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ABSTRACT: Arabic Dialect Identi�cation (DID) is a task in Natural Language Processing (NLP) that involves
determining the dialect of a given piece of text in Arabic.�e state-of-the-art solutions for DID are built on various
deep neural networks that commonly learn the representation of sentences in response to a given dialect. Despite the
e�ectiveness of these solutions, the performance heavily relies on the amount of labeled examples, which is labor-
intensive to attain and may not be readily available in real-world scenarios. To alleviate the burden of labeling data, this
paper introduces a novel solution that leverages unlabeled corpora to boost performance on the DID task. Speci�cally,
we design an architecture that enables learning the shared information between labeled and unlabeled texts through
a gradient reversal layer.�e key idea is to penalize the model for learning source dataset-speci�c features and thus
enable it to capture common knowledge regardless of the label. Finally, we evaluate the proposed solution on benchmark
datasets for DID. Our extensive experiments show that it performs signi�cantly better, especially, with sparse labeled
data. By comparing our approach with existing Pre-trained LanguageModels (PLMs), we achieve a new state-of-the-art
performance in the DID �eld.�e code will be available on GitHub upon the paper’s acceptance.

KEYWORDS: Arabic dialect identi�cation; natural language processing; bidirectional encoder representations from
transformers; pre-trained language models; gradient reversal layer

1 Introduction

Dialect Identi�cation (DID) constitutes a crucial task in natural language processing (NLP), focusing
on discerning the dialectal origin of Arabic texts or speech [1]. For instance, consider the running example
shown in Table 1, the phrase (?Qj.

	
®Ë @

	
Y

	
JÓ

�
IJ.ë

	
X 	áK
@, Ayn ðhbt mnðAl9r?) in Modern Standard Arabic (MSA)

translates to “Where have you gone since dawn?” in English.�is expression exhibits nuanced variations
across various Arabic dialects found in cities like Baghdad, Beirut, Jeddah, Khartoum, and Sana’a. �e
primary objective of DID is to accurately identify these regional dialectal nuances in texts [2]. DID holds
signi�cant importance in understandingArabic as it allows for the nuanced interpretation of texts and speech
across diverse regional variations. By distinguishing between dialectal forms, DID enables deeper insights
into cultural contexts, social dynamics, and linguistic diversity within Arabic speaking communities [1].�is
capability is crucial for applications ranging from language education and communication tools to cultural
preservation and media localization, thereby enhancing our understanding and engagement with Arabic
language and culture on a global scale [3]. Traditional machine learning techniques for DID, such as Naive
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Bayes and Support Vector Machines (SVM), aim to extract character and sentence-level features like n-
grams and word n-grams as dialectal indicators [4–6]. However, these approaches heavily rely on the quality
of the extracted features, and the similarity between dialects o�en makes dialect-speci�c features elusive
and di�cult to obtain. With the rapid development of deep neural networks, DID has witnessed a shi�
toward using models such as LSTM and CNN [7], based on a pre-trained embedding space, e.g., AraVec [8].
�is line of research represents a signi�cant advancement in learning dialect-speci�c representations.
While these approaches are e�ective in capturing sequential dependencies, they o�en struggle with long-
range dependencies and capturing complex linguistic patterns. Recently, various approaches treat DID as
a downstream for �ne-tuning pre-trained language models (PLMs) [9–11]. Speci�cally, the Arabic PLM is
initially trained on a large corpus of unlabeled Modern Standard Arabic (MSA) data to learn semantic
representations in a self-training setting. Subsequently, it is �ne-tuned on labeled Arabic texts, adjusting its
weights to enhance performance in DID. Earlier approaches attempted to utilize multilingual PLMs such
as mBERT [12], XLM-RoBERTa [13], and LaBSE [14], to represent Arabic dialects. However, despite these
e�orts, the performance of these multilingual models typically lags behind their monolingual counterparts.
�is discrepancy primarily arises from smaller, language-speci�c vocabularies and less comprehensive
language-speci�c datasets [15–18]. While languages with similar structures and vocabularies may bene�t
from shared representations, this advantage does not extend to Arabic. �e unique morphological and
syntactic structures of Arabic di�er signi�cantly from the frameworks of more widely represented Latin-
based languages. To address this challenge, various approaches employ �netuning Arabic-speci�c PLMs,
such as AraBERT [15], ArBERT [19], and CAMeL [20]. �ese models signi�cantly improve performance
on Arabic NLP tasks compared to multilingual models. However, since they are predominantly trained on
MSA datasets, their e�ectiveness on dialectal texts is limited. Additionally, as previously mentioned, the
similarities between Arabic dialects make it challenging to learn accurate dialect-speci�c representations
without a substantial amount of labeled data, which is both costly and labor-intensive. A straightforward
approach to addressing the aforementioned. Despite the promising results of this approach, it still su�ers
from twomain challenges: (1) continuing training is computationally expensive; (2) the complexity of Arabic
makes it challenging to extend the vocabulary of existing PLMs to includemore dialectal tokens. For example,
in Chinese, new tokens can be initialized by averaging the weights of partially existing characters In Arabic,
however, new tokens may never have been seen by the PLM, necessitating the learning of their weights
from scratch. To address these limitations, we introduce an adversarial approach to learning robust dialectal-
speci�c representations regardless of the architecture of PLMs. We leverage unlabeled data, which is easy
to obtain, to model dialectal patterns by capturing the shared information between labeled and unlabeled
data. Speci�cally, we jointly employ two loss functions.�e �rst function minimizes the likelihood between
instances and their ground truth labels, e�ectively learning to map Arabic texts to their dialects.�e second
function is a binary classi�cation loss that maximizes the likelihood of identifying the source of an instance,
i.e., whether it is labeled or unlabeled. To achieve this, we utilize a gradient reversal layer [21], at the top of
the model prediction to deceive the model from recognizing the source of the instance. By penalizing the
model for recognizing the source, we prohibit it from relying on source-speci�c knowledge and instead focus
on extracting shared information. Our approach distinguishes itself by e�ectively di�erentiating between
Arabic dialects and MSA.�is capability signi�cantly mitigates the confusion commonly encountered in
previous models. Furthermore, our methodology leverages a combination of unlabeled and labeled data,
thereby reducing the reliance on large volumes of labeled datasets. �is not only lowers the time and
cost associated with dataset preparation but also enhances overall model performance. �is framework
presents a more e�cient solution for the research community working on NLP tasks involving Arabic
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dialects. Accurate identi�cation of dialects is critical for various Arabic language processing applications,
such as machine translation (MT), sentiment analysis (SA), and named entity recognition (NER), where
accurate classi�cation of the dialect is fundamental to understanding these tasks, ultimately leading to more
precise and reliable outcomes. Our approach addresses key challenges such as data scarcity; consequently, it
contributes to the development of more robust and reliable NLP systems tailored to the complexities of the
Arabic dialect. In brief, the contributions can be summarized as follows:

• We introduce an adversarial learning framework to learn robust dialectal-speci�c representations
applicable across di�erent PLM architectures.

• We jointly employ two loss functions: one maximizes likelihood between instances and their ground
truth labels to map Arabic texts to their dialects; the other minimizes the likelihood of the model
recognizing instance labeling using a gradient reversal layer to focus on shared information.

• Our empirical evaluation demonstrated a state-of-the-art performance on benchmark datasets for DID,
enhancing PLMs trained on large dialectal corpora.

Table 1: �is example showcases the linguistic diversity in Arabic by presenting regional variations of the sentence
“Where have you gone since dawn?” Each dialect expresses the same underlying meaning, re�ecting the richness of
Arabic across di�erent cities and countries

Dialect Sentence

Jeddah ? Qj.
	
®Ë @ 	áÓ

�
IkP

	á�

	
¯, fyn rHt mn Alf jr?

Khartoum ? hAJ.�Ë@ 	áÓ 	áK
ð
�

I�

�

�Ó ,mšyt wyn mn AlSbAH?
Cairo ?Qj.

	
®Ë @ 	áÓ

	á�

	
¯

�
I

	
J», knt fyh mn Alf jr?

Sana’a ?Qj.
	
®Ë @ 	áÓ

�
IkP 	áK
ð, wyn rHt mn Alf jr?

�e remainder of the paper is divided into the following sections. �e related work is reviewed
in Section 2. In Section 3, we describe the proposed solution. Section 4 presents the experimental setup and
provides an empirical assessment of the performance of the proposed solution. Finally, we conclude this
paper with Section 5.

2 RelatedWork

Arabic Dialect Identi�cation (DID) is a crucial task in Arabic Natural Language Processing (NLP).
�e advent of Pre-trained Language Models (PLMs) has facilitated signi�cant advancements in addressing
DID. Some of the earliest and most in�uential e�orts in this area include AraBERT [15], ArabicBERT [21],
GigaBERT [22], and MDABERT [23], these models, particularly ArabicBERT and its variant MDABERT,
have laid the groundwork for Arabic PLMs.�eir development has provided a solid foundation that has
been bene�cial for many subsequent Arabic NLP tasks, including DID.�e continued enhancement and
adaptation of these models underscore their importance and impact on the �eld of Arabic NLP. Following
these initial e�orts, ARBERT and MARBERT [19], reported new state-of-the-art results on the majority of
the datasets in their �ne-tuning benchmarks, further advancing the capabilities of PLMs in Arabic NLP.
Also, reference [20] conducted a series of carefully controlled experiments on a variety of Arabic NLP tasks
in order to determine how the size, variation of the language, and type of �ne-tuning task a�ected Arabic
language models that had already been trained.�ey pre-trained these models on a large collection of MSA
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and DID datasets, as shown in Table 2. In addition to many studies than �ne-tuned Arabic PLMs in DID
task [9,11,24,25]. Nevertheless, the main challenge with Arabic dialect using PLMs is obtaining su�cient
training data, which remains a signi�cant hurdle. �us, Arabic-speci�c (PLMs) are primarily trained on
MSA, which compromises their performance on Arabic dialects.�is limitation motivated us to develop a
technique to bridge the gap between MSA, the language of the pre-trained model, and the Arabic dialects
used in task-speci�c datasets. Our proposed method aims to leverage unlabeled dialect corpora to enhance
the representation of Arabic dialects. Re�ecting on previous studies, adversarial settings have been integrated
with BERT-based models to generate diverse examples, aiding various text classi�cation tasks. For instance,
reference [26] introduced a model for adversarial generating examples by applying perturbations based on
the BERT Masked Language Model. Additionally, reference [27] extended the �ne-tuning of BERT-based
models by incorporating unlabeled examples through a Generative Adversarial Network (GAN) [28].�is
approach proved bene�cial in training models with limited labeled examples and signi�cantly enhanced
the classi�cation capabilities of BERT-based models.�erefore, PLMs have been shown to be e�ective for
cross-domain and cross-lingual NLP tasks [29–31]. Consequently, domain-adaptive �ne-tuning of PLMs, a
prevalent Unsupervised Domain Adaptation (UDA) method for NLP tasks, has proven to be more e�ective.
�is approach involves �ne-tuning a pre-trained PLM on a substantial amount of unlabeled text data
from the target domain using the Masked Language Modeling (MLM) objective. �e MLM objective is
a pre-training task where the model learns to predict masked tokens in a sentence [23,24]. Self-training
has emerged as a popular approach for UDA with PLMs. �e core concept involves leveraging a PLMs
to generate predictions on the unlabeled data within the target domain.�ese predictions, referred to as
“pseudo-labels,” are subsequently used to augment the labeled data from the source domain. By incorporating
pseudo-labeled data, the model’s performance on the target domain can be signi�cantly improved, as
demonstrated in studies by [32] and [33]. In the same context, reference [34] extended BERT based models,
ARBERT and MARBERT [19], with a generative adversarial setting. Additionally, reference [35] proposed
an unsupervised domain adaptation approach for Arabic cross-domain and cross-dialect sentiment analysis
using contextualized word embeddings. Reference [36] introduced an unsupervised domain adaptation
framework for Arabic multi-dialectal sequence labeling that leverages unlabeled dialectal Arabic data and
labeled MSA data. More recently, Arabic dialect identi�cation has garnered signi�cant attention in the
�eld of natural language processing (NLP), with various approaches emerging to address this challenge.
�ese include shared task initiatives [37,38] pre-trained models based on Arabic dialect [39], and e�orts
focusing on speci�c regional dialects [40], or across broader Arabic-speaking areas [41].�is growing focus
highlights the importance of accurately identifying dialect variations in Arabic, recognizing it as a crucial
step towards enhancing NLP applications in Arabic-speaking regions. In this paper, we investigate the
potential advantages of utilizing unlabeled data to enhance the performance of Arabic PLMs. By harnessing
this unlabeled data, we posit that it can streamline data processing e�orts and e�ectively improve the
overall model performance, thereby optimizing resource allocation. �rough extensive experimentation,
we demonstrate the promising outcomes of our approach on 12 diverse pre-trained models.�ese �ndings
underscore the viability of our method as a compelling option to enhance DID performance by leveraging
unlabeled data, with potentially far-reaching implications across various applications.
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Table 2: Comparison of baseline models by approach and limitations

Model Approach Limitations
mBERT [12] Multilingual BERT trained on

Wikipedia for 104 languages,
including Arabic. It provides
cross-lingual representation

learning.

-Not speci�cally tailored for
Arabic, leading to suboptimal
performance compared to
Arabic-focused models.

-Limited dialectal coverage and
challenges with informal text.

AraBERTv0.1 [15]
AraBERTv0.2 [15]

Arabic-speci�c BERT trained
on MSA using Arabic-focused
tokenization and preprocessing.

Version v0.2 improves
tokenization and data.

-Focused on MSA, with limited
support for dialects and noisy

text.
-Older versions lack

optimizations seen in newer
models.

ArabicBERT [21] Tailored for Arabic NLP tasks,
trained on a large MSA corpus,
emphasizing high-quality
tokenization and linguistic

representation.

-Optimized for MSA but
struggles with dialectal and

informal text.
-Inherits biases from its training
data, and requires �ne-tuning
for specialized domains.

Multi-dialect-Arabic-BERT [23] Designed to handle multiple
Arabic dialects using a diverse

training corpus.

-Uneven performance across
dialects due to training data

balance.
-Limited documentation on its
training and benchmarks.

GigaBERTv4 [22] Focuses on Arabic-English
cross-lingual tasks, trained on a
diverse bilingual corpus to
enhance code-switching

capabilities.

-Less documented; potential
lack of focus on Arabic-speci�c

linguistic nuances.

MARBERT [19] Optimized for dialectal Arabic,
particularly social media texts,
using a pretraining corpus rich
in noisy and dialectal content.

-Optimized for social media and
dialectal Arabic, with weaker
performance in formal domains.
-Risk of over�tting to speci�c

dialectal features.
ARBERT [19] Trained on MSA, suitable for

clean and structured language
tasks.

-Primarily trained on MSA,
with limited support for dialects

and noisy text.
-Underperforms on informal or
user-generated content.

(Continued)
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Table 2 (continued)

Model Approach Limitations
CAMeLBERT-MSA [20] Specialized for MSA, trained on

a curated dataset of formal
Arabic. Part of the

CAMeLBERT suite for Arabic
linguistic variety modeling.

-Limited adaptability to
dialectal or mixed-text

scenarios.
-Requiring domain-speci�c

�ne-tuning.
CAMeLBERT-DA [20] Focused on Dialectal Arabic

(DA), leveraging dialect-speci�c
training data to improve

performance in dialect contexts.

May struggle with noisy or
mixed text and shows limited
performance on MSA or
classical tasks due to its

specialization
CAMeLBERT-CA [20] Tailored for Classical Arabic

(CA), trained on a dataset of
historical and religious texts,
making it suitable for tasks
involving older Arabic

literature.

Limited utility in modern
contexts, informal usage, and

mixed dialects.

3 Arabic Language and Dialect

Arabic dialects arewidely spoken in informal daily communication amongArabic speakers, and are true
native languages.�ey vary widely across di�erent regions and countries [1]. However, it is important to note
that while MSA is the formal language used in education, politics, media, and other formal contexts, Arabic
dialects are not typically taught or standardized in the same way [42]. In addition to being used in informal
conversations, Arabic dialects are also o�en used in various forms of media, including drama, movies, and
theater [43].�is is because these dialects can add authenticity and depth to portrayals of Arabic speaking
cultures and communities. However, it is important to note that the use of dialects in media can sometimes
lead to misunderstandings or misrepresentations of the language and culture, especially when it comes to
non-native speakers or those unfamiliar with the nuances of the dialects.While Arabic dialects may not have
a standardized grammar in the same way Modern Standard Arabic (MSA) does, Arabic dialects lack o�cial
orthographies, making it challenging to establish de�nitive spellings for dialectal words. Unlike standardized
languages, there are no “incorrect” spellings for dialectal words, andmultiple written forms of the sameword
can exist [44]. For example, the word 	áK



@, Âyn which means “where” in English can be written as 	áK
ð, wyn,

and 	á�

	
¯, fyn, in certain Arabic dialects.�is variation poses a signi�cant challenge, particularly when dealing

with text. MSA is still the established standardized form of Arabic that is used in education, media, art,
literature, formal speeches, business, and legal writing.MSA is founded on a collection of scienti�c principles
that have been put into practice for a signi�cant amount of time, and it possesses a well-established grammar
and orthography [43].�e standardized orthography ofMSA has been employed in the writing of all Islamic
texts and the earliest literature originating from the Arabian Peninsula. �is means that MSA has a rich
literary history and is still widely used in Arabic literature and poetry today. In addition,MSA is the language
of instruction in many schools and universities throughout the Arabic speaking world. Arabic dialects are
o�en categorized based on their geographical location and regional variations. As mentioned earlier, some
of the major categories include: Nile Valley Arabic dialects, includes, Egypt and Sudan. Maghrebi Arabic
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dialects, contains, Morocco, Algeria, Mauritania, Libya, and Tunisia. Gulf Arabic dialects, consist of, the
UAE, Saudi Arabia, Qatar, Kuwait, Oman, Bahrain, and other parts of the Persian Gulf region. Levantine
Arabic dialects, involves, Jordan, Palestine, Lebanon, and Syria (and sometimes also including Iraq). Yemeni
Arabic dialects, covers, Yemen and sometimes referred to as Gulf of Aden Arabic. Each of these categories
includes multiple dialects with their own unique characteristics and variations.

4 Approach

Initially, we provide the technical speci�cs of the proposed approach in Fig. 1.�en describe the Arabic
Dialect Identi�cation task. Followed by �ne-tuning BERT to learn theArabic dialect representation sentence.
Finally, we describe the unsupervised domain adaptation technique in detail.

Figure 1: An example of presented solution, which includes a feature extractor (green) that is a pre-trained BERT
encoder, a deep label predictor (blue), and a domain classi�er (orange) connected to the feature extractor by a gradient
reversal layer that doubles the gradient by a negative constant. On the other hand, training reduces label prediction loss
and domain classi�cation loss (for all samples). Gradient reversal compares the distributions of features across domains,
(making them indistinguishable to the domain classi�er).�is makes domain-invariant features

4.1 Task Description
Consider a dataset denoted as D de�ned as, D = {(x i , y i)}i=Ni=1 , which is a set of N samples, each

represented as a tuple (x i , y i), where x i is the input sequence of Arabic words representing a dialectal text,
and y i is the corresponding one-hot encodeddialect vectorwith dimensionK.K is the number of dialects that
are prede�ned and contained in the training set.�e sentence x i consists of a string of wordsw1 ,w2 , . . . .,wn ,
where a subset of these words w j , . . . ,wm represents the sequence of the dialectal words.�e objective is to
train a stochastic function which takes an input sequence x and generates a probability distribution through
the dialect vector y.

4.2 BERT-Based Model
Recently, BERT [12] was used extensively in numerous NLP tasks [45,46]. BERT is a pre-trained model

that has learned to understand semantic context from a large corpus of text. However, in order to apply
it to speci�c tasks or domains, it needs to be �ne-tuned by training it on a smaller labeled dataset that is
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speci�c to the task or domain.�is �ne-tuning phase allows the model to adjust its parameters to better
understand and classify the input data [47]. In BERT notation, the input is typically referred to as the input
sequence. However, our objective is to learn the BERT representation of a given Arabic dialect. Let x =
([CLS] ,w1 , . . . ,wm , [SEP] , S1 , . . . .Sn , [SEP]) , where w1 , . . . ,wm is the dialectal labeled sentence (with m
tokens), and S1 , . . . , Sn is a dialectal unlabeled sentence. [CLS] and [SEP] are the special token. We feed x to
BERT:

H = BERT (x) (1)

where H stands for the hidden layers.�e h[CLS] token is typically employed as the representation of the
sentence in BERT-based models. In our implementation, the sentence is represented as input to a gradient
reversal layer that employs the last hidden state.

4.3 Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) is principally concerned with the transference of knowledge

from a resource-rich domain to a domain with limited resources [48].�e fundamental strategy involves
prompting the model to assimilate and integrate shared information across both domains [49]. In our work,
we have harnessed the UDA framework to e�ectively utilize the abundance of unlabeled corpora (target
domain).�is approach is pivotal in enabling the model to learn dialect representations accurately, even
in the context of a paucity of labeled data (source domain). Our methodology is underpinned by two
distinct but complementary objectives: the dialect classi�er and the dataset classi�er.�e former is tasked
with delineating a mapping function that correlates dialect features with their corresponding latent space
representations.�e latter, conversely, is engineered to integrate features from the unlabeled corpus, whilst
concurrently conditioning the model to remain indi�erent to the provenance of the instances, whether
labeled or unlabeled.�is dual-objective strategy serves as a sophisticated ’fooling mechanism’. It penalizes
the model for any tendency to over�t to the characteristics of the unlabeled instances, thereby redirecting its
focus towards the extraction and application of universal features prevalent across both labeled andunlabeled
datasets.�e following is the training scenario:

We assume that we have a dataset D which consists of L labeled sentences from the source domain
Ds = (x si , ysi)L1 , where y i ∈ 0, 1 and U unlabeled sentences from the target domain Dt = (x t

i )
U
1 . We assume

that the input set is X, each input x i ∈ X corresponds to a label y i ∈ Y, where x i ∈ Rr is of dimension r.
Initially, the input x is mapped by a mapping G f (featureextractor), which is BERT in our case, to an h-
dimensional feature vector f = Rh parameterized by θ f , i.e., f = G f (x ;θ f ).�e feature vector f is obtained
by Gy (labelpredictor) to the label y, and θ y are the mapping parameters. Finally, notation Gd suggests that
the (domain classi�er) is a function that maps the input feature vector f to a domain label d, using a set of
parameters θd . Our objective is to reduce the loss in label prediction on the labeled portion of the training set.
So, the parameters of the feature extractor and label predictor are set so that the empirical loss for the source
domain samples is as small as possible.�is guarantees the source domain high performance of the feature
extractor and label predictor, as well as the discriminatory power of features f . To obtain domain-invariant
features during training, we look for the parameters f of the feature mapping that maximize the domain
classi�er’s loss (by attempting tomatch the two feature distributions as closely as possible), while also looking
for the parameters θd of the domain classi�er that minimize the domain classi�er’s loss. Furthermore, we
aim to reduce the loss of the label predictor. We present the objective in more formal terms: feature extractor
and label predictor, as well as the discriminatory power of features f . To obtain domain-invariant features
during training, we look for the parameters f of the feature mapping that maximize the domain classi�er’s
loss (by attempting to match the two feature distributions as closely as possible), while also looking for the
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parameters θd of the domain classi�er that minimize the domain classi�er’s loss. Furthermore, we aim to
reduce the loss of the label predictor. We present the objective in more formal terms:

E (θ f , θ y , θd) = ∑
i=1. .Nd i=0

Ly (Gy (G f (x i ; θ f ); θ y); y i) − λ ∑
i=1. .N

Ld (Gd (G f (x i ; θ f ); θd); y i)

= λ ∑
1=1. .Nd i=0

L i
y (θ f , θ y) − λ ∑

i=1. . .N
L i
d (θ f , θd) (2)

Here, Ly() denotes the loss function for label prediction, Ld() is the loss function for domain
classi�cation, and L i

y and L i
d signify the respective loss functions assessed at the i − th training example. On

the basis of our concept, we are looking for the parameters θ̂ f ; θ̂ y ; θ̂d that provide a saddle point for the
objective in Eq. (2):

(θ̂ f , θ̂ y) = argmin
θ f ,θ y

E (θ f , θ y , θ̂d) (3)

θ̂d = argmax
θd

E (θ̂ f , θ̂ y , θd) (4)

�e saddle point plays a vital role in achieving equilibrium between the dataset classi�er (for both
labeled and unlabeled instances) and the label classi�er.�is balance is essential for the model to e�ectively
capture the shared characteristics between labeled and unlabeled instances. Such an ability signi�cantly
enhances the learning of dialect representations, leading to more accurate predictions. At the saddle point,
the parameters of the domain classi�ers (denoted as θd) work to minimize the domain classi�cation loss
(given its negative sign in Eq. (2)). Simultaneously, the settings for the label predictor y aim to minimize the
loss of label prediction.�e feature mapping parameters f , in this equilibrium, seek tomaximize the domain
classi�cation loss while minimizing the loss associated with label prediction.�e parameter λ regulates the
exchange between the two learning goals that comprise the features.�is delicate balance at the saddle point
is instrumental in achieving e�ective domain adaptation and maintaining precision in label predictions.

θ f ← θ f − µ
⎛

⎝

∂L i
y

∂θ f
− λ

∂L i
d

∂θ f

⎞

⎠
(5)

θ y ← θ y − µ
∂L i

y

∂θ y
(6)

θd ← θd − µ
∂L i

d
∂θd

(7)

where µ denotes the learning rate, which may vary over time.�e −λ factor in (4) represents the di�erence
between stochastic gradient descent and updates (4)–(6).�is di�erence is signi�cant since, in the absence
of this factor, stochastic gradient descent will attempt to make features di�erent across domains in order to
reduce domain classi�cation loss. Luckily, this may be achieved by deploying a novel gradient reversal layer
(GRL), which is de�ned as follows.�e GRL does not have any parameters, with exception of the hyper-
parameter λ, which is not subject to updates by backpropagation. In the forward direction, GRL performs
the role of an identity transform. When doing backpropagation, however, GRL takes the gradient from the
subsequent level, multiplies it by −λ and transfers it to the previous layer.�e GRL is positioned in between
the feature extractor and the domain classi�er to produce the architecture depicted in Fig. 1. �e partial
derivatives of the downstream loss are computed as the backpropagation process passes through the GRL,
for example Ld and the layer parameters upstream the GRL for example θ f get multiplied by −λ, resulting
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in ∂Ld
∂θ f
being essentially replaced with −λ ∂Ld

∂θ f
. Formally, GRL may be treated as a “pseudo-function” Rλ(x).

Its forward and backward pass behavior is described by two (incompatible) equations:

Rλ(X) = X (8)
dRλ

dX
− λI (9)

where I is amatrix of identities.�en, we can de�ne the “pseudo-function” of (θ f , θ y , θd)which is optimized
by our method’s stochastic gradient descent:

Ẽ(θ f , θ y , θd) = ∑

i = 1..N
d i = 1

Ly(Gy(G f (x i ; θ f ); θ y), y i) + ∑
i=1. .N

Ld(Gd(Rλ(G f (X i ; θ f )); θd), y i) (10)

5 Empirical Evaluation

5.1 Dataset
In order to demonstrate the e�ectiveness of our proposed method, we conducted experiments on

benchmark datasets that are commonly used in the DID task as follows:
MADAR dataset [50]. �e MADAR (Multi-Arabic Dialect Applications and Resources) dataset is

designed to capture a broad spectrum of linguistic variations across Arabic dialects and MSA.�e dataset
provides parallel sentence collections, with MADAR-26 covering MSA and 25 Arabic dialects, enabling
model training on a diverse set of dialectal nuances. Additionally, MADAR-6 focuses on �ve speci�c dialects
and MSA, allowing for in-depth testing on a targeted subset.

NADI dataset [51]. Nuanced Arabic Dialect Identi�cation (NADI) dataset addresses dialectal identi-
�cation at both country and province levels. It includes tweets from 21 Arabic-speaking countries for the
country-level.

Unlabeled data1. We collected a large corpus of unlabeled Arabic dialect data from diverse sources,
focusing primarily on social media platforms. We manually extracted MSA sentences from this corpus
to maintain data quality, resulting in a varied and extensive unlabeled dataset for further enhancing
model performance through unsupervised learning techniques. �e detailed statistics of the datasets are
summarized in Table 3.

5.2 Experimental Settings
Ourmodels are built with hugging face’s open-source transformers library.�ey were trained following

the experimental Setup of CAMeLBERT [20], which is characterized by 10 training epochs, a batch size of
32 sentences, a learning rate of 3e − 5, and a max sequence length of 128. We used the optimal checkpoints
based on the validation sets to provide results on the test sets that use the macro F1 score a�er �ne-tuning.
Furthermore, our model advocates for the addition of one more hyper-parameter λ, which designates the
signi�cance of adversarial loss.�e remaining hyperparameters retain their empirically validated settings,
as outlined in Table 4.

We �nd out that the value of 1e − 2 for λ, gives the best result in our experiments according to the
performance on the validation set. For training, we use theMADAR shared sub-task 1 [50], that includes two

1https://drive.google.com/�le/d/1qJImRVG-q8hjrSIk7VkcOIv-83Yhm3_v/view?usp= drive_link (accessed on 20 January 2025).

https://drive.google.com/file/d/1qJImRVG-q8hjrSIk7VkcOIv-83Yhm3_v/view?usp=drive_link
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datasets namedMADAR-26 andMADAR-6, as well as NDAI’s country-level dataset. More hyper-parameter
details are given.

Table 3: Dataset splits statistics (in number of sentences).�ese include MADAR-26 and MADAR-6, which are based
on the shared dataset provided by MADAR, in addition to the NADI country-level dataset

MADAR-26 MADAR-6 NADI
Train 41,600 54,000 21,000
Dev 5200 6000 4957
Test 5200 5200 5000
Dialects 26 6 21

Table 4: �e hyper-parameters used in model training

Parameter Value
Learning rate 3e − 5
Dropout rate 0.5
Batch size 32

Max sequence length 128
Optimizer adam

Adaptive Lambda Schedule. To e�ectively suppress the noisy signal from the domain classi�er during
the initial stages of the training process, rather than keeping the adaptation factor λ constant, we progressively
adjust it from 0 to 1 according to the following schedule:

λp =
2

1 + exp(−γ.P)
− 1 (11)

5.3 Implementation Details
Model Initialization. Domain Classi�er: Con�gured with binary cross-entropy loss to distinguish

between source and target domains, with a learning rate of 0.0001 and early stopping to reduce over�tting.
Label Predictor: Trained on source data to map features to dialect labels, using cross-entropy loss, with a
learning rate of 0.0005 and a batch size of 32.

Preprocessing and Feature Extraction. Both source and target data undergo NLP preprocessing (e.g.,
stop-word removal).�e BERT-based feature extractor generates an h − dimensional feature vector used
by both the domain classi�er and label predictor, transferring knowledge across domains.

Domain-Adversarial Training.Goal: Learn domain-invariant features by training the feature extractor
tomaximize the domain classi�er’s error using a Gradient Reversal Layer (GRL).�e GRL reverses gradients
by multiplying them by −λ, discouraging domain-speci�c biases. Optimization: Parameters θ f and θ y are
adjusted to reduce label prediction loss on source data, while θd minimizes domain classi�cation loss.

Saddle PointOptimization.�is balance between label prediction and domain classi�cation objectives
enhances domain invariance while retaining dialect accuracy.
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Gradual Domain Adaptation. Fine-Tuning: Uses a progressively reduced learning rate (0.00001) to
limit over�tting on source data-speci�c features. Loss Function:�e total loss combines cross-entropy (label
predictor) and domain classi�cation loss, weighted by λ.

Gradient Update Steps. �e GRL modi�es gradient �ow, ensuring domain-invariant features by
reversing gradients from the domain classi�er.

5.4 Comparative Baseline
When evaluating ourmodel, we compared it to a number of di�erent baselines, including the following:
CAMeLBERT [20]. CAMeLBERT examined Arabic PLM e�ects. It examined howmodel size, language

variation, and �ne-tuning task type a�ected pre-trained models on Arabic-language datasets.
AraBERT [15]. AraBERT is a state-of-the-art PLM that has been speci�cally designed for the Arabic

language. It has been trained on a large corpus of Arabic text, including news articles, web pages, and other
online sources, using the Transformer architecture.

MDABERT [23]. MDABERT is a Multi-dialect Arabic model that was further pre-trained from
ArabicBERT [21] on the ten million tweets that the NADI competition organizers made available to
the public.

mBERT [12]. Multilingual BERT is a PLM that was developed by Google to support multiple languages.
�e mBERT model is trained using a two-step process that involves pre-training on large quantities of
unlabeled data, followed by �ne-tuning on smaller labeled datasets for speci�c downstream NLP tasks.

ArabicBERT [21]. ArabicBERT is a PLM for Arabic text data that is based on the BERT architecture. In
the context of identifying o�ensive speech text in socialmedia, ArabicBERThas been found to be particularly
e�ective when combined with a CNN.

GigaBERTv4 [22]. Five pre-trained versions of GigaBERT were introduced, which were trained using
the Transformer encoder [52], and BERT-base con�gurations. Each of the 12 attention layers in GigaBERT
has 12 attention heads and 768 hidden dimensions, which results in a total of 110 million parameters.

6 Results

We employ the validation set to choose the best model, and then we average the performances of �ve
di�erent runs using a variety of random seeds. We give the comprehensive evaluation results in Table 5.
From the results we arrive to the following observations: (1) Since our proposed solution relies on pre-
trained models to improve accuracy, the �rst observation is that these models behave di�erently depending
on the pre-training setting, task, and data used in pre-training, as well as downstream task datasets. (2) In
contrast to MADAR-6 andMADAR-26, the reason for NADI’s country-level poor performance is that some
classes scored zero in Precision, Recall, and F1 scores, as illustrated in Fig. 2. (3) Our proposed solution
outperforms the state-of-the-art models regardless of the amount of the dataset and the abundance or lack
of class labels. As can be seen, compared to the previous state-of-the-art models based on Bert, our proposed
method performs signi�cantly better, as shownbelow.We ran our comparative experiments using Bert-based
state-of-the-art models, which include: mBERT, ArabicBERT, AraBERTv0.1, AraBERTv0.2, GigaBERTv4,
ARBERT, MARBERT, Multi-dialect-Arabic-BERT, CAMeLBERT-MSA, CAMeLBERT-DA, CAMeL-BERT-
CA, andCAMeLBERT-MIX. Each experiment is performed twice for eachmodel, oncewithout our proposed
solution and once including it, and then, we compare the results. Using the MADAR-26 dataset, in terms of
accuracy and macro-F1 scores, our solution consistently outperforms the state-of-the-art, by the following
margins: 0.77%, 1.88%, 1.14%, 2.38%, 1.17%, 0.62%, 1.26%, 1.29%, 1.32%, 2.44%, 0.53%, and 1.63%. Conducting
the experiments on the MADAR-6 dataset using the aforementioned models, on the same principle, showed
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the following boost in performance: 0.34%, 0.49%, 0.67%, 0.74%, 1.01%, 1.00%, 0.99%, 0.69%, 1.14%, 0.99%,
0.77%, and 1.17%. In addition toMADAR-26 andMADAR-6, we also used theNADI county-level dataset, on
which we noted the following improvements: 0.93%, 0.25%, 1.18%, 1.74%, 1.57%, 0.67%, 1.33%, 0.48%, 0.53%,
3.24%, 6.82%, and 1.17%, for the aforementionedmodels. When looking at the results of theMADAR-26 and
MADAR-6 datasets, we �nd that the di�erence is large in the overall results for the same data, and this is
attributed to the increase in classes in the case of MADAR-26 compared to MADAR-6.�is claim is backed
up by the detailed results in Figs. 2–4 which include precision, recall, and F1 scores.�e di�erence between
MADAR-6, MADAR-26, and NADI is clear in the results of the same class labels for both datasets. As for the
NADI country-level dataset, it su�ers from a lack of training data, which merely covers the available class-
labels.�is causes the classi�er to be more confused given the great similarity in the Arabic dialects between
neighboring Arab countries.

Table 5: Comparative results in terms of accuracy and Macro-F1. �e BERT model scores are obtained from their
corresponding publications, while all other models are our implementations.�e symbol (–) indicates that no score was
reported.�e standard deviation

Model MADAR-26 MADAR-6 NADI

Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1
mBERT – 60.4 – 90.8 – 16.70

Ours (mBERT) 61.23
(±0.19)

61.17
(±0.19)

91.13
(±0.27)

91.14
(±0.26)

35.00
(±0.36)

17.63
(±0.22)

ArabicBERT – 58.4 – 90.8 – 24.00
Ours (ArabicBERT) 60.20

(±0.18)
60.28
(±0.17)

91.28
(±0.31)

91.29
(±0.31)

40.66
(±0.33)

24.25
(±0.43)

AraBERTv0.1 – 61.9 – 91.9 – 21.10
Ours (AraBERTv0.1) 62.97

(±0.15)
63.04
(±0.14)

92.56
(±0.36)

92.57
(±0.35)

39.24
(±0.36)

22.28
(±0.58)

AraBERTv0.2 – 62.2 – 92.3 – 24.50
Ours (AraBERTv0.2) 64.51

(±0.24)
64.58
(±0.22)

93.05
(±0.50)

93.04
(±0.49)

43.00
(±0.37)

26.24
(±0.31)

GigaBERTv4 – 59.1 – 91.4 – 21.30
Ours (GigaBERTv4) 60.29

(±0.14)
60.27
(±0.14)

92.40
(±0.16)

92.41
(±0.17)

39.84
(±0.30)

22.87
(±0.53)

ARBERT – 60.7 – 91.4 – 24.60
Ours (ARBERT) 61.22

(±0.31)
61.32
(±0.33)

92.39
(±0.13)

92.40
(±0.13)

41.44
(±0.99)

25.27
(±0.54)

MARBERT – 61.2 – 92.1 – 27.00
Ours (MARBERT) 62.34

(±0.12)
62.46
(±0.14)

93.06
(±0.19)

93.09
(±0.19)

46.12
(±0.59)

28.33
(±0.46)

Multi-dialect-Arabic-BERT – 59.8 – 91.5 – 25.00
Ours (MDA-BERT) 60.98

(±0.29)
61.09
(±0.28)

92.16
(±0.63)

92.19
(±0.63)

42.29
(±0.62)

25.48
(±0.52)

CAMeLBERT-MSA – 62.6 – 91.9 – 24.90
Ours

(CAMeLBERT-MSA)
63.88
(±0.37)

63.92
(±0.62)

93.03
(±0.16)

93.04
(±0.16)

42.29
(±0.26)

25.43
(±0.24)

(Continued)
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Table 5 (continued)

Model MADAR-26 MADAR-6 NADI

Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1
CAMeLBERT-DA – 61.8 – 92.2 – 20.10

Ours (CAMeLBERT-DA) 64.18
(±0.16)

64.24
(±0.15)

93.18
(±0.16)

93.19
(±0.15)

42.09
(±0.41)

23.34
(±0.33)

CAMeLBERT-CA – 61.9 – 91.5 – 17.30
Ours (CAMeLBERT-CA) 62.44

(±0.60)
62.43
(±0.62)

92.26
(±0.08)

92.27
(±0.09)

42.09
(±0.41)

24.12
(±0.62)

CAMeLBERT-Mix – 62.9 – 92.5 – 24.70
Ours (CAMeLBERT-Mix) 64.42

(±0.37)
64.53
(±0.37)

93.67
(±0.21)

93.67
(±0.20)

43.36
(±0.55)

25.87
(±0.11)

Figure 2: Comparison of Precision, Recall, and F1 metrics between the MARBERT �ne-tuned model and our model
based on MARBERT using the NADI Country-level dataset

Consequently, the results appear signi�cantly lower than on other datasets. We generated confusion
matrices in Fig. 5 to verify the reliability of our results, the viability of our proposed model, and to
illustrate the complexity of the DID task.�e �ndings further indicate that adversarial learning with BERT
transformers leads to signi�cantly improved performance compared to �ne-tuning PLMs. In conclusion,
overall results show that the unsupervised domain adaptation framework we have proposed for identifying
Arabic dialects performs better than the state-of-the-art baselines in all experiments utilizing di�erent PLMs.
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Figure 3: Comparison of Precision, Recall, and F1 metrics between the CAMeLBERT-Mix �ne-tuned model and our
model based on CAMeLBERT-Mix, using MADAR-26

Figure 4: Precision, Recall, and F1 metrics compared between CAMeLBERT-DA �ne-tuned model and our model
based on CAMeLBERT-DA using MADAR-6
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Figure 5: �e confusion matrix of our model based on (a) AraBERTv0.2 and (b) CAMeLBERT-DA models for the
MADAR-6 dataset

Error Analysis
Despite the improvements made with the proposed solution, conducting a thorough performance

analysis is crucial to uncovering its limitations. To achieve this, we performed an in-depth evaluation
of the MADAR-26 and MADAR-6 datasets, using our model with weights from CAMeLBERT-MIX and
CAMeLBERT-DA, respectively. �e task is complex due to the considerable similarity between Arabic
dialects, which challenges the model’s ability to distinguish e�ectively as shown in the Table 6.We categorize
the errors into two distinct types:

Table 6: Examples of samples that our adversarial framework incorrectly predicted

Sentence Translation Labeled Predicted

1 ú


G
.
Am��@ ©Ó A

	
K @

AnA mς A ŠHby
I am with my friends. KHA JED

2 ú


G
.
Am�� ©Ó A

	
K @

AnA mς ŠHby
I am with my friends. SFX SAL

3  C
	
«

γ lAT
Controversy RAB TUN

4 ? Yª�ÖÏ @
�
èQ»

	
Y

�
JË

	
àñK. ñ» ø



Q�
�

�
�@ PY

�
¯@

	
J
»

kyf Aqdr AŠtry kwbwn ltðkrh̷ AlmSςd?
How can I buy a coupon
for the elevator ticket?

JED RIY

5 �
é«A

�
®Ë @ Q

	
k@ ú




	
¯

�
èYJ
�.

sydh̷ fy Axr AlqAςh̷.
Straight at the end of the

hall.
JED MSA

6 �
èPAg

�
éK
ñÓ ú




�
¯B@ PXA

�
¯ ú




	
æÓ.

mnyqAdrAlAqymwyh̷ HArh̷
I can’t �nd a hot water. JED MSA

7 ?
	
àñë 	áÓ I. K
Q

�
¯ Ém× ú



æ
�
� ú




	
¯

fy šy mhl qryb mn hwn?
Is there a store near here? BEI DOH

8 ?
�

HAg. @Q
	
mÌ'@ ù



ë ñ

	
J

�
�

šnw hy AlxrAjAt?
What are the abscesses? DOH RAB

(Continued)
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Table 6 (continued)

Sentence Translation Labeled Predicted

9 �
é
�
JÖÏ A¾Ó PA

	
¢

�
J
	
K @ ú




	
¯ ú




	
G @

�
é

	
ªÊK. ½Ê

	
�

	
¯ 	áÓ.

mn fDlk blγh̷ Any fy AntDˇr mkAlmth̷.
Please inform him that I
am waiting for his call.

CAI MSA

•�e shared Arabic dialects: Sentences 1. ú


G
.
Am��@ ©Ó A

	
K @ and 2 ú



G
.
Am�� ©Ó A

	
K @ appear similar, di�ering by

only a single letter; however, they are labeled di�erently. Sentence [1] labeled as KHA, but the KHA classi�er
fails to accurately identify it due to the prevalent use of the term “ú



G
.
Am��@” across both KHA and JED dialects.

Consequently, this results in a misclassi�cation of the sentence as belonging to the JED dialect. Sentence 2
labeled as SFX, but the SFX classi�er fails to accurately identify it due to the prevalent use of the term “ú



G
.
Am��”

across both SFX and SAL dialects.�e matter becomes challenging as the number of words in a sentence
decreases.�is overlap o�en confuses the classi�er, leading to incorrect classi�cations. For instance, sentence
3  C

	
«, which contains only one word, is shared between the RAB and TUN dialects. Although it is labeled

as RAB, the classi�er predicts it as belonging to the TUN dialect.
However, when the labels represent cities within the same country, the situation becomes even more

complex.�is is illustrated by sentence 4 ? Yª�ÖÏ @
�
èQ»

	
Y

�
JË

	
àñK. ñ» ø



Q�
�

�
�@ PY

�
¯@

	
J
», which was labeled as JED

but predicted as RIY. Jeddah and Riyadh are cities in Saudi Arabia.�e sentences 7 ?
	
àñë 	áÓ I. K
Q

�
¯ Ém× ú



æ
�
�

ú



	
¯, and ?

�
HAg. @Q

	
mÌ'@ ù



ë ñ

	
J

�
�, were labeled as BEI and DOH, respectively. Despite their rich dialectal content,

the shared expressions among similar dialects led to their misclassi�cation as DOH and RAB, respectively.
•In�uence of MSA on dialects: Sentence 5 �

é«A
�
®Ë @ Q

	
k@ ú




	
¯

�
èYJ
�. demonstrates the in�uence of MSA on

dialects that are closely related to it. Although the context of sentence 5 contradicts its classi�cation as MSA,
the word “ �

èYJ
�”, is spelled similarly in both the JED dialect, where it means “straight,” and in MSA, where
it means “lady”. Due to the absence of distinct dialectal words in the sentence, it was classi�ed as MSA.
Sentence 6 �

èPAg. éK
ñÓ ú



�
¯B@ PXA

�
¯ ú




	
æÓ, appears to be closer to a dialectal form rather than MSA. Despite this,

it was labeled as the JED dialect but was incorrectly predicted as MSA. Conversely, sentence 9 �
é
�
JÖÏ A¾Ó PA

	
¢

�
J
	
K @

ú



	
¯ ú




	
G @

�
é

	
ªÊK. ½Ê

	
�

	
¯ 	áÓ, is closer to MSA than to dialectical Arabic. However, the use of the word “ 	áÓ ½Ê

	
�

	
¯,”

which is frequently found in some dialectical Arabic, was labeled as the CAI dialect; despite this, it was
predicted as MSA. �e analysis of Table 7 reveals a direct correlation between MSA and Arabic dialects,
determined by the shared word count.�e statistical results demonstrate a clear and consistent in�uence
of MSA on the Arabic dialects. Investigating the intricate relationship between Arabic dialects and MSA
provides valuable insights into the linguistic dynamics in�uencing dialectal variations.�is understanding
empowers us to address the complexities arising from shared vocabulary and enhance the classi�er’s accuracy
in identifying the originating dialects. Note that the abbreviations DAM, ASW, RIY, BAG, TRI, AMM,MUS,
ALE, JER, BAS, SFX, DOH, CAI, TUN, RAB, BEI, KHA, JED, and SAL, refer to Arabic cities Damascus,
Aswan, Riyadh, Baghdad, Tripoli, Amman, Muscat, Aleppo, Jerusalem, Basra, Sfax, Doha, Cairo, Tunis,
Rabat, Beirut, Khartoum, Jeddah, and Salt respectively. We attribute the errors in our proposed model to
several key factors, analyzed through selected examples of misclassi�ed sentences in Table 5 and supported
by statistical data in Table 6.�ese causes are summarized as follows:
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Table 7: Statistical results demonstrating the in�uence of sharedwords betweenArabic dialects andMSAwhenutilizing
our proposed solution with CAMeLBERT-MIX on MADAR-6

Labeled Predicted No. Shared-words
DOH BEI 56 3978
CAI BEI 59 4365
TUN RAB 46 4154
DOH TUN 18 3358
DOH MSA 18 2559
BEI MSA 11 2570
RAB MSA 11 2515
CAI MSA 30 3205
TUN MSA 11 2147

• Structural similarity across dialects: Some sentences share high structural resemblance across dialects,
as observed in sentences 1, 2, 4, 7, 8 in Table 6.

• Resemblance to modern standard Arabic: Certain dialectal expressions closely mirror MSA structure,
as noted in sentences (5, 6, 9) in Table 6.

• Sentence brevity: Shorter sentences (e.g., sentence 3 in Table 5) may contribute to classi�cation chal-
lenges.

• �ese points are further reinforced by the statistical data in Table 6, showing:
• Vocabulary overlaps between close dialects: Certain words are shared across similar dialects.
• Vocabulary overlaps with MSA: Lexical similarities between dialects and MSA also complicate
model accuracy.

7 Conclusion

In this paper, we proposed a general adversarial training method. We made use of the CAMeLBERT
models in addition to other eight Transformer-based models on a particular NLP task on MADAR-26,
MADAR-6, and NADI datasets. We demonstrated that adversarial training prior to generalization can
signi�cantly improve robustness and generalization ability, which presents a potential avenue for reconciling
the con�icts that have been seen between the two in previous research. Our model achieved a signi�cant
improvement in accuracy for BERT in DID, and it showed potential for maximizing the bene�ts of the
unlabeled corpus to increase performance on the DID task.�erefore, this method made it possible to make
e�cient use of unlabeled data, which will save both the time and e�ort that would have been spent on data
labeling. In future work, to address the challenge of common dialects causing confusion in classi�cation, it
is important to ensure that the training data includes a representative sample of these dialects.�is can help
the model learn the nuances of these dialects and improve its accuracy in classifying them. Additionally, it
may be bene�cial to use techniques such as phonetic encoding to represent the input data in a way that is
more robust to dialectal variation.
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