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ABSTRACT: In recent years, Transformer has achieved remarkable results in the field of computer vision, with its
built-in attention layers effectively modeling global dependencies in images by transforming image features into token
forms. However, Transformers often face high computational costs when processing large-scale image data, which
limits their feasibility in real-time applications. To address this issue, we propose Token Masked Pose Transformers
(TMPose), constructing an efficient Transformer network for pose estimation. This network applies semantic-level
masking to tokens and employs three different masking strategies to optimize model performance, aiming to reduce
computational complexity. Experimental results show that TMPose reduces computational complexity by 61.1% on the
COCO validation dataset, with negligible loss in accuracy. Additionally, our performance on the MPII dataset is also
competitive. This research not only enhances the accuracy of pose estimation but also significantly reduces the demand
for computational resources, providing new directions for further studies in this field. Code is available at: https://
github.com/lshua98/tmpose (accessed on 9 January 2025).
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1 Introduction
The main task of Two-Dimensional (2D) human pose estimation is to accurately locate the coordinates

of key points on the human body in a given 2D image. Human pose estimation has become a critical
topic within computer vision research due to its significant potential across various real-world applications,
such as action recognition [1–3], human-computer interaction [4–6], and sports analytics. The problem
involves accurately locating human joints and body parts in images, a task made challenging by variations in
body shape, appearance, and complex poses. Recent advancements in deep learning have greatly improved
the performance of pose estimation models, enhancing both speed and accuracy to levels suitable for
deployment. As deep neural networks evolve, they continue to drive new possibilities in understanding and
predicting human motion, making it an increasingly impactful field of study.

In the past decade, deep Convolutional Neural Networks (CNNs) have dominated the field of human
pose estimation [7–11]. However, researchers quickly discovered that unlike fully connected networks, CNNs
are sparse connectivity networks with local convolutional properties. As a result, they fail to effectively
capture the global dependency information of images. For complex detection tasks such as human pose
estimation, it is crucial to fully capture the information embedded in the images.

Transformer is a sequence model, has achieved significant success in Natural Language Processing
(NLP) [12–16]. The main mechanism of the Transformer is the multi-head self-attention layer. Compared
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to convolution, it can effectively model the global dependency relationships of image features. Many
studies have indicated [17–19] that the Transformer has a higher upper limit and can achieve better results
than CNNs. As a result, the Transformer has gradually been introduced to the computer vision and has
demonstrated great potential [19–22]. In human pose estimation, Learning Keypoint Tokens for Human Pose
Estimation (TokenPose) [23] has achieved state-of-the-art performance among networks of the same type.
The authors extract visual features using Convolutional Neural Networks (CNN) and then rearrange these
visual features into One-Dimensional (1D) tokens, which are fed into Transformers for feature learning. This
paradigm has gained consensus, but its drawbacks are also apparent. The quantity and length of the token
sequence greatly affect the complexity of the model. These drawbacks become even more evident in scenarios
with high-resolution input images or multiple views. To reduce the complexity of the model, relevant
works often adopt the strategy of pruning the backbone network to balance the computational cost of the
Transformer. For instance, in TokenPose [23], the authors only utilize the first three stages of High-Resolution
Net (HRNet) while discarding the computationally expensive fourth stage. Although this approach enables
the entire model to achieve the highest accuracy while maintaining desirable computational complexity,
the author believes that this reduction in computational complexity is achieved through pruning the CNN
network, while the fundamental nature of the Transformer remains unchanged. Therefore, the author began
to contemplate whether it is possible to truly reduce the overall complexity of a model by lowering the
complexity of the Transformer?

Multitask Auto-Encoder (MAE) [24] proposed a self-supervised method that predicts the original
image by randomly masking image patches. In addition, Bidirectional Encoder representation from Image
Transformers (BEiT) [25] also introduced a self-supervised method that masks tokens to pretrain the
Vision Transformer. These two works have greatly inspired our study. Through analysis, we found that the
computational complexity of Transformers is determined by tokens. Therefore, we propose a token-masked
Transformer for pose estimation, as illustrated in Fig. 1. The rationale behind this approach can be explained
from the following perspectives:

Figure 1: The core idea of TMPose is presented in left figure. Due to the adoption of only a subset of tokens, the
computational complexity of the Transformer is significantly reduced. Right figure illustrates a series of Transformer-
based human pose estimation networks such as TokenPose. Since all tokens are utilized, the computational complexity
of the Transformer component is substantially increased
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1. Text is a highly condensed artificial symbol, while images are natural signals that contain significant
information redundancy. Additionally, images also contain a considerable amount of noise information.
Therefore, we employ random sampling to input a portion of tokens into the network for training.

2. For images, a missing patch does not significantly affect the global semantics, and it is relatively easy
to restore the missing region using the surrounding pixel information.

3. From the perspective of Bionics, for an image, the human eye can infer its related information without
observing all of it. Therefore, for Transformer, it does not need all tokens and also can achieve a good result
in theory.

Specifically, this paper takes TokenPose [23] as the baseline. Firstly, feature extraction by using CNNs.
Then, the feature maps are tokenized, and we employ three different methods for handling the generated
tokens: random sampling, uniform sampling, and block sampling. The tokenized data is subsequently
fed into the Transformer network for feature learning. Finally, keypoints are predicted by heatmap-based
approach. In summary, the main contributions of this paper are as follows:

• We propose a novel approach for efficient pose estimation, named TMPose, by selectively masking a
portion of tokens. The idea of employing masks in pose estimation is relatively uncommon, as the
author’s knowledge.

• We proposed three different mask types and multiple mask rates to reduce computational complexity,
and conducted nine sets of cross experiments to verify the efficiency of TMPose

• We demonstrate TMPose’s competitive edge by achieving a 61.1% reduction in GFLOPsT on public
benchmark datasets, while maintaining high accuracy. These results highlight TMPose’s efficiency and
effectiveness in terms of both speed and accuracy

2 Related Work

2.1 Efficient Vision Transformers
In recent years, significant progress has been made in vision Transformers. Representative works include

image classification [19], object detection [22], and semantic segmentation [21,26]. Although these models
demonstrate superior accuracy compared to CNN-based models, such as Vision Transformer (ViT) [19],
they come at a high computational cost. As a result, researchers have started proposing various algorithms
to improve the efficiency of these models. For instance, techniques like pruning [27,28], distillation [29,30],
and quantization [31,32] have been introduced in model compression to enhance efficiency.

In addition to these conventional methods, some researchers have proposed token pruning as an
alternative approach. In self-supervised learning, several efficient token pruning methods have achieved
promising results. MAE [24] introduced a self-supervised model with an encoder-decoder structure. The
model is trained by randomly masking patches in the image as labels for supervision. Fast Language-Image
Pre-training (Flip) [33] masked image patches and only encoded the visible patches, and then trained the
model through contrastive learning with text samples. In BEiT [25], the authors proposed a masked image
modeling approach for pretraining ViT models. This method efficiently trains the ViT model by pixel-level
masking of image patches and semantic-level masking of visual tokens.

After the completion of pre-training, the idea of token pruning has been reflected in many works when
applied to downstream tasks [34–36]. Specifically, Token-to-Tokens [34] concatenates adjacent tokens into
a single token to reduce the total number of tokens. Efficient Vision Transformers with Dynamic Token
Sparsification (DynamicViT) [35] employs a learnable token selector to prune tokens, while in token-Pruned
Pose Transformer (PPT) [36], human token identification (HTI) is introduced, and token pruning is achieved
through attention-based operations. Although these methods have achieved impressive results, they add
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additional learnable parameters into the Transformer architecture to reduce the number of tokens and thus
decrease model complexity. However, in TMPose, we do not introduce any extra learnable parameters while
still achieving excellent performance.

2.2 Pose Transformers
From Section 2.1, it is evident that Transformer has witnessed rapid development in the field of

computer vision. Similarly, in the task of human pose estimation, numerous remarkable works have emerged
[37–41]. Transformer for human pose (TransPose) [37] was the first to introduce Transformer into human
pose estimation. In this model, the features are initially extracted using a backbone network, and then
the feature maps are transformed into token form and fed into the Transformer and keypoint predictions
are made using heatmap regression. TransPose achieved state-of-the-art (SOTA) performance at that time
through this simple framework. Subsequently, Transformer-based Pose estimation (TFPose) [38] built upon
TransPose by eliminating the heatmap regression and adopting direct keypoint regression. TokenPose [23]
incorporated keypoint tokens into TransPose to enable the network to learn constraint information between
keypoints. Within this framework, Dual-Pipeline Integrated Transformer (DPIT) [42] integrated top-down
and bottom-up approaches through a parallel structure. In High-Resolution Transformer (HRFormer) [18],
a novel backbone network was proposed, using pure Transformer to achieve the effect of HRNet [43].

The aforementioned methods all employ similar network architectures, as illustrated by the
CNN+Transformer structure depicted in Fig. 2. Among them, TokenPose achieved optimal results, prompt-
ing us to adopt it as our baseline for experimentation. Of course, our approach can also be transferred to
other token-based human pose estimation models.

Figure 2: Complexity comparison between token-masked approach and pure transformer and CNN+Transformer
architectures, with M-Transformer’s M denoting mask

3 Proposed Method
Our goal is to propose a model for efficient human pose estimation. Firstly, we employ a human

detector [11] to detect individuals in the input images. Then, the detected single-person images are fed into a
backbone network [43] for feature extraction. The feature maps are converted into tokens and masked. The
unmasked tokens, along with the keypoint tokens, are inputted into a Transformer for training. The output
sequence is then remapped to a two-dimensional heatmap using Multilayer Perceptron (MLP) layer. Finally,
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the heatmap is decoded into the coordinates of keypoints, which serve as the final predicted results. The
overall architecture of TMPose is illustrated in Fig. 3. In the following sections, we will provide a detailed
description of the proposed method.

Figure 3: Overall framework of TMPose. The network use CNN for feature extraction, producing two-dimensional
feature maps. The feature maps are then rearranged into one-dimensional token sequences in the Tokenizer. In the
matrix of Visual Tokens, each element represents a token. Simultaneously, the network will randomly initialize and
generate learnable keypoint tokens. Together with the visible tokens mentioned above, they are fed into the Transformer
network for training. During the output stage, a multi-layer perceptron is employed to map the one-dimensional
sequence back to a two-dimensional heatmap. Finally, the heatmap is decoded to obtain the predicted keypoints
coordinates

3.1 CNN Backbone
In order to balance the cost of Transformer, we retained only the first three stages of HRNet [43] and

named it HRNet-s, with a parameter size of only 25% of the original. Specifically, for a single-person image
input, the network first crops it into a uniform size 256 × 192, followed by feature extraction through a deep
convolutional neural network, resulting in a feature map of the original size 1/4. In TMPose, our visual tokens
are obtained from the aforementioned feature maps rather than from image patches. We employ the CNNs
to efficiently extract the low-level features of the images.

3.2 Feature Tokenizer
Transformer [44] is a sequence-to-sequence network, it is necessary to first map the two-dimensional

feature maps into one-dimensional sequences. Following the approach in ViT [19], we assume that the feature
map outputted by the backbone network is denoted as x ∈ RH×W×C . We divide it into H

Ph
× W

Pw
grids and

then flatten each grid into a one-dimensional sequence of size Ph × Pw × C. Subsequently, the rearranged
sequences are mapped to the desired visual tokens using a linear layer. Simultaneously, the network initializes
N learnable keypoint tokens, whose sequence length matches that of the visual tokens.
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3.3 Token Masked
Considering that the concept of Masked Image Modeling has been thoroughly validated [24,25,33],

we incorporate it into the pose transformer. The visual tokens be denoted as v ∈ RL×M where L represents
the sequence length and M denotes the sequence count. By employing a mapping function, we mask the
visual tokens as v′ ∈ RL×(M⋅R), f ∶ v → v′ ∈ RL×(M⋅R). In this paper, we utilize three distinct mapping functions,
namely random sampling, uniform sampling, and block sampling. Additionally, we adopt three different
ratios denoted as R, which are 0.4, 0.6, and 0.8, respectively. We think that the choice of mask ratio is free.
In order to improve the representativeness and reliability of our experiment, we selected three uniformly
distributed values within this range −0.4, 0.6, and 0.8. The selection of this ratio is consistent with the
commonly used settings in classical studies such as MAE, which has become a consensus.

Since Transformers lack the local feature extraction and layer-by-layer spatial awareness capabilities of
convolutional neural networks, they are inherently insensitive to the positions of input features, making it
challenging to capture spatial relationships between features directly. In human pose estimation, the relative
positions of keypoints are tightly interrelated, requiring precise positional accuracy. Position encoding
can aid the model in recognizing the relative locations of each keypoint, enhancing the clarity of the
overall human structure. The two-dimensional positional embedding, denoted as pei [44], can provide
positional annotations {visual tokens} = {ν′1 + pe1 , v′2 + pe2, ⋅ ⋅ ⋅ , v′H + peH} for each input sequence, where
H = M × R represents the number of sequences. Subsequently, the keypoint tokens are concatenated with
the positional encoded visual tokens and fed into the transformer for training.

3.4 Transformer Module
We employed a multi-layer Transformer as the encoder, as illustrated in Fig. 3. Each Transformer

layer primarily consists of multi-head self-attention and a feed-forward module. In addition, there are two
normalization layers and a residual connection mechanism. Specifically, for the input sequence, we project
it into three matrices of the same size through three linear mappings, generating Q (query), K (key), and
V (value). Subsequently, these three matrices are fed into the multi-head self-attention module to compute
attention scores:

MSA(Q , K , V) = so f t max(Q × KT
√

dk
) ⋅ V (1)

where dk is the dimension of the key, and each score SA determines the attention level of the current
query token.

3.5 Heatmap Generator
In the output stage of the Transformer, we select only N keypoint tokens for output. Subsequently, these

tokens are remapped back to two-dimensional heatmaps form using a multi-layer perceptron. Specifically,
X ∈ RN×H is the output of the Transformer, where N represents the number of sequences and H denotes the
sequence length. Then it passed into the multi-layer perceptron and generated P ∈ RN×H∗×W∗

. The H* and
W* correspond to 1/4 of the original image size. Subsequently, P is reshaped into P ∈ RN×H×W , resulting in a
heatmap with the same dimensions as the original image. Finally, based on this heatmap, the coordinates of
the keypoints on the human body are determined by locating the positions with the highest response. The
specific results are illustrated in Fig. 4.
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Figure 4: The network predicts the heatmap of persons, and each heatmap in each row represents the response to
different joint points. It can be seen that although the persons have severe occlusion, the network can still distinguish
different joint points well

4 Experiments

4.1 Experimental Details
In our experiments, we selected the COCO and MPII datasets, which are widely used in human

pose estimation tasks and contain diverse poses and backgrounds, effectively supporting the training and
validation of the model. For a fair comparison, we employed a model variant similar to TokenPose, as
illustrated in Table 1. In the following text, we will use “B” to denote the Base model, “L” to denote the Large
model, and “HRNet-s” to indicate the utilization of only the first three stages of HRNet.

Table 1: Configuration tables for different TMPoses, where GFLOPs are calculated using random sampling with a
sampling rate of 60%

Model CNN backbone Layers Heads Patch size #Params GFLOPs
TMPose-Base HRNetW32-s 12 8 4 × 3 13.5 M 4.9

TMPose-Large/D6 HRNetW48-s 6 8 4 × 3 20.8 M 9.2
TMPose-Large/D24 HRNetW48-s 24 12 4 × 3 27.5 M 9.4

In the training process, we followed a top-down paradigm. All single-person images in the COCO
dataset were uniformly cropped to size 256 × 192, while in the MPII dataset, all single-person images were
uniformly cropped to size 256 × 256, We utilized the Adam optimizer with an initial learning rate set at
1e − 3. At the 200th and 260th epochs, the learning rate was decreased to 1e − 4 and 1e − 5, respectively, with
a total of 300 epochs for training. All models were implemented using the PyTorch framework and trained
on a server equipped with 8 NVIDIA RTX 3090 24 G GPUs.

4.2 Dataset and Evaluation Metrics
We conducted experiments on two of the most widely used 2D human pose estimation datasets,

COCO [45] and MPII [46]. The COCO dataset consists of 200 k images and 250 k human instances, with
each instance annotated with 17 keypoints. For training, we utilized the COCO train2017 dataset, which
contains 57 k images and 150 k human instances. The testing was performed on the COCO Validation
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dataset, consisting of 5 k images. In the COCO dataset, the primary precision evaluation metrics are Average
Precision (AP) and Average Recall (AR), which are calculated using the following formulas:

APt =
∑p δ (OKS > t)

∑p 1
(2)

where p is the number of detected human instances, and t is the threshold to refine the evaluation index.
When t is taken as 0.5 and 0.75, it is noted as AP50 and AP75, and similarly AR can be written as AR50, AR75.
The evaluation metric commonly employed in the COCO dataset is the Object Keypoint Similarity (OKS),
which is calculated using the following formula:

OKS = ∑i exp
(− d2

i
2s2 k2

i
)

δ (vi > 0)
∑i δ (vi > 0) (3)

where di represents the Euclidean distance between detected keypoints and ground truth values, vi
indicates the visibility of ground truth values, s signifies the area of the human instance, and ki repre-
sents the attenuation factor, δ denotes the normalization parameter of the keypoints. When 322 < s2 <
962 and 962 < s2, we write APM and APL, and similarly AR can be written as ARM, ARL. In the COCO dataset,
the Object Keypoint Similarity (OKS) is ultimately transformed into the form of AP and AR. Specifically,
we denote them as AP50 when OKS equals 0.5, AP75 when OKS equals 0.75. Additionally, for medium-sized
objects, we have APM, while for large-sized objects, we use APL. Similarly, the AR is also divided based on
the aforementioned criteria.

The MPII dataset comprises over 25 k images and 40 k human body instances. Each individual is
annotated with 16 keypoints. The evaluation metric employed in the MPII dataset is the Percentage of Correct
Keypoints (PCK), which is computed using the following formula:

PCKh = ∑
n

∣∣P −G∣∣2
αLhead ⋅

V(n×1)

c
(4)

where P and G represent the predicted matrix and the ground truth matrix, respectively. c is the total number
of visible landmarks, Lhead is the length of the head, is a constant, and n denotes the batch size. Here, we
adopt PCK@0.5(=0.5) as the final experimental result.

4.3 Quantitative Experimental
Table 2 presents the testing results of TMPose on the COCO validation dataset. TMPose achieves

a significant reduction in computational complexity without a noticeable loss in accuracy. Specifically,
TMPose-B exhibits a 60.5% decrease in computational complexity in the Transformer module, while
experiencing a mere 0.3% decrease in AP. Similarly, TMPose-L/D24 demonstrates a 61.1% reduction in
GFLOPsT while only experiencing a 0.2% decrease in AP. In comparison to TransPose-H-A6, TMPose-L/D24
exhibits a substantial lead in both speed and accuracy. Furthermore, TMPose-L/D24 clearly outperforms Effi-
cient human pose estimation network search framework (EfficientPose) and Lightweight High-Resolution
Network (Lite-HRNet) in terms of both speed and accuracy.
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Table 2: Test results on the COCO validation dataset, with an input image size of 256 × 192

Method #Params GFLOPs GFLOPsT AP AP50 AP75 APM APL AR
SimpleBaseline-R50 [11] 34.0 M 8.9 – 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline-R101 [11] 53.0 M 12.4 – 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline-R152 [11] 68.6 M 15.7 – 72.0 89.3 79.8 68.7 78.9 77.8

HRNet-W32 [43] 28.5 M 7.1 – 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W48 [43] 63.6 M 14.6 – 75.1 90.6 82.2 71.5 81.8 80.4

Lite-HRNet-18 [47] 1.1 M 0.2 – 64.8 86.7 73.0 62.1 70.5 71.2
Lite-HRNet-30 [47] 1.8 M 0.31 – 67.2 88.0 75.0 64.3 73.1 73.3
EfficientPose-B [48] 3.3 M 1.1 – 71.1 – – – – –
EfficientPose-C [48] 5.0 M 1.6 – 71.3 – – – – –
TransPose-R-A4 [37] 6.0 M 8.9 3.38 72.6 89.1 79.9 68.8 79.8 78.0
TransPose-H-S [37] 8.0 M 10.2 4.88 74.2 89.6 80.8 70.6 81.0 79.5

TransPose-H-A6 [37] 17.5 M 21.8 11.4 75.8 90.1 82.1 71.9 82.8 80.8
TokenPose-B* [23] 13.5 M 5.7 1.29 75.6 92.6 82.7 72.8 80.1 78.4

TokenPose-L/D6* [23] 20.8 M 10.3 1.93 76.7 92.6 83.1 74.0 81.1 79.4
TokenPose-L/D24* [23] 27.5 M 11.0 2.57 76.9 92.6 83.7 74.2 81.3 79.6

TMPose-B* (ours) 13.5 M 4.9 (−14%) 0.51 (−60.5%) 75.3 (−0.3%) 92.6 82.6 72.3 79.7 78.0
TMPose-L/D6* (ours) 20.8 M 9.2 (−11%) 0.75 (−61.1%) 76.3 (−0.4%) 92.5 82.7 73.6 81.0 79.2
TMPose-L/D24* (ours) 27.5 M 9.4 (−15%) 1.00 (−61.1%) 76.7 (−0.2%) 92.6 83.7 73.9 81.0 79.2

Note: The asterisk * indicates the usage of GTBox, and GFLOPsT represents the computational complexity of
the Transformer component. Due to TMPose’s focus on accelerating the Transformer, we primarily evaluate its
performance based on GFLOPsT, with AP (Average Precision) as the primary metric for assessing accuracy.

Table 3 presents the testing results of TMPose on the MPII dataset. TMPose-L/D6 achieves a significant
reduction in computational complexity, with a decrease of 59.4%. Meanwhile, the Mean metric only
experiences a marginal loss of 0.3%. Specifically, TMPose-L/D6 performs on par with TokenPose-L/D6 in
terms of accuracy for the shoulder (Sho) joint and even surpasses it for the knee (Kne) joint, achieving
an impressive precision of 86.2%. Therefore, it can be inferred that the token masking approach does not
compromise the overall accuracy. Instead, it allows for a more efficient pose estimation network, striking a
balance between speed and precision.

Table 3: Test results on MPII dataset, with an input image size of 256 × 256

Method #Params GFLOPsT Head Sho Elb Wri Hip Kne Ank Mean
SimpleBaseline-R50 [11] 34.0 M – 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5
SimpleBaseline-R101 [11] 53.0 M – 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1
SimpleBaseline-R152 [11] 53.0 M – 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6

HRNetW32 [43] 28.5 M – 96.9 96.0 90.6 85.8 88.7 86.6 82.6 90.1
TokenPose-L/D6* [23] 21.4 M 0.64 97.1 95.9 91.0 85.8 89.5 86.1 82.7 90.2

TMPose-L/D6* 21.4 M 0.26 (−59.4%) 96.6 95.9 90.1 85.7 89.2 86.2 82.3 89.9 (−0.3%)

Note: The asterisk * indicates the usage of GTBox, Mean is when PCK@0.5 and GFLOPsT represent the
computational complexity of the Transformer component.

4.4 Experimental Details
As shown in Fig. 5, it can be observed that TMPose can effectively predict the final keypoints even

in the presence of masks. It demonstrates excellent performance in both single-person and multi-person
scenarios, as well as in crowded or occluded scenes. Fig. 6 presents a comparison of experimental results
between TMPose and mainstream lightweight network models. From the first two images, TMPose can infer
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more reasonable keypoint positions in occluded scenes. Moreover, the fourth image reveals that TMPose
can achieve more accurate predictions in scenes with complex image features. In conclusion, TMPose
outperforms EfficientPose in terms of both speed and accuracy.

Figure 5: Visualization prediction results of TMPose on the COCO validation dataset

4.5 Ablation Experiment
To verify the effects of different mask types and sampling rates on the experiment, we conducted ablation

experiments as shown in Table 4. It can be observed that under the same sampling rate, random sampling
achieved the best accuracy, followed by uniform sampling, while block sampling resulted in the highest
performance loss.

In this experiment, we conducted comprehensive testing on three masking methods (random, uniform,
and block) and three masking rates, generating nine different sets of data parameters. The results showed
that a random mask with a mask rate of 0.6 performed the best, while the effects of uniform masks and block
masks were relatively low under the same mask rate. In the case of the same mask type, as the mask rate
decreases, the efficiency increases accordingly. The specific reasons are explained as follows:
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Figure 6: Comparison results between TMPose and other efficient model on the COCO validation dataset
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Table 4: Experimental results of TMPose-B with different sampling rates and mask types on COCO validation dataset

Method Mask ratio Mask type GFLOPs GFLOPsT AP AR
TokenPose-B [23] 1 None 5.7 1.29 75.6 78.4

TMPose-B 0.8
Random 75.6 78.4
Uniform 5.2 (−9%) 0.85 (−34%) 75.6 78.3

Block 75.5 78.2

TMPose-B 0.6
Random 75.3 78.0
Uniform 4.9 (−14%) 0.51 (−60%) 75.2 77.9

Block 75.1 77.8

TMPose-B 0.4
Random 75.0 77.8
Uniform 4.6 (−19%) 0.26 (−79%) 74.9 77.7

Block 74.6 77.4

COCO is a discrete dataset, and the data is randomly distributed. Using a random mask is more in line
with the statistical rules of the COCO dataset. Uniform masks and block masks, due to their fixed nature,
may lead to the neglect or loss of some important features. Uniform masks are relatively uniform in feature
selection, although they can maintain a certain amount of information, fixed selection methods may not
be able to adapt to changes in feature distribution. The block mask more clearly restricts the selection of
information, which may lead to the destruction of the correlation between adjacent features and affect the
model’s judgment ability. This is contrary to the random distribution of the dataset and can have a certain
impact on performance.

Secondly, regarding the impact of mask rate, a high mask rate can theoretically improve the model’s
coverage and accuracy of data, but it is also affected by background noise, which can affect recognition accu-
racy and inevitably lead to high computational complexity. However, in practical applications, a relatively
low mask rate can enable the model to retain feature information while removing redundant information,
thereby improving computational efficiency. A low mask rate may result in the loss of relevant useful
information, affecting accuracy. Experiments have shown that, As the sampling rate gradually decreased,
the computational complexity also decreased progressively. Specifically, when the sampling rate was 0.4,
GFLOPsT decreased by 79%, and when the sampling rate was 0.6, GFLOPsT decreased by 60%.

Based on the above analysis, the author believes that Random 0.6 achieves a balance between speed
and accuracy, making it the optimal combination. Therefore, when selecting masking strategies and mask
rates, it is crucial to balance accuracy and efficiency to achieve optimal performance with available
computational resources.

5 Conclusion
In this paper, we introduce a Token Masked-based human pose estimation network called TMPose and

demonstrate its effectiveness on the COCO and MPII datasets. Our method achieves significant computa-
tional efficiency, reducing GFLOPs while maintaining competitive accuracy comparable to TokenPose. The
AP (Average Precision) metric on the COCO validation dataset confirms that TMPose accurately predicts
human keypoint coordinates with reduced computational overhead, making it highly suitable for practical
applications. Qualitative experiments further validate TMPose’s superior performance over other lightweight
models in real-world scenarios. Additionally, our ablation experiments provide insight into the influence
of different Mask Ratios and Mask Types on TMPose’s accuracy, revealing optimal configurations. These
findings contribute to the state-of-the-art by offering a pathway to lightweight, accurate pose estimation for
human keypoint detection tasks.
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However, we observed certain limitations in Token Masking when applied to pose estimation networks
with shallow or non-CNN backbones. When using Stem Net or patch-based tokenization without a deep
CNN backbone, the method experiences slow convergence and accuracy degradation. For example, recent
studies, such as those in Fine-Grained Structure Aggregation Network (FSA-Net) [49], Channel Spatial
Integrated Transformer (CSIT) [9], Efficient Posenet with Coarse to Fine Transformer (CFPose) [50], and
other related works, have also explored this issue. We will take these studies into account as we plan our next
steps, with the aim of extending TMPose’s applicability across various architectures and further advancing
the field.
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