowledge graph reasoning across five datasets. The proposed CycDE

framework outperforms all baseline methods in Hits@1 metric on every dataset. Specifically, CycDE achieves
an average improvement of 1.7% in this metric compared to the best baseline methods for each dataset.
Notably, on the DBP_EN dataset, the model demonstrates the largest improvement, reaching 4.3%. These
Hits@1 results highlight CycDE’s effectiveness in accurately identifying the target missing entity, rather than
providing a vague range of candidates. In terms of the MRR metric, CycDE outperforms all baseline models
on four datasets and ranks second on the FB15K-237 dataset. On average, the improvement in MRR across
all benchmarks is 0.8%, with the largest improvement observed on the DBP_EN dataset, reaching 3.0%.
These results indicate that the proposed model is effective across a range of KGs due to the MDE and cyclical
training. In addition, the seq2seq method SQUIRE is more sensitive to the quality and quantity of training
data. For example, the performance of SQUIRE on the WN18RR dataset is significantly below average. By
comparing the list of valid rules generated by SQUIRE on the WN18RR dataset, we find that the valid rules
in this dataset are smaller in scale compared to those in other datasets. In SQUIRE, a path is considered to
meet quality requirements only when its rule is in the valid rules list, meaning that most paths in this dataset
are deemed low quality. This demonstrates that SQUIRE struggles to perform well on knowledge graphs
containing a large number of low-quality paths. In contrast, RL-based methods, including the proposed
CycDE model, demonstrate greater robustness on the WN18RR dataset.

Table 2: Performance comparison of KGR methods on five knowledge graph completion datasets, with the best
performance among different methods highlighted in bold. For methods that require the additional use of a KGE model
as an auxiliary component, we consistently use the results obtained by employing ConvE as an auxiliary KGE component
to ensure fairness and consistency in the comparison

FB15K-237 WN18RR Nell995 DBP_EN YAGO39K

Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR
MINERVA (2018) 21.7 29.3 41.3 44.8 66.3 72.5 20.0 27.0 58.1 65.8

MultiHopKG (2018) 32.7 40.7 41.8 45.0 65.6 72.7 25.6 33.9 66.6 73.0
CURL (2022) 22.4 30.6 41.9 46.0 66.7 73.8 21.0 28.2 58.3 65.6

(Continued)



Comput Mater Contin. 2025;83(2) 1963

Table 2 (continued)

FB15K-237 WN18RR Nell995 DBP_EN YAGO39K

Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR
SQUIRE (2022) 32.9 42.1 33.1 37.7 65.3 73.3 25.4 34.4 58.5 67.1
PS-Agent (2023) 32.5 40.9 43.4 46.8 65.7 73.5 25.9 35.1 67.9 74.1

AInvR (2023) 32.1 40.5 44.0 45.8 – – – – – –
RKLE (2024) 26.8 31.0 43.1 46.0 67.8 74.5 – – – –

CycDE 33.9 41.4 44.3 47.2 69.0 75.1 30.2 38.1 69.5 74.9

4.5 Ablation Studies
The ablation studies are conducted by removing three key components: MDE (without MDE), seq2seq

training phase (without seq2seq), and policy-based RL training phase (without RL). The results presented
in Table 3 demonstrate that each component contributes significantly to the overall performance. For MDE
module, the results indicate that the original CycDE with the MDE module outperforms the CycDE without
it, achieving an average improvement of 4.05% in Hits@1 and 3.05% in MRR. Regarding the cyclical training
module, the ablation study shows that the CycDE framework with cyclical training outperforms the training
methods using only RL or seq2seq, with an average improvement of 7.0% in Hit@1 and 6.1% in MRR. At the
same time, the ablation study results reveal that in the cyclical training, the policy-based RL phase plays a
pivotal role.

Table 3: Ablation study result. The ablation study is conducted on Multimodal Data Encoding Module (denoted as
MDE), sequence tosequence training phase (denoted as seq2seq) and policy-based Reinforcement Learning training
phase (denoted as RL)

Nell995 DBP_EN

Hits@1 MRR Hits@1 MRR
CycDE 69.0 75.1 30.2 38.1

w/o MDE 64.0 71.6 27.1 35.5
w/o RL 56.4 65.1 24.6 33.3

w/o seq2seq 61.1 67.2 28.2 36.3

4.6 Long Reasoning Path Performance
To assess whether our multimodal data encoding module effectively captures complex entity and

relation features, we selected example triples from the NELL-995 test set where the answer entity is located
at least two or three hops away from the head entity. Triples with a greater distance between the head
and tail entities involve complex reasoning paths with multiple entities and relations, making the accurate
understanding of graph structures and relational properties more challenging for the model. This requires
the model to effectively model and extract information about entities, relationships, and their interactions,
rather than merely memorizing the reasoning process. Table 4 presents the Hits@1 and MRR results for both
the two-hop and three-hop conditions on the NELL-995 dataset, comparing the performance of the proposed
CycDE method with MDE and the PS-agent method without MDE.



1964 Comput Mater Contin. 2025;83(2)

Table 4: The long distance performance on Nell-995 dataset

≥2 hops ≥3 hops

Hits@1 MRR Hits@1 MRR
CycDE with MDE 60.2 66.1 55.7 61.5

PS-agent 57.0 64.4 51.4 59.0

Overall, the proposed model with MDE achieves superior performance compared to the PS-agent model
under both multi-hop conditions involving multiple entities and relations during inference. This indicates
that the MDE module successfully encodes more expressive representations of entities and relations. As a
result, the proposed model gains a deeper understanding of the graph structure and the correlations among
relations and entities, enabling it to make decisions based on this advanced understanding rather than relying
on memorized reasoning paths. In contrast, the PS-agent model, lacking an equivalent representation of
graph components like the MDE module, tends to rely more on guesswork rather than making informed
decisions. This tendency becomes more pronounced as the length of the reasoning paths increases.

4.7 Case Study
Fig. 3 shows several reasoning paths generated by the proposed CycDE model and the PS-agent model.

In all cases, CycDE successfully infers the correct tail entities, and the corresponding reasoning paths exhibit
good interpretability. For example, in the query (Team Seattle Mariners, Team plays sports, ?), CycDE
correctly infers the tail entity “Baseball” and provides an evidential path. Through the triple (Team Seattle
Mariners, Plays against, Team Chicago Cubs) in the evidential path, it establishes that the team Seattle
Mariners has competed against the Chicago Cubs. Subsequently, the triple (Team Chicago Cubs, Team plays
sports, Baseball) in the path demonstrates that the team Chicago Cubs plays the sport of baseball. Based
on this reasoning, the conclusion that the sports team Seattle Mariners plays baseball can be drawn. The
reasoning path outlined above effectively explains why the CycDE model provides “Baseball” as the answer
entity. In contrast, the reasoning paths of the PS-agent model contain numerous invalid self-loops, leading
to suboptimal interpretability and answer accuracy. This disparity can be attributed to the MDE module in
the CycDE model, which produces more effective representations of entities and relations. Consequently, the
CycDE quickly identifies relevant entities and relations, even when handling unfamiliar examples in the test
set. For instance, in the query (Crosby, Athlete plays for team, Team Pittsburgh Penguins), the CycDE selects
relations directly relevant to the query using BERT’s contextual relevance and the GRU structure, whereas
the PS-agent selects unrelated relations. Unlike the CycDE model, the PS-agent model lacks an effective
encoding module, resulting in frequent trial and error. Additionally, the frequent occurrence of the self-loop
relation during training causes the PS-agent model to favor this operation, negatively impacting its output
when faced with new queries from the test set.

4.8 Convergence Analysis
In this section, the proposed cyclical training strategy is compared with RL training and seq2seq training

on the DBP_EN dataset, focusing on the Hits@1 convergence curves of the validation set. To ensure a fair
comparison, we use the same model architecture and train it using three different strategies: cyclical, seq2seq,
and RL training.

As shown in Fig. 4, the cyclical training strategy demonstrates a faster convergence rate than the RL-only
training strategy, highlighting the effectiveness of integrating the seq2seq phase into the proposed cyclical



Comput Mater Contin. 2025;83(2) 1965

training of CycDE. The seq2seq phase enables the model to quickly learn from a sufficient number of positive
examples, whereas the RL-only strategy has a lower likelihood of encountering positive examples, which
reduces learning efficiency.

Figure 3: Cases of reasoning paths. Prefix “Inv:” refers to the inverse of the relation

Figure 4: Convergence comparison between cyclical training (ours), RL training, and seq2seq training



1966 Comput Mater Contin. 2025;83(2)

Furthermore, the proposed cyclical training method achieves a higher Hits@1 convergence point than
the other two methods, indicating a stronger ability to escape local minima. One possible explanation for
this phenomenon is that by cyclically alternating between the seq2seq and RL phases over multiple loops,
the model switches between two different input-output spaces and two distinct yet complementary training
objectives. Specifically, when the model is trained in phase A for an extended period and is at risk of falling
into a local minimum, switching to phase B adjusts the model parameters, positioning them differently in
the parameter space and providing a fresh gradient direction. When the model returns to phase A in the
next loop, it continues to converge from this new parameter state, thus avoiding being trapped in a local
minimum caused by limited gradient directions during prolonged training in a single phase.

Additionally, the training curve of the proposed cyclical approach does not exhibit significant fluctu-
ations, indicating that the method effectively enhances stability during phase transitions and reduces the
likelihood of the model forgetting previous knowledge when switching to new training objectives, thus
enabling continuous improvement in overall performance.

4.9 Analysis of Graph Pattern Clusters
In this section, the proposed CycDE framework based on cyclical training is compared with two baseline

methods: (1) the PS-agent trained using the RL-only training strategy and (2) SQUIRE trained using the
seq2seq-only training strategy. We evaluate their ability to adapt to different graph patterns and their level of
specialization for individual graph patterns using the DBP_EN test set. To categorize each triple in the test
set, K-means clustering with 200 clusters is applied, with each cluster representing a specific graph pattern.
For this purpose, the KGE model ConvE [15] is trained to obtain the head entity and relation embeddings for
each triple. The K-means algorithm clusters the triples based on their head entity and relation embeddings,
ensuring that triples with the same head entity and relation are grouped under the same graph pattern. The
subsequent experiments are conducted using the 200 graph patterns derived from this clustering process.

4.9.1 Hit Rate on Graph Pattern Clusters
To evaluate the effectiveness of each training strategy, for the model of each method, the Hits@1 value

is calculated across all graph pattern clusters in the DBP_EN test set. If a model achieves a Hits@1 score
greater than 20% among the triples within a specific graph pattern, it is considered to have acquired some
knowledge about that pattern. For each model, the number of graph patterns with a Hits@1 score greater
than 20% is counted, and this number is then divided by the total number of graph pattern clusters (200) to
obtain the proportion of graph patterns that meet the Hits@1 threshold. Table 5 presents the results for the
PS-agent (RL-based), SQUIRE (seq2seq-based), and CycDE (proposed framework), showing the proportion
of graph pattern clusters with a Hits@1 score greater than 20% among the total 200 graph pattern clusters
for each method. As shown in the table, the proposed CycDE framework with the cyclical training strategy
adapts to more graph patterns than the others. Both CycDE and the seq2seq-based SQUIRE outperform the
RL-based PS-agent, indicating that the seq2seq objective provides better adaptability across diverse graph
patterns than the RL-only strategy. The reason behind this phenomenon is that, under the seq2seq process,
the output space spans all the entities and relations of the graph, helping the model transfer knowledge more
easily across various graph patterns without being limited by the connectivity of the knowledge graph (KG).
In contrast, the action space of RL is determined by the connectivity of the graph, which includes entities and
relations only a few hops away from the head entity. Furthermore, the superior performance of CycDE over
the seq2seq-only strategy indicates that the proposed cyclical training not only inherits the good adaptation
ability of the seq2seq trajectory but also extends its effectiveness to a broader range of graph patterns. This
improvement can be attributed to cyclical training and the KL divergence term, which mitigate catastrophic



Comput Mater Contin. 2025;83(2) 1967

forgetting during strategy transitions and enable the model to steadily expand its knowledge across more
graph patterns.

Table 5: Proportion of graph pattern clusters with a Hits@1 score more than 20% among total 200 graph pattern clusters
for each method

CycDE (ours) PS-Agent (RL-only) SQUIRE (seq2seq-only)
Proportion 57.0% 47.5% 55.5%

4.9.2 Comparative Analysis of Specialization Abilities within Individual Graph Patterns
To evaluate the specialization ability of the three methods, the Hits@1 values of their corresponding

models are compared. The comparison is made on the graph patterns where all three methods achieve a
Hits@1 greater than 20%. Since most graph pattern clusters in the DBP_EN test set contain fewer than 30
triples, we focus only on those with more than 100 triples to minimize the impact of testing variance. Fig. 5
presents a pairwise comparison of the Hits@1 scores of the three methods based on the selected graph
patterns. “RL” represents the PS-Agent method, “seq2seq” represents the SQUIRE method, and “CycDE”
represents the proposed method. For example, the number 9 on the blue bar under the label “CycDE vs.
seq2seq” in Fig. 5 indicates that CycDE achieves higher Hits@1 compared to SQUIRE in 9 graph patterns.

Figure 5: Pair-wise comparison among three training strategies w.r.t. Hits@1 of graph patterns that are mutually covered
by three strategies and contained more than 100 triples. The number above each bar is the number of graph patterns

Fig. 5 confirms that the proposed CycDE exhibits the best overall performance, followed by the RL-
only method, PS-agent, with the seq2seq-only method, SQUIRE, ranking last. As shown in Fig. 5, among the
selected graph patterns, the RL-only method outperforms the seq2seq-only method, indicating that although
the RL-only strategy adapts to fewer graph patterns compared to the seq2seq-only strategy, it explores certain



1968 Comput Mater Contin. 2025;83(2)

graph patterns in greater depth, highlighting the specialization ability of the RL method. These advantages
arise because the reasoning trajectories sampled during the training process using RL are highly correlated
with the current model parameters. Therefore, in contrast to seq2seq, which uses fixed training trajectories,
RL allows for more targeted error correction of the model. As a result, when the model has a foundational
understanding of a pattern, RL achieves a higher learning capacity via better error correction. Furthermore,
the comparison between CycDE and the RL-only method reveals that the proposed cyclical training-based
CycDE not only covers a broader range of graph patterns but also performs better than the RL-only method in
terms of Hits@1 across most graph patterns. This finding demonstrates that the proposed strategy effectively
leverages the specialization ability to achieve a thorough understanding of the learned patterns, and the
incorporation of the seq2seq phase into CycDE does not compromise its specialization ability in favor of
adaptation capability.

5 Conclusion
In this paper, we present the CycDE framework, which incorporates a cyclical training method that

alternates periodically between the reinforcement learning phase and the sequence-to-sequence training
phase for several cycles, as well as a knowledge graph reasoning model that includes a multimodal data
encoding module and a transformer-based reasoning module. Through experiment on five knowledge
graph completion benchmarks of varying scales and content, our framework demonstrates more stable
and superior performance compared to other baseline models. Additionally, through ablation studies, case
studies, and other specific experiments, the roles and performance of each sub-module are validated from
different perspectives.

Acknowledgement: We would like to express our sincere gratitude to all the teachers and students involved for their
support and collaboration, and to our families for their unwavering encouragement.

Funding Statement: This work is supported by the National Key Research and Development Program of China (No.
2023YFF0905400) and the National Natural Science Foundation of China (No. U2341229).

Author Contributions: Xiaotong Han: Methodology, Software, Conceptualization, Investigation, Validation,
Writing—original draft. Yunqi Jiang: Visualization, Investigation. Haitao Wang: Data curation. Yuan Tian: Supervi-
sion, Project administration, Resources, Writing—review and editing. All authors reviewed the results and approved
the final version of the manuscript.

Availability of Data and Materials: The sources of all datasets are cited in the paper, and can be accessed through
the links or GitHub repositories provided in their corresponding papers. Other data content can be obtained by
contacting the authors. Access links for datasets: (1) FB15K-237: https://www.microsoft.com/en-us/download/details.
aspx?id=52312 (accessed on 07 January 2025); (2) WN18RR: https://github.com/TimDettmers/ConvE (accessed on 07
January 2025); (3) Nell-995: https://github.com/xwhan/DeepPath (accessed on 07 January 2025); (4) YAGO39K: https://
github.com/davidlvxin/TransC (accessed on 07 January 2025); (5) DBP-5L (English): https://github.com/stasl0217/
KEnS (accessed on 07 January 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Wang H, Zhou B, Zhang L, Ma H. Recommendation method for contrastive enhancement of neighborhood

information. Comput Mat Cont. 2024;78(1):453–72. doi:10.32604/cmc.2023.046560.

https://www.microsoft.com/en-us/download/details.aspx?id=52312
https://github.com/TimDettmers/ConvE
https://github.com/xwhan/DeepPath
https://github.com/davidlvxin/TransC
https://github.com/stasl0217/KEnS
https://doi.org/10.32604/cmc.2023.046560


Comput Mater Contin. 2025;83(2) 1969

2. Chen H, Xie R, Cui X, Yan Z, Wang X, Xuan Z, et al. LKPNR: large language models and knowledge graph for
personalized news recommendation framework. Comput Mater Contin. 2024;79(3):4283–96. doi:10.32604/cmc.
2024.049129.

3. Liu Z, Xiong C, Sun M, Liu Z. Entity-duet neural ranking: understanding the role of knowledge graph semantics
in neural information retrieval. In: Gurevych I, Miyao Y, editors. Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL 2018; 2018 Jul 15–20; Melbourne, Australia: Association for
Computational Linguistics; 2018. Vol. 1, p. 2395–405.

4. Moiseev F, Dong Z, Alfonseca E, Jaggi M. SKILL: structured knowledge infusion for large language models. In:
Carpuat M, de Marneffe MC, Meza Ruiz MC, editors. Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies; 2022; Seattle, WA, USA.
p. 1581–8.

5. Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-
relational data. In: Burges CJC, Bottou L, Ghahramani Z, Weinberger KQ, editors. Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013; 2013 Dec 5–8
Lake Tahoe, NV, USA; 2013. p. 2787–95.

6. Yao L, Mao C, Luo Y. KG-BERT: BERT for knowledge graph completion. arXiv:1909.03193. 2019.
7. Das R, Dhuliawala S, Zaheer M, Vilnis L, Durugkar I, Krishnamurthy A, et al. Go for a walk and arrive at the

answer: reasoning over paths in knowledge bases using reinforcement learning. In: 6th International Conference
on Learning Representations, ICLR 2018; 2018 Apr 30–May 3; Vancouver, BC, Canada.

8. Bai Y, Lv X, Li J, Hou L, Qu Y, Dai Z, et al. SQUIRE: a sequence-to-sequence framework for multi-hop knowledge
graph reasoning. In: Goldberg Y, Kozareva Z, Zhang Y, editors. Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing. Abu Dhabi, United Arab Emirates; 2022. p. 1649–62.

9. Lin XV, Socher R, Xiong C. Multi-hop knowledge graph reasoning with reward shaping. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing; 2018; Brussels, Belgium: Association for
Computational Linguistics. p. 3243–53.

10. Zhang D, Yuan Z, Liu H, lin X, Xiong H. Learning to walk with dual agents for knowledge graph reasoning. Proce
AAAI Conf Artif Intell. 2022;36(5):5932–41. doi:10.1609/aaai.v36i5.20538.

11. Jiang C, Zhu T, Zhou H, Liu C, Deng T, Hu C, et al. Path spuriousness-aware reinforcement learning for multi-hop
knowledge graph reasoning. In: Proceedings of the 17th Conference of the European Chapter of the Association
for Computational Linguistics; 2023; Dubrovnik, Croatia. p. 3181–92.

12. Chung J, Gülçehre Ç, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv:1412.3555. 2014.

13. Devlin J, Chang M, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019; 2019 Jun 2–7; Minneapolis, MN,
USA; 2019. p. 4171–86.

14. Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. arXiv:1710.10903.
2017.

15. Dettmers T, Minervini P, Stenetorp P, Riedel S. Convolutional 2D knowledge graph embeddings. In: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial
Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence; 2018;
New Orleans, LA, USA.

16. Trouillon T, Welbl J, Riedel S, Gaussier É., Bouchard G. Complex embeddings for simple link prediction. In:
Knowledge graph and semantic computing: knowledge graph empowers artificial general intelligence; 2016 Jun
19–24; New York City, NY, USA; 2018. Vol. 48, p. 2071–80.

17. Yichi Z, Wen Z. CausE: towards causal knowledge graph embedding. In: Wang H, Han X, Liu M, Cheng G, Liu
Y, Zhang N, editor. Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General
Intelligence; 2023; Singapore: Springer Nature Singapore. p. 17–28.

https://doi.org/10.32604/cmc.2024.049129
https://doi.org/10.32604/cmc.2024.049129
https://doi.org/10.1609/aaai.v36i5.20538


1970 Comput Mater Contin. 2025;83(2)

18. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the limits of transfer learning with a
unified text-to-text transformer. J Mach Learn Res. 2020;21:140:1–67.

19. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I, et al. Language models are unsupervised multitask
learners. OpenAI Blog. 2019;1(8):9.

20. Wang L, Zhao W, Wei Z, Liu J. SimKGC: simple contrastive knowledge graph completion with pre-trained
language models. In: Muresan S, Nakov P, Villavicencio A, editors. Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers); 2022; Dublin, Ireland. p. 4281–94.

21. Saxena A, Kochsiek A, Gemulla R. Sequence-to-sequence knowledge graph completion and question answering.
In: Muresan S, Nakov P, Villavicencio A, editor. Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers); 2022; Dublin, Ireland. p. 2814–28.

22. Chen K, Wang Y, Li Y, Li A. RotateQVS: representing temporal information as rotations in quaternion vector space
for temporal knowledge graph completion. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2022; 2022 May 22–27; Dublin, Ireland; 2022. p. 5843–57.

23. Fang Z, Qin J, Zhu X, Yang C, Yin X. Arbitrary time information modeling via polynomial approximation for tem-
poral knowledge graph embedding. In: Proceedings of the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation, LREC/COLING 2024; 2024 May 20–25; Torino, Italy; 2024. p.
1455–65.

24. Ying R, Hu M, Wu J, Xie Y, Liu X, Wang Z, et al. Simple but effective compound geometric operations for temporal
knowledge graph completion. In: Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024; 2024 Aug 11–16; Bangkok, Thailand; 2024. p. 11074–86.

25. Xiong W, Hoang T, Wang WY. DeepPath: a reinforcement learning method for knowledge graph reasoning. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017; 2017
Sep 9–11; Copenhagen, Denmark; 2017. p. 564–73.

26. Wang H, Li S, Pan R, Mao M. Incorporating graph attention mechanism into knowledge graph reasoning based
on deep reinforcement learning. In: Inui K, Jiang J, Ng V, Wan X, editors. Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019; 2019 Nov 3–7; Hong Kong, China; 2019. p. 2623–31.

27. Zhang H, Lu G, Qin K, Du K. AInvR: adaptive learning rewards for knowledge graph reasoning using agent
trajectories. Tsinghua Sci Technol. 2023;28(6):1101–14. doi:10.26599/TST.2022.9010063.

28. Liu R, Yin G, Liu Z. Learning to walk with logical embedding for knowledge reasoning. Inf Sci. 2024;667:120471.
doi:10.1016/j.ins.2024.120471.

29. Chen L, Lu K, Rajeswaran A, Lee K, Grover A, Laskin M, et al. Decision transformer: reinforcement learning
via sequence modeling. In: Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021; 2021 Dec 6–14; Virtual; Red Hook, NY, USA; 2021. p.
15084–97.

30. van Hasselt H. Double Q-learning. In: Advances in Neural Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems 2010; 2010 Dec 6–9; Vancouver, BC, Canada; 2010. p.
2613–21.

31. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through deep
reinforcement learning. Nature. 2015;518(7540):529–33. doi:10.1038/nature14236.

32. Hessel M, Modayil J, van Hasselt H, Schaul T, Ostrovski G, Dabney W, et al. Rainbow: combining improvements
in deep reinforcement learning. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18); 2018 Feb 2–7; New Orleans, LA, USA; 2018. p. 3215–22.

33. Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach
Learn. 1992;8(3–4):229–56. doi:10.1007/BF00992696.

34. Schulman J, Levine S, Abbeel P, Jordan MI, Moritz P. Trust region policy optimization. In: Bach FR, Blei DM,
editors. Proceedings of the 32nd International Conference on Machine Learning, ICML 2015; 2015 Jul 6–11; Lille,
France; 2015. Vol. 37, p. 1889–97.

https://doi.org/10.26599/TST.2022.9010063
https://doi.org/10.1016/j.ins.2024.120471
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/BF00992696


Comput Mater Contin. 2025;83(2) 1971

35. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization algorithms.
arXiv:1707.06347. 2017.

36. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017;
2017 Dec 4–9; Long Beach, CA, USA; 2017. p. 5998–6008.

37. Dai D, Dong L, Hao Y, Sui Z, Chang B, Wei F. Knowledge neurons in pretrained transformers. In: Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022;
2022 May 22–27; Dublin, Ireland; 2022. p. 8493–502.

38. Geva M, Schuster R, Berant J, Levy O. Transformer feed-forward layers are key-value memories. In: Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021; 2021 Nov 7–11; Punta
Cana, Dominican Republic; 2021. p. 5484–95.

39. Kullback S, Leibler RA. On Information and Sufficiency. Ann Math Stat. 1951;22(1):79–86. doi:10.1214/aoms/
1177729694.

40. Toutanova K, Chen D. Observed versus latent features for knowledge base and text inference. In: Proceedings of
the 3rd Workshop on Continuous Vector Space Models and their Compositionality, CVSC 2015; 2015 Jul 26–31;
Beijing, China; 2015. p. 57–66.

41. Miller GA. WordNet: a lexical database for english. In: Human Language Technology: Proceedings of a Workshop
held at Plainsboro, New Jersey; 1992 Feb 23–26; Harriman, TN, USA: Morgan Kaufmann.

42. Chen X, Chen M, Fan C, Uppunda A, Sun Y, Zaniolo C. Multilingual knowledge graph completion via ensemble
knowledge transfer. In: Cohn T, He Y, Liu Y, editors. Findings of the Association for Computational Linguistics:
EMNLP 2020; 2020 Nov 16–20; Stroudsburg, PA, USA; 2020. p. 3227–38.

43. Lv X, Hou L, Li J, Liu Z. Differentiating concepts and instances for knowledge graph embedding. In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing; 2018; Brussels, Belgium: Association
for Computational Linguistics. p. 1971–9.

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694

	Cyclical Training Framework with Graph Feature Optimization for Knowledge Graph Reasoning
	1 Introduction
	2 Related Works
	3 Method
	4 Experiments
	5 Conclusion
	References


