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ABSTRACT: With the development of vehicle networks and the construction of roadside units, Vehicular Ad Hoc
Networks (VANETs) are increasingly promoting cooperative computing patterns among vehicles. Vehicular edge
computing (VEC) offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud
infrastructure, thereby reducing the computational burden on connected vehicles. However, this sharing-based and
distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.
Existing vehicular edge computing platforms have not adequately considered the misbehavior of vehicles. We propose a
practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular
edge computing under an unreliable environment. This approach integrates deep reinforcement learning and reputation
management to address task offloading challenges. Simulation experiments conducted using Veins demonstrate the
feasibility and effectiveness of the proposed method.
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1 Introduction
With the advancement of Vehicular Ad Hoc Networks (VANETs), intelligent connected vehicles can

access more computing resources via the Internet. Connected vehicles can access Internet services via
Dedicated Short Range Communication (DSRC), such as IEEE 802.11p and C-V2X. Additionally, vehicle
sensor devices such as radar and cameras enhance vehicle intelligence, necessitating more robust computing
resources to support sensory computing and storage needs. Cloud computing is capable of executing complex
computations. However, cloud computing is constrained by network distance and cannot offer low-latency
services for vehicular tasks. Edge cloud computing is a paradigm where tasks and data are processed at the
edge of the Internet whenever feasible. Vehicular edge computing, comprising vehicles, roadside units, and
base stations, aims to enhance the quality of service for connected vehicles by maximizing the utilization
rate of spare computing resources. In vehicular edge computing, vehicles can offload their tasks to the edge
cloud for collaborative task completion. When vehicular tasks require offloading to the edge cloud, vehicles
transmit task-related, location-related, and resource-related information. Decision-making units collect this
data from vehicles and edge clouds, including location and resource details. Subsequently, these decision-
making units resolve optimization problems related to task offloading, guiding collaborative task completion
by vehicles and edge clouds.
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Numerous optimization algorithms exist to address the task offloading optimization problem. However,
few address the trust issues inherent in vehicular edge computing environments. Each vehicle is an individual
in the distributed vehicular network environment, which may lead to undesirable misbehavior. Furthermore,
vehicles may fail to provide accurate locations or intentionally withhold them when requesting computa-
tional resources for vehicular edge computing. For instance, a vehicle may manipulate its resource demand
and task data to acquire additional resources during task offloading requests. Specifically, misbehavior
primarily involves misrepresentation of location and task information. Location information misbehavior
occurs when task offloading requests use falsified locations. Attackers may exploit location information
misbehavior to compromise the vehicular edge cloud. Task information misbehavior occurs when vehicles
request task offloading using falsified task information. Such misbehavior can degrade overall vehicle edge
computing performance.

To address potential misbehavior during task offloading in vehicular edge computing, we propose
a practical task offloading method that utilizes a behavior-based reputation mechanism to mitigate the
negative impact of misbehavior. A vehicle’s resource access is contingent upon its reputation value in the
proposed vehicular edge computing system with a behavior-based reputation mechanism. Generally, a
vehicle’s reputation value can increase if it behaves appropriately during task offloading, while misbehavior
will decrease reputation value. Specifically, the study addresses three problems as outlined below:

• Reputation values can be assessed. The method calculates reputation values to characterize vehicle
misbehavior and quantify the honesty of past behaviors using quantifiable reputation values.

• Reputation values are reliable and can be trusted by most edge clouds in distributed environments.
• Reputation values are compatible with the offloading algorithm and can directly influence task offloading

decisions and resource allocation. Integrating reputation values into the offloading decision-making
process to mitigate undesirable behavior poses a challenging goal.

This paper presents a reputation-based offloading algorithm for vehicular edge computing tasks to
address the issues above. Specifically, the contributions of this research are outlined as follows:

(i) This study proposes a method to quantify the reputation value of connected vehicles in vehicular
edge computing. The reputation value characterizes the honesty of nodes’ past behaviors in vehicular
edge computing.

(ii) To ensure the reliability of the global reputation value, this study designs an EigenTrust-based
reputation value updating method. After finishing each task offloading, the consistency between the edge
cloud’s execution and the connected vehicle’s actions can be verified. The cloud center can then calculate the
vehicle’s global reputation value using the EigenTrust-based reputation value global calculation algorithm.

(iii) To enhance decision-making performance by mitigating misbehavior, this study designs a repu-
tation value-based task offloading method that considers the reputation values of vehicles. The technique
employs a deep reinforcement learning algorithm to address resource allocation issues and utilizes the
EigenTrust-based reputation value to combat misbehavior.

(iv) This study conducts simulation experiments to validate the proposed reputation-based task offload-
ing method. Simulation evaluations demonstrate the deep reinforcement learning-based task offloading
algorithm’s significant effectiveness for vehicular edge computing. Additionally, the reputation-based rein-
forcement learning task offloading algorithm effectively mitigates misbehavior’s ability to acquire resources.
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The rest of this paper is organized as follows: Section 2 briefly introduces the related work. Section 3
presents the system architecture model. Section 4 describes our method in detail. Section 5 explains the
experimental setting and compares it with existing methods. Section 6 concludes. Section 7 discusses future
work about task offloading that considers vehicle reputation.

2 Related Work
To improve the performance of vehicular edge computing, there are many studies devoted to solving the

problems of task offloading [1–3], resource allocation [4], joint path planning [5], and other task offloading
problems. Zhang et al. [6] proposed a cloud-based hierarchical vehicular edge computing framework for
offloading services. That study modeled resource allocation among vehicular edge computing services as
a Stackelberg game to optimize. Bonab et al. [7] proposed a joint radio resource allocation and Mobile
Edge Computing (MEC) optimization algorithm in a multi-layer NOMA HetNet, the algorithm aimed to
maximize the system’s energy efficiency. Huang et al. proposed an offloading scheme based on vehicular
communication traffic control [8], which proposed a software-defined network (SDN)-based mobile edge
computing architecture. Wang et al. [9] proposed a decentralized computation offloading approach to ensure
fairness among edge devices in a fully decentralized environment. Feng et al. [4] proposed an autonomous
vehicular edge framework to efficiently manage vehicle resources, which designed a scheduling algorithm
based on ant colony optimization to solve the resource allocation problem for inter-vehicle computing
workloads. Liu et al. [5] proposed a mobile edge mechanism, which deploys a vehicle-edge (V-edge) and
aims to maximize V-edge tasks with sensitive deadlines. Li et al. [10] proposed a dynamic adaptive workload
offloading algorithm based on Lyapunov theories and an FC-LSTM based schedule determining algorithm to
balance the workload of different cloudlets and minimize the weighted average energy and time consumption
of mobile devices. More artificial intelligence-based task offloading algorithms have emerged to improve
task offload optimization in complex dynamic environments, especially deep reinforcement learning. Wu
et al. [11] proposed a deep reinforcement learning-based online task offloading algorithm for mobile edge
computing networks with variable task arrival intensity. Xu et al. [12] proposed a cooperative task offloading
scheme for the UAV-enabled MEC systems based on the successive convex approximation method.

Security has always been a key issue in MEC, and much research has been done in academia and
industry on vehicular network security and edge computing Security. Security is a decisive factor for public
acceptance of MEC and commercial deployment in VANETs [13]. The issue of compromising users’ privacy
leads to serious consequences. Gyawali et al. [14] conducted a comprehensive survey of state-of-the-art
solutions for security and privacy in Vehicle-Assisted Networks (VANETs) and categorized security threats
to VANETs. Miao et al. [15] categorized the security requirements of VANETs and proposed solutions to
satisfy the security and privacy issues. Standard solutions to privacy issues in VANETs tend to utilize digital
signatures such as digital signatures [16,17], group signatures [18,19], and pseudonymous authentication [20]
as the basic solution. Wang et al. [21] solved the task offloading optimization problem and established a
security protection model by setting different security levels for each task. Based on the proposed model,
tasks are offloaded to various locations to improve data security and meet the computing requirements of
other tasks. Liu et al. [22] proposed an innovative blockchain-enabled information-sharing solution in a
zero-trust context to guarantee anonymity yet entity authentication in edge computing systems.

In summary, current vehicular edge computing is typically based on traditional centralized trust-based
security techniques. Task offloading methods are lacking for handling task offload request methods in
untrustworthy vehicular edge computing sharing environments.
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3 System Architecture Model

3.1 Architecture Model
The paper refers to the vehicular edge computing architecture for the system architecture model. The

vehicular edge computing architecture is depicted as Fig. 1. This architecture comprises three layers: the cloud
center layer, the edge cloud layer, and the edge device layer. The top layer, the cloud center layer, is the central
hub for processing and managing data. Below it lies the edge cloud layer, which consists of roadside units,
base stations, and Access Points (APs) equipped with vehicular network capabilities such as IEEE 802.11p,
C-V2X, and 5G. The edge cloud layer provides services to edge devices and functions as a decision center for
scheduling resources for surrounding task requests. The third layer, the edge device layer, primarily consists
of connected vehicles.

Figure 1: Vehicular edge computing architecture

This paragraph provides an abstract description of the vehicular edge computing architecture. For clarity
and ease of presentation, we denote the decision center as D, the set of edge clouds as M, with individual
edge clouds denoted as mi where i = 1, 2, 3, ..., m, and the set of connected vehicles as N, with individual
connected vehicles denoted as ni where i = 1, 2, 3, ..., n. The symbol t represents time, where the time slots of
neighboring moments are denoted as t̃, and t̃ is set as 1 s in this research. In this section, we utilize the symbol
Ri = ⟨ fi , d , d′, ψ, λ, pos, v , dir⟩ to denote the offload request, where fi denotes the CPU frequency locally
used for task Ri . d denotes the input data size of task Ri in bytes. d′ denotes the result data size. ψ is used to
represent the workload in bytes per CPU cycle. dir denotes the steering direction of the following route, with
values ranging from 1 to 4 representing four directions, depending on the passing road and nearby decision
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unit. pos denotes the position of connected vehicle i at this moment. v denotes the speed of connected vehicle
i at this moment. The vehicles need to report task request information to the decision center, and the edge
server also needs to report relevant information to the decision center. Specifically, this includes available
resources and location, represented as R j = ⟨ f j , pos⟩.

3.2 Problem Formulation
In vehicular edge computing, tasks can be performed in local and vehicle-edge collaborative computing.

When a task is performed through local computing, the task delay for task Ri is given by:

tl =
d ⋅ ψ

fi
(1)

If vehicle i offloads its task Ri to edge cloud j, and the allocated computational resources are denoted
as fi , j, the task Ri delay consists of four parts: the execution time on vehicle i, denoted as te ,k

i ; the execution
time on edge cloud j, denoted as te ,k

i , j ; and the time of data transmission between vehicle i and edge cloud j,
denoted as tu ,k

i , j + tu ,k
j , i . These four delays can be calculated as the following equation:

te ,k
i , j = d ⋅ (1 − λ)ψ

fi
, te ,k

i = d ⋅ λ ⋅ ψ
fi , j

(2)

tu ,k
i , j + tu ,k

j , i = d
r
+ d′

r
(3)

where r is the transmission rate. Finally, the computation delay for the vehicle task is the maximum time
between the processing time delay of the task on the vehicle and the time spent on edge cloud, expressed as:

ti = max { te ,k
i , te ,k

i , j + tu ,k
i , j + tu ,k

j , i } (4)

4 Method
This section presents the proposed task offloading method based on reputation assessment. It describes

the proposed method in two parts: reputation management and a deep reinforcement learning task offload-
ing method based on reputation. The deep reinforcement learning task offloading algorithm addresses the
resource allocation problem in dynamic vehicular edge computing, and reputation management addresses
the trust issues of the sharing computing paradigm.

4.1 Reputation Assessment
To cope with the misbehavior in vehicular edge computing, we design a reputation assessment method

for task offloading. The reputation method first assesses the offloading consistency and then calculates the
global reputation value used in the task offloading method.

4.1.1 Offloading Consistency Assessment
To assess the offloading consistency, for a given task offloading and resource allocation algorithm, its

offloading decision scheduling will be followed by an evaluation of the computational results, including
the task’s delay, data transmission results, and offloading duration. The paper assumes that the offloading
algorithm is accurate enough and the vehicle without misbehavior is consistent between its operation and
the expected offloading. We introduce an offloading consistency si , j corresponding to the reputation value.
The consistency assessment compares the execution status after the offloading with the prediction execution
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status. We can judge the reputation value by the offloading consistency. As previously analyzed, misbehavior
primarily involves misrepresentation of location and task information. The location information misbehavior
might affect the task offloading decision specifically regarding task offloading duration. Task information
misbehavior might affect task offloading regarding calculation delay, transmission delay, and workload.
Therefore, to assess the consistency, the following features are used in Table 1.

Table 1: Features of task offloading

Features Description
Decision center Calculation delay tc

Transmission delay tu

Transmission data size d + d′
Task offloading duration d

Workload d ⋅ ψ ⋅ λ
Connected vehicle and edge cloud Calculation delay tc

i
Transmission delay tu

i
Transmission data size (d + d′)i

Task offloading duration di
Workload ϖi

The consistency parameters are assessed as follows:

• Calculation delay offset x1: It is the relative error between the predicted execution delay and the actual
execution delay for each task, i.e., x1∶ ∇te = (∣tu

i − tu ∣)/tu .
• Transmission delay offset x2: It is the relative error between the predicted data transmission time and

the actual transmission time for each task, i.e., x2∶ ∇tu = (∣tu
i − tu ∣)/tu .

• Data offset x3: The relative error between the amount of data reported by the connected vehicle and the
amount of data actually sent, i.e., x3∶ ∇(d + d′) = (∣(d + d′)i − (d + d′)∣)/(d + d′).

• Workload offset x4: The relative error between the workload reported by the networked vehicles and the
actual workload, i.e., x4∶ ∇ϖ = (∣ϖi − d ⋅ ψ ⋅ λ∣)/(d ⋅ ψ ⋅ λ).

• Task offloading duration x5: The relative error between the predicted unloading duration and the actual
duration, i.e., x5∶ ∇di = (∣di − d∣)/d.

The final consistency si j is calculated by averaging all the consistency features.

si j = avg(x1 , x2, x3, x4, x5) (5)

Defining the local reputation value in time t as:

ci j = {si j , si j ≤ τ
1, s′i j > τ (6)

Here, τ ∈ (0, 1) represents the reputation threshold. A trust threshold is introduced in the offload-
ing consistency calculation to mitigate feature bias resulting from systematic errors, such as suboptimal
offloading decisions and inaccurate positioning systems. It is set to 1 when it exceeds τ.
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4.1.2 Calculation of Reputation Value
This paper introduces reputation value to deter misbehavior and prevent unintended misbehavior from

hindering access to edge cloud resources. Here, ρt ∈ [0, 1] represents this paper’s global reputation value at
time t. A higher value of ρt indicates a higher reputation. The study presents the calculation method for the
global reputation value, known as the EigenTrust-based method.

In the vehicular edge computing scenario, both the edge cloud and the decision center provide
offloading information to a specific cloud center. Based on the offloading consistency, this center calculates
a local reputation value ci j, as shown in Eq. (7).

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 . . . . . . c1n
. . . c22 . . . . . .
. . . . . . c33 . . .
cm1 . . . . . . cmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(7)

When the decision center needs to resolve task offloading decisions, the cloud center must provide
a global reputation value for vehicle i. In line with the EigenTrust-based peer-to-peer reputation system,
a plausible approach involves soliciting opinions from acquaintances of a given node to compute its
global reputation. However, the local reputation matrix (7) is an asymmetry in vehicular edge computing.
Consequently, calculating global reputation must establish the trust relationship between a specific edge
cloud i and the relevant vehicles. Here, similarity is employed to signify the trust relationship between i and
j, as follows:

cos (ci , c j) =
ci ⋅ c j

∣∣ci ∣∣ ⋅∣∣c j∣∣
(8)

Therefore, the global reputation values can be calculated as follows:

ρ′i ,k = ∑
j

cos (ci , c j) ⋅ c j ,k (9)

By introducing the reputation value thresholds, the reputation value is represented as:

ρi ,k = { ρ′i ,k , ρ′i ,k ≤ τ
1, ρ′i ,k > τ (10)

4.2 Deep Reinforcement Learning Task Offloading Method Based on Reputation
To illustrate the proposed deep reinforcement learning-based task offloading algorithm, we introduce

the state space, action space, and reward settings. The task offloading algorithm proposed in this study is
based on Double Deep Q-Network (DQN).

4.2.1 State Space Setting
The decision-making unit acquires the environmental states and addresses the optimization objective.

The state space includes information about vehicles Ri = ⟨ fi , d , d′, ψ, λ, pos, v , dir⟩ and R j = ⟨ f j , pos⟩. The
dimensions of the state space vector depend on the number of vehicles and edge clouds. The state space
dimensions are set and the values of the remaining dimensions are filled with zeros when the number of
vehicles and edge clouds is low.
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4.2.2 Action Space Setting
The joint-optimized task offloading algorithm discretizes the action space to suit deep reinforcement

learning. In this paper, we define the offloading policy for vehicle i as c = ⟨i , j, p , d⟩, where p ∈ [0, 1]
represents the allocation of p of the available resources of edge cloud j to vehicle i, discretized in this paper
into discrete values, e.g., p ∈ {0.2, 0.8}, and d can be discretized into specific time lengths, such as d ∈ {4, 10}.
If ∥ M ∥= 2, then there can be 2 ∗ 2 ∗ 2 + 1 = 9 ways of offloading tasks. When “ j = 1”, the task is not offloaded
and is computed locally by the vehicle.

4.2.3 Reward Setting
Properly setting rewards in reinforcement learning enables deep learning networks to learn policies

and converge faster. The paper aims to address the delay problem. Therefore, the reward setting is closely
linked to the delay. This paper defines a fixed optimization windowT = 1, 2, 3, . . . , t. Let tl represent the delay
for vehicle local computation and tl e denote the delay for vehicle-edge cloud cooperative computation. The
ratio ri ,t = t l

t l e
is a crucial indicator in the proposed Double DQN-based task offloading algorithm. When

the connected vehicle opts for local computation, the value is 1. In situations where the connected vehicle
i allocates resources from edge cloud j, but the task remains entirely local during the t time period, the
indicator is set as rτ ∈ (0, 1), with subsequent experiences setting it to 0.8.

ri ,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, local comuputing
t l
t l e

, edge computing
rτ , local completing with assigned resource

(11)

The average value of ri ,t over optimization windows is the reward value of the proposed Double DQN-
based task offloading algorithm. The reward for the offloading decision c = ⟨i , j, p, d⟩ is rewarded as:

ri =
d+1

∑
t=1

ri ,t (12)

The following section describes the specific steps of the proposed algorithm, including training and
decision process. The algorithm trains two networks: a deep Q-network Q. During training, the deep Q-
network Q estimates the Q-value of the action. The total number of training steps for the deep Q-network Q
is denoted as Tq .

1) Processing of state inputs. In this paragraph, we label the input states S as S = s1 , s2, . . . , ss , as
previously defined. Practical training of the Q-network requires the normalization of information across
all dimensions. Given that information in different dimensions may not convey the same meaning, each
dimension must be processed based on its respective value range. Normalization is employed for this
purpose.

S′ = S − Smin

Smax − Smin
(13)

2) Definiting Q-network. The Q-network computes the values of state-action pairs to determine the
action with the highest Q-value. We define the Q-network using a Multilayer Perceptron (MLP). ReLU
activation functions are applied to the neurons in each layer of the Q-network to enhance the nonlinear
representation of the network.
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3) Selecting actions. The deep Q-network outputs values corresponding to each action, and the optimal
action is chosen using softmax. The policy is selected using the ε−greedy algorithm. The DDQN algorithm
computes the Q-values of all actions under the state St using the estimation Q-network. Then, the policy
selects the optimal action with probability ε or randomly selects an action from the action space.

At = { arg maxat Q (St , a, wt) , if p <= ε
a (chosen randomly ), if p > ε (14)

After getting action At , the algorithm can solve the task offloading decision c = ⟨i , j, p, d⟩. In addition,
the decision-making unit gets a reputation ρi ,t from the cloud center, and the final decision will be c =
⟨i , j, ρi ,t ⋅ p, d⟩

4) Training Q-network. After the vehicular edge computing conducts the selected action, m samples
{S j , A j , R j , S′j , is_end j} are sampled from the replay buffer. By the Q network, the trainer calculates yi is:

yi = R j + γQ′ (S′j , arg max
a′

Q (S′j , a, w) , w′) (15)

After calculating the action state values, the mean squared loss function 1/m∑m
j=1 (y j − Q (S j , A j , w))2

is used to update all the parameters w of deep Q-network by back propagation of loss. Then, the target
network is updated by w′ = w. The training process of the Double DQN-based task offloading algorithm for
VEC is described as follows Algorithm 1.

Algorithm 1: Double DQN-based task offloading algorithm for VEC
Input: Edge clouds M = {1, 2, . . . , m}, vehicular tasks N = {1, 2, . . . , n}
Output: evaluation network Q network w
1: done = True
2: Initialize the evaluation network Q and target network Q’ as w and w’
3: for episode = 1 to M do
4: obs = env.reset()
5: done = False
6: while done = False do
7: at = argmax Q(ai)
8: a′t = ⟨i , j, ρi ,k ⋅ p, d⟩,
9: S , reward , done = env .step(a′t)

10: D.push_back(St , a′t , rt , St+1)
11: Sample m samples from the replay buffer D ∶ Dm = {S j , a j , r j , S j+1}
12: y j = R j + γQ′ (S′j , arg maxa′ Q (S′j , a, w) , w′)
13: Use the mean squared loss function L = (y j − Q(S j , a j , w))2 to update all parameters w of the

current evaluation Q network.
14: w ← w − μ ∂ L

∂ w
15: if episode%C == 0 then
16: w′ = w // update target network according to the frequency C.
17: end if
18: episode++
19: end while
20: end for
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5 Evaluation
Simulation experiments were designed to evaluate the proposed reputation-based task offloading

method for vehicular edge computing. The evaluations verify the feasibility of the proposed reputation value-
based task offloading. First, the simulation environment and parameters used in this section are described
in detail. Subsequently, the experimental results are presented and analyzed.

5.1 Experimental Setting
The impact of misbehavior in vehicular edge computing is verified through experiments conducted

using the Veins [23] simulation framework, an open-source platform for telematics network simulation.
Veins primarily implements vehicular networks using OMNeT++ [24] and simulates road trajectories using
SUMO [25]. The experimental environments were executed on a Debian 11 system with an Intel(R) Core(TM)
i7-6700 CPU @ 3.40 GHz.

We utilize the open-source map OpenStreetMap [26] as the scenario source. The area surrounding
Minzhuang Road in Haidian District, Beijing, is chosen as the road scenario. The area’s topographic map
and Veins road network map are depicted in Figs. 2 and 3, respectively. For location misbehavior, this paper
utilizes the VeReMi dataset. In this evaluation, a constant attack scenario is set up. As depicted in Fig. 3,
the designed scenario includes one decision center and two edge clouds. There are six vehicles and three
directions: ′2′, ′3′, and ′4′. The location ′1′ in Fig. 3 represents the initial location of all connected vehicles.
The roadblock model and network model adhere to Veins’ default parameters. Regarding the wireless
transmission model parameters, the operating frequency is 5.890 GHz, and the bandwidth is 40 MHz. The
maximum vehicle speed is 12 m/s. The vehicle CPU resource is 1.2 GHz, the data size d is 40,000 Byte, the
data size d′ is 800 Byte, and the evaluation assumes that the vehicle and edge cloud handle the task at a rate
of 500 Byte/Hz. The CPU resource is 7.0 GHz.

Figure 2: Simulated environment
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Figure 3: Veins road network diagram

5.2 Evaluation of Deep Reinforcement Learning-Based Task Offloading Algorithms for Vehicular Edge
Computing
The first part of the evaluation aims to validate deep reinforcement learning-based task offloading

algorithms for vehicular edge computing. The experiment evaluates four offloading methods: the proposed
method, random policy selection algorithm, vehicle local computing, and a task offloading decision-making
method based on the greedy algorithm. The correlation between reward and delay was depicted in the
preceding section. As Fig. 4 shows, local computing by vehicle causes almost minimal rewards, which means
there is no optimization for latency. The random policy selection algorithm would not optimize the task delay.
The greedy algorithm can effectively optimize the task delay but is still inferior to the proposed algorithm.
Therefore, the experimental results depicted in Fig. 4 demonstrate the effectiveness of the proposed method
in expediting vehicle-side collaboration. It is evident that the offloading decision progressively reduces task
latency with training.
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Figure 4: Comparison diagram of task offloading algorithms based on reinforcement learning
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The efficacy of different numbers of requesting vehicles is validated by performing task requests with
varying total numbers of task-request vehicles. The experiment configures the number of vehicles as 1, 3,
and 6. With one vehicle, a networked vehicle heads toward direction ′4′ as Fig. 3 shows. When there are
three vehicles, the vehicles head towards the ′2′, ′3′, ′4′ directions, respectively. With six vehicles, each
two connected vehicles heads toward the ′2′, ′3′, ′4′ directions, respectively. The Fig. 5 demonstrates that
with fewer vehicles, there is reduced competition for resources, allowing vehicles to obtain computational
resources efficiently. However, with an increased number of vehicles, the proposed method effectively
optimizes average delay.
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Figure 5: The task offload performance with the differential number of vehicles

5.3 Evaluation of Reputation Assessment-Based Task Offloading Algorithms for Vehicular Edge
Computing
The second part of the evaluation aims to verify reputation-based task offloading algorithms for

vehicular edge computing. As depicted in Fig. 3, the two vehicles on Minzhuang Road consistently misreport
their positions to the decision center as position ′5′ in Fig. 3. This behavior constitutes a standard constant
attack, and the attackers request task offloading with the fake positions. The misbehavior by the vehicles,
as shown in Figs. 6 and 7, increases overall task latency, thereby reducing overall performance. Setting the
reputation value enables the offloading decision to inhibit such misbehavior from adversely affecting the task
offloading decision. For instance, setting the reputation value to 0.6 in this experiment results in improved
task latency performance. Fig. 8 presents the resource allocation results, demonstrating that the reputation
value can limit the capabilities of vehicles engaging in misbehavior.



Comput Mater Contin. 2025;83(2) 3549

0 20 40 60 80 100
1.10

1.15

1.20

1.25

1.30

1.35

1.40

re
w
ar
d

episode

misbehaviour
withour misbehaviour
reputation value 0.6

Figure 6: The performance of the proposed DQN-based task offload algorithm
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Figure 7: Task offload performance caused by misbehavior
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6 Conclusion
This paper introduces a task offloading algorithm based on reputation assessment to address the chal-

lenge of task offloading in vehicular edge computing systems against potential misbehavior. Firstly, a deep
reinforcement learning-based algorithm is proposed for vehicular edge computing task offloading. Secondly,
the reputation assessment method for connected vehicles is proposed using task offloading information in
vehicular edge computing scenarios. Additionally, a globally reliable reputation value is calculated using
the EigenTrust algorithm. Lastly, a reputation-value based task offloading method is introduced to mitigate
misbehavior effectively. To validate the proposed approach, simulation experiments based on Veins are
conducted. The experimental analyses demonstrate that the proposed reputation-based task offloading
algorithm for vehicular edge computing effectively curbs undesirable behaviors and enhances the efficiency
of task offloading decisions.

7 Future Work
Investigating task offloading methods that incorporate distributed reputation management in the future

will be interesting. In the vehicular edge computing architecture, vehicles form a distributed network.
Designing a distributed reputation computation method that allows vehicles to access resources in the
vehicular edge computing environment quickly is crucial. Therefore, distributed reputation management is
essential to ensure the credibility of reputation. On the other hand, it is also necessary to update the reputation
value of vehicles based on their behavior. We will focus on developing task offloading methods incorporating
distributed reputation management for vehicular edge computing.
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