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ABSTRACT: Manufacturers must identify and classify various defects in automotive sealing rings to ensure product
quality. Deep learning algorithms show promise in this field, but challenges remain, especially in detecting small-scale
defects under harsh industrial conditions with multimodal data. This paper proposes an enhanced version of You
Only Look Once (YOLO)v8 for improved defect detection in automotive sealing rings. We introduce the Multi-scale
Adaptive Feature Extraction (MAFE) module, which integrates Deformable Convolutional Network (DCN) and Space-
to-Depth (SPD) operations. This module effectively captures long-range dependencies, enhances spatial aggregation,
and minimizes information loss of small objects during feature extraction. Furthermore, we introduce the Blur-Aware
Wasserstein Distance (BAWD) loss function, which improves regression accuracy and detection capabilities for small
object anchor boxes, particularly in scenarios involving defocus blur. Additionally, we have constructed a high-quality
dataset of automotive sealing ring defects, providing a valuable resource for evaluating defect detection methods.
Experimental results demonstrate our method’s high performance, achieving 98.30% precision, 96.62% recall, and an
inference speed of 20.3 ms.
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1 Introduction
In the context of automotive intelligence, enhancing vehicle safety has become a widespread societal

demand [1–3]. The Electronic Control Unit (ECU) is a key component in modern vehicles. Its malfunction
can lead to significant safety risks [4]. Given the critical role of automotive sealing rings in protecting the
ECU from external damage, even minor defects can lead to serious issues, such as electrical short-circuits,
corrosion, and system failures [5]. Detecting such defects is essential for maintaining product quality and
meeting vehicle safety standards [6,7].

Common defects in automotive sealing rings, such as blowout, fracture, excess material, and burr, are
critical issues that can undermine the functionality of the ECU. However, defect detection faces unique
challenges due to the small size of the sealing rings (1.3 cm × 0.5 cm), compounded by harsh industrial
conditions such as uneven lighting and defocus blur. Traditionally, defect detection in automotive sealing
rings has relied heavily on manual inspection [8], limited by low accuracy and efficiency. To overcome
these limitations, advanced automated detection technologies that integrate seamlessly into high-speed
production lines are essential. The adoption of advanced technologies, such as deep learning-based systems,
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offers a promising solution by accurately identifying defects, thereby reducing waste and improving overall
productivity in automotive manufacturing [9,10].

Given the complexity and varied nature of defects in automotive sealing rings, selecting an appropriate
deep learning detection algorithm is crucial. Deep learning detection methods are classified into one-stage
and two-stage approaches [11]. While two-stage algorithms achieve high accuracy, their slower inference
speed limits real-time applications [12,13]. In contrast, one-stage algorithms provide faster inference and
are more suitable for real-time industrial scenarios, although they often struggle with small-object localiza-
tion [14,15]. For real-time automotive sealing ring defect detection, the YOLO algorithm is preferable [16].

Building on YOLOv8’s suitability for real-time detection, we propose an Enhanced YOLO. Our approach
introduces the Multi-scale Adaptive Feature Extraction (MAFE) Module, which integrates deformable
convolutional networks (DCN) and Space-to-Depth (SPD) to enhance feature extraction for small and
irregular defects, minimizing spatial information loss. We also develop the Blur-Aware Wasserstein Distance
(BAWD) loss function, which improves regression accuracy and detection capability for small object anchor
boxes, particularly in scenarios with defocus blur.

We have constructed a high-quality dataset of automotive sealing ring defects. This dataset replicates
real-world industrial conditions, providing a challenging benchmark for evaluating defect detection meth-
ods. Our experiments show significant improvements in defect detection using our Enhanced YOLOv8.
Additionally, our model demonstrates robust performance on the COCO2017 dataset, validating its adapt-
ability across diverse scenarios. The key contributions of this paper are outlined as follows:

(1) Introducing the MAFE module into YOLOv8. This module combines DCN for capturing long-range
dependencies and adaptive spatial aggregation with SPD operations to reduce information loss during feature
extraction, especially for small objects and low-resolution images.

(2) Developing the BAWD Loss to improve regression accuracy and detection capability for small object
anchor boxes, especially in scenarios with defocus blur.

(3) Constructing a high-quality dataset of automotive sealing ring defects, providing a valuable resource
for evaluating various defect detection methods. The dataset is available as an open-source resource at https://
github.com/xika1234/automotive-seal-ring-dataset (accessed on 23 February 2025).

2 Related Work

2.1 Industrial Defect Detection Algorithm
Current mainstream approaches for defect detection include RCNN-based frameworks, Transformer-

based models, and YOLO-based methods, each with distinct strengths and limitations. RCNN-based
frameworks [17], achieve robust feature extraction and high accuracy, particularly for complex defects [18].
For instance, Faster R-CNN has been enhanced with deformable convolution for small weld defects [19],
while Cascade R-CNN has been applied to multiscale defect localization in wheel hubs [20]. However, their
two-stage nature limits real-time applicability. Transformer-based models, such as DETR [21], Deformable
DETR [22], and Dynamic DETR [23], leverage attention mechanisms for global context modeling and have
been applied to defect detection tasks like aero-engine blades and roller bearings [24,25]. Despite their
potential, Transformers often face high computational costs, making them less practical for time-sensitive
applications [26]. YOLO-based methods, such as YOLOv5 and YOLOv7 [27], balance speed and accuracy
but struggle with small, subtle defects under harsh industrial conditions like motion blur. To address these
limitations, methods such as Feature Pyramid Networks (FPN) and attention-based mechanisms have been
explored. FPN enhances multi-scale feature representation by integrating spatial and semantic information
from different feature levels [28,29], while attention mechanisms recalibrate feature importance to improve

https://github.com/xika1234/automotive-seal-ring-dataset
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detection precision [30]. However, these approaches often rely on rigid structures or static attention designs,
limiting their adaptability to irregular defect shapes and complex industrial scenarios.

To address these challenges, our Enhanced YOLOv8 introduces the MAFE module and the BAWD
loss function. MAFE combines SPD operations and DCN. SPD expands the receptive field by rearranging
spatial information, improving the extraction of long-range dependencies critical for small-object detec-
tion. Meanwhile, DCN introduces adaptive sampling to focus on irregular object shapes, addressing the
limitations of conventional pooling and attention mechanisms. BAWD further strengthens the model by
incorporating blur-aware adjustments into bounding box regression, mitigating uncertainties from defocus
blur and enhancing robustness. Together, these innovations enable superior accuracy and efficiency in
detecting small defects under challenging industrial conditions.

2.2 Automotive Sealing Rings Defect Detection
Defect detection in automotive sealing rings has been a critical area of research in quality control. Li

et al. proposed a defect detection method based on the K-means clustering approach and particle swarm
optimization [31]. Their approach involves preprocessing seal images, utilizing the SURF algorithm for
feature point extraction, and performing image segmentation. However, their method relies on traditional
machine learning techniques, which may lack the adaptability and efficiency required for diverse defect
types and high-volume production environments. Scholz et al. both explored 3D-based approaches for
defect detection [8]. They developed an automated optical inspection system based on sheet-of-light laser
measurement, integrating a 3D data acquisition unit for rapid full-surface scanning of parts. Nevertheless,
these approaches do not specifically address the challenges of real-time detection or the processing of
high-volume production data.

In contrast, the enhanced YOLOv8 model proposed in this paper has been specifically optimized
to address the challenges in industrial environments. This method is not only capable of adapting to
diverse defect types but also possesses real-time detection capabilities, effectively handling high-frequency
data input.

2.3 IoU Loss
In object detection, Intersection over Union (IoU) serves as a key metric for evaluating anchor box

matching accuracy, with various enhancements proposed to improve its effectiveness [32]. Variants like
GIoU [33], EIoU [34], and SIoU [35] have been introduced to address specific limitations, such as handling
non-overlapping bounding boxes or incorporating geometric considerations for better localization accuracy.
While these advancements have improved object detection in many scenarios, they remain less effective for
precise localization of small objects, often leading to positional offset errors that compromise performance
in such cases [36].

To optimize the YOLOv8 model, we introduced BAWD loss, built on the foundation of NWD
Loss [37,38]. NWD Loss models bounding boxes as Gaussian distributions, enabling a smooth and contin-
uous distance metric. However, defocus blur in industrial images compromises this modeling by making
object edges less distinct, leading to inaccuracies in estimating Gaussian parameters. BAWD loss mitigates
this issue by incorporating blur awareness, dynamically adjusting covariance matrices based on blur levels.
This refinement ensures more robust localization of small objects under blurred conditions, improving
detection accuracy in challenging industrial environments.
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3 Method

3.1 Automotive Sealing Ring Defect Detection Process
This paper presents a detection method composed of three parts, specifically designed for detecting

surface defects in automotive sealing rings, as shown in Fig. 1.

Figure 1: Automotive sealing ring defect detection process

(1) Input: This module inputs the captured image into the automotive sealing ring defect detector
without any specific size constraints.

(2) Automotive Sealing Ring Defect Detector: Initially, images are checked for their sizes, and those
not meeting the 640× 640 pixel requirement are compressed. This physically enlarges the defects and reduces
the negative sample information. The Enhanced YOLO network is then trained using COCO dataset weights.

(3) Output: The defects are detected in the obtained image using Enhanced YOLO network and the
detection results are obtained.

3.2 Enhanced YOLO
This section proposes an improved model Enhanced YOLO based on the network structure of YOLOv8.

The specific structure is shown in Fig. 2. This study introduces two major improvements to YOLOv8. Firstly,
the MAFE module is incorporated into the network to establish long-range dependencies during feature
extraction, offering stronger spatial aggregation capabilities compared to standard convolutional modules.
Additionally, the MAFE module minimizes parameters while mitigating inherent limitations of stride and
pooling operations. This enhancement improves the focus on low-resolution images and boosts the detection
of small object defects. Secondly, the BAWD loss function is introduced, which measures the similarity
of the bounding box’s Gaussian distribution, enabling more accurate regression of predicted boxes. This
modification further strengthens small object detection and boosts overall precision.
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Figure 2: Enhanced YOLO network structure

3.2.1 MAFE Module
The MAFE module combines SPD and DCN to enhance feature extraction specifically for small and

irregular defects. SPD rearranges spatial information into channel dimensions, effectively expanding the
receptive field and enhancing focus on fine-grained details. This is particularly advantageous for small defects
such as burrs and fractures. Meanwhile, DCN introduces learnable spatial offsets, allowing convolutions
to dynamically adapt to irregular defect shapes and deformations. This adaptation ensures critical spatial
information is preserved, overcoming limitations of conventional pooling methods. These mechanisms
collectively enable the model to capture long-range dependencies and provide robust feature representations
under complex industrial conditions. The structure of the MAFE module is shown in Fig. 3.

Figure 3: MAFE module

The SPD operation rearranges the spatial information of the input feature map into the channel
dimension. Assuming the input feature map is X ∈ RC×H×W , the SPD operation transforms it along the spatial
dimensions, resulting in a new feature map X′ ∈ R(C×s2)×(H/s)×(W/s). The SPD can be expressed as:

X
′

c′ ,h′ ,w′ = Xc ,h′×s+i ,w′×s+ j (1)

where c′ = c × s2 + i × s + j, i , j = 0, 1, . . . , s − 1.
Specifically, first SPD converts the feature image X(S , S , C1) into intermediate feature

image X′ ( S
scal e , S

scal e , scal e2C1). Then it is further converted into X′ ( S
scal e , S

scal e , scal e2C1)→
X′′ ( S

scal e , S
scal e , C2) by non-strided convolution. An illustration of the scal e = 2 conversion process is given

in Fig. 4.
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Figure 4: The process of SPD-Conv operation

The SPD operation compresses spatial information into the channel dimension, expanding the receptive
field, which is particularly effective for extracting long-range dependencies and features of small targets.

DCN introduces learnable spatial offsets, making the sampling locations of convolution kernels more
flexible. The conventional convolution is expressed as:

y (pc) = ∑
k

w (k) ⋅ x (p0 + pk) (2)

where pc represents the location of the current pixel, and pk represents the sampling location of the standard
convolution kernel.

With the introduction of learnable offsets, DCN enables adaptive adjustment of convolution kernel
sampling locations. The mathematical expression is:

y (pc) = ∑
k

w (k) ⋅ x (pc + pk + Δpgk) (3)

By introducing grouped convolution, spatial feature aggregation across multiple groups is achieved. The
corresponding formula is:

y (pc) = ∑
k

wg ⋅mgk ⋅ xg (pc + pk + Δpgk) (4)

where G denotes the total number of groups, wg ∈ RC×C′ denotes the weights of group g, indicating a
position-independent projection. C′ = C/G represents the channel dimension of each group. mgk ∈ R is the
normalization factor obtained by applying the Softmax function along the k-th dimension. xg ∈ RC′×H×W

denotes the input feature map of group g, and Deltapgk represents the offset of the sampling point pk within
group g.
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Finally, the feature map X′, after the SPD operation, is fed into the DCN:

y (pc) = ∑
k

w (k) ⋅ X′ (pc + pk + Δpgk) (5)

3.2.2 BAWD Loss
BAWD loss addresses the challenges posed by defocus blur in high-speed production environments

by refining the covariance matrices in Gaussian modeling. Specifically, it adjusts the Gaussian parameters
dynamically to reflect varying levels of blur, mitigating edge ambiguities that often compromise small-object
localization. This approach ensures robust and precise regression by smoothing the Wasserstein distance
calculations between predicted and ground-truth boxes. The effectiveness of BAWD in handling blurred
scenarios has been validated through experiments, showing significant improvements over conventional
losses like CIoU and NWD in detecting small and subtle defects.

A rotating bounding box B = (x , y, w , h, θ), is represented as a two-dimensional Gaussian G (μ, Σ).
The Wasserstein distance between two Gaussians Gp = N (μp , Σp) and Gg = N (μg , Σg) is given by:

W2
2 (Gp , Gg) = ∥μp− μg∥

2
2 + ∥Σ

1/2
p − Σ1/2

g ∥
2

F
(6)

where ∥.∥F is the Frobenius norm.
The Gaussian distributions Gp and Gg are defined using bounding boxes A = (cxp , c yp , wp , hp) and

B = (cxg , c yg , wg , hg), Eq.(6) can be rewritten as:

W2
2 (Gp , Gg) =
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(7)

where cxa and c ya represent the center coordinates of the predicted box, wa and ha are box width and height;
cxb , c yb , wb , hb corresponds to the ground truth box.

The NWD loss is as follows:

NWD (Gp , Gg) = exp
⎛
⎜
⎝
−

√
W2

2 (Gp , Gg)
Cs

⎞
⎟
⎠

(8)

Incorporating the blur-aware weight w (B), the BAWD loss is formulated as:

LNW D = w (B) × NWD (Gp , Gg) (9)

Here, Gp represents the Gaussian model of the prediction, while Gg corresponds to the ground truth.
The term Cs is a dataset-dependent constant.

4 Experiments

4.1 Dataset
The Enhanced YOLO object detection algorithm is validated on two datasets: 1) automotive sealing ring

defect dataset constructed by us, and 2) the MS COCO2017 dataset. The performance on the automotive
sealing ring dataset directly reflects the model’s capability in the specific task of automotive sealing ring defect
detection. Meanwhile, its performance on the COCO dataset demonstrates the model’s generalization ability
across diverse detection scenarios.
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4.1.1 Automotive Sealing Ring Defect Dataset
This study manually constructed a dataset containing four common defects: blowout, fracture, excess

material and burr. The defective automotive sealing rings are from a real-world project conducted by
Shanghai Inspect Spring Automation Technology Company. This dataset was created to apply deep learning-
based object detection models to automotive sealing ring defect detection. Purposefully, we set up harsh
conditions in the dataset to ensure the images closely resemble actual industrial environments. This includes
simulating situations such as uneven lighting, noise interference, and image blurring to enhance the
robustness required of the algorithm. With such a dataset setup, this study aims to provide a challenging
evaluation platform for testing and improving the performance of the sealing ring defect detection algorithm.

The automotive sealing ring defect dataset constructed by us consists of 4977 images, and the data
acquisition equipment is shown in Fig. 5. The dataset includes four types of defects: blowout, fracture, excess
material and burr. The quantity of each defect is shown in Fig. 6. To facilitate supervised learning, the dataset
was split in an 8:1:1 ratio into a training set (4031 images), validation set (448 images), and test set (498
images).

Figure 5: The data acquisition system
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4.1.2 MS COCO2017 Dataset
The MS COCO2017 dataset, also called COCO2017, consists of 80 object categories, including humans,

animals, vehicles, and household items. It is partitioned into 118,287 training images, 5000 validation images,
and 40,670 test images, serving as a standard benchmark for evaluating object detection models and assessing
their robustness.

4.2 Evaluation Metrics
The performance of the model will be evaluated by a variety of metrics such as Precision, Recall,

mAP@0.5, mAP@0.5:0.95, Params and FLOPs.
Precision reflects the accuracy of the model in identifying positive samples, minimizing false positives.

Recall represents the proportion of actual positives correctly predicted, with a high score indicating strong
capability in detecting positive instances. The equations for Precision and Recall are as follows:

Precistion = TP
FP + TP

(10)

Recal l = TP
FN + TP

(11)

TP indicates correctly classified positive samples, FP indicates misclassified positive samples, and FN
indicates misclassified negative samples.

mAP@0.5 focuses on the average accuracy of the model’s predictions concerning the actual objects
(Ground Truth) with a bounding box overlap of 0.5. This evaluation emphasizes the model’s performance at
relatively high intersection and overlap ratio thresholds. In contrast, mAP@0.5:0.95, which covers multiple
intersection and merging ratio thresholds ranging from 0.5 to 0.95, comprehensively assesses the model
across different conditions. The AP and mAP formulas are given below:

AP = ∫
1

0
p (r) dr (12)

mAP = ∑
k
i=1 APi

k
(13)

where p (r) represents the accuracy for a given recall and k represents the number of categories. Normally,
this study uses approximation or interpolation to calculate the AP value.

Params denotes the model’s trainable parameters, indicating the size of the model. FLOPs (Floating
Point Operations) quantify the computational cost of model inference or training. Higher FLOPs indicate
increased resource requirements. The equations of Params and FLOPs can be expressed as:

Params = (Cin × K2 + 1) × Cout (14)
FLOPs = 2 × Cin × Cout × K2 ×H ×W (15)

where Cin and Cout represent the input and output feature map channels, respectively. K represents the
convolution kernel size. H and W denote the output feature map’s height and width, respectively.
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4.3 Validation Results on the Automotive Sealing Ring Dataset
4.3.1 Cross-Validation

In order to avoid a single evaluation being affected by a specific data distribution, leading to unstable
evaluation results, this study conducted five-fold cross-validation experiments on the automotive sealing
ring dataset to more accurately assess the model’s generalization ability. The results are shown in Table 1.
The improved model proposed in this paper achieves 98.30%, 96.62%, 85.55% and 53.45% in precision,
recall, mAP@0.5 and mAP@0.5:0.95. It is worth noting that the fluctuation range of each metric is minimal
in different cross-validation experiments, which validates that the automotive sealing ring dataset we
constructed has an excellent and balanced data distribution.

Table 1: Cross-validation results on automotive sealing ring dataset

Order number Precision Recall mAP@0.5 mAP@0.5:0.95
1 98.72% 96.95% 85.85% 54.64%
2 98.16% 96.10% 85.54% 52.82%
3 98.54% 97.32% 86.08% 53.76%
4 97.62% 96.04% 84.56% 51.67%
5 98.44% 96.68% 85.74% 54.36%

average 98.30% 96.62% 85.55% 53.45%

4.3.2 Comparison with Other Methods
To assess the detection performance of the proposed model, we conducted a comparative analysis with

other lightweight models on the automotive sealing ring dataset. The comparison results from the cross-
validation experiment are shown in Table 2. While the Enhanced YOLO may not hold the edge in terms of
inference speed and FLOPs, its performance in accuracy metrics stands out. Specifically, it achieves mAP@0.5
and mAP@0.5:0.95 scores of 85.73% and 54.36%, respectively, indicating superior performance levels. In
addition, the parameters of proposed model are 2.8 M in total, lower than other existing methods. This makes
it suitable for embedded devices and reduces hardware strain. This experiment offers a valuable benchmark
for the industrial community when determining the optimal model for defect detection in automotive
sealing rings.

Table 2: Results of different lightweight models on the automotive sealing ring dataset

Model mAP@0.5 mAP@0.5:0.95 Inference time FLOPs Params
YOLOv4tiny 76.45% 45.62% 3.5 ms 6.9 G 5.8 M

YOLOv5s 79.36% 48.84% 4.2 ms 7.2 G 16.5 M
YOLOv6s 73.70% 43.60% 3.0 ms 4.7 G 11.4 M

YOLO7tiny 57.02% 27.36% 2.1 ms 6.2 G 5.8 M
YOLOv9-T 79.44% 49.23% 2.7 ms 7.7 G 2.0 M

YOLOv10-N 81.66% 50.87% 1.9 ms 6.7 G 2.3 M
Ours 85.74% 54.36% 20.3 ms 8.1 G 2.8 M
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4.4 Validation Results on COCO2017 Dataset
To assess our model’s robustness, we compared it with mainstream object detection models using the

COCO dataset. Detailed numerical results are presented in the Table 3. As depicted in Table 3, although
EfficientDet-D0, NanoDet, and MobileDet are comparable to our model in terms of the amount of parameter
computation, the Enhanced YOLO outperforms in accuracy. Moreover, while SpineNet-49s achieves similar
accuracy, and Deformable DETR and Efficient DETR perform slightly better than ours, it is noteworthy
that our model retains a significant advantage in both parameter count and computational complexity. The
outstanding performance on the COCO dataset demonstrates the robust generalization capability of the
Enhanced YOLO across diverse scenarios.

Table 3: Comparison results with state-of-the-art models on the COCO dataset

Model Backbone mAP@0.5:0.95 FLOPs Params
Efficientdet-D0 Efficientnet 34.3% 2.5 G 3.9 M

Retinanet Resnet-50 37.0% 97 G 34 M
Nanodet Darknet53 34.1% 2.97 G 2.5 M

DeformableDETR Resnet-50 43.8% 173 G 40 M
Mobiledet MobilenetV2 25.7% 1.37 G 6.4 M

SpineNet-49s SpineNet-49s 39.5% 33.8 G 11.9 M
Efficient DETR Resnet-50 44.2% 159 G 32 M

YOLOv8n YOLOv8n 37.3% 8.7 G 3.2 M
Ours Enhanced YOLO 40.8% 8.1 G 2.8 M

4.5 Ablation Experiments
To assess the effect of each enhancement, we performed a detailed ablation study. The visualization

process of the model training is shown in Fig. 7. The specific results are shown in Table 4. For each
enhancement strategy, respective control groups were set up to evaluate its impact on model performance.
Specifically, “+DCN”, “+SPD”, “+BAWDLoss” and “Ours” represent the introduction of the DCN module,
the introduction of the SPD module, adding the BAWD loss function, and our proposed model, respectively.
As shown in Table 4, adding the DCN module, the SPD module, or changing the loss function each enhances
performance metrics like Recall, mAP@0.5, and mAP@0.5:0.95. Moreover, introducing both modules
consistently and substantially improved the model compared to the enhancements achieved by introducing
a single module. The performance of the improvements with both modules also steadily improves compared
to that of separate modules. Ultimately, when all three modules were simultaneously introduced, the model
achieved optimal performance. In conclusion, the ablation study facilitated a precise understanding of the
contribution of each enhancement. It also provided clarity on how individual and collective integrations
of the strategies influenced the model’s performance, guiding future optimizations and decisions. The
detection results and the heatmaps of the original model and the improved model are shown in Figs. 8
and 9, respectively.
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Figure 7: The model’s performance variations with different improvements on the automotive sealing ring dataset.
Different curves highlight changes in metrics like mAP and recall over epochs, evaluating the impact of each
enhancement

Table 4: Comparison of results with deconstructed models on the automotive sealing ring dataset

Method Recall mAP@0.5 mAP@0.5:0.95 Inference time Params
Baseline 91.62% 81.51% 50.03% 5.2 ms 3.1 M
+DCN 93.46% 83.48% 52.02% 17.7 ms 2.6 M
+SPD 92.58% 82.59% 51.36% 6.3 ms 3.3 M

+BAWDLoss 92.72% 82.37% 51.13% 5.8 ms 3.1 M
+MAFE 94.74% 84.64% 53.16% 18.8 ms 2.8 M

+DCN+BAWDLoss 95.49% 84.69% 52.14% 17.9 ms 2.6 M
+SPD+BAWDLoss 93.60% 83.95% 52.57% 8.1 ms 3.3 M

Ours 96.62% 85.74% 54.36% 20.3 ms 2.8 M
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Figure 8: The detection results of the original model and the improved model

Figure 9: The heatmaps of the original model and the improved model
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5 Conclusion
This paper proposes an improved model based on the state-of-the-art model YOLOv8 in order to solve

the task of automotive sealing ring defect detection. The introduction of the MAFE module enhances the
model’s ability to capture long-range dependencies and aggregate spatial features, significantly improving
its robustness in detecting defects under complex industrial conditions. Additionally, the incorporation of
the BAWD loss enhances the model’s precision in identifying small objects by more accurately modeling
the bounding box similarity, especially in challenging scenarios with blurry or uncertain object bound-
aries. These improvements enable the model proposed in this paper to obtain significant performance
enhancement while maintaining the characteristics of lightweight design and high-speed inference. It is
worth mentioning that this paper achieves advanced accuracy performance on a specially constructed
automotive sealing ring dataset. This approach significantly reduces the leakage and false detection rates,
providing an excellent example for the field of automotive sealing ring defect detection and other rubber
industrial products.
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