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ABSTRACT: The development of artificial intelligence (AI) technologies creates a great chance for the iteration of
railway monitoring. This paper proposes a comprehensive method for railway utility pole detection. The framework
of this paper on railway systems consists of two parts: point cloud preprocessing and railway utility pole detection.
This method overcomes the challenges of dynamic environment adaptability, reliance on lighting conditions, sensitivity
to weather and environmental conditions, and visual occlusion issues present in 2D images and videos, which utilize
mobile LiDAR (Laser Radar) acquisition devices to obtain point cloud data. Due to factors such as acquisition
equipment and environmental conditions, there is a significant amount of noise interference in the point cloud
data, affecting subsequent detection tasks. We designed a Dual-Region Adaptive Point Cloud Preprocessing method,
which divides the railway point cloud data into track and non-track regions. The track region undergoes projection
dimensionality reduction, with the projected results being unique and subsequently subjected to 2D density clustering,
greatly reducing data computation volume. The non-track region undergoes PCA-based dimensionality reduction and
clustering operations to achieve preprocessing of large-scale point cloud scenes. Finally, the preprocessed results are
used for training, achieving higher accuracy in utility pole detection and data communication. Experimental results
show that our proposed preprocessing method not only improves efficiency but also enhances detection accuracy.

KEYWORDS: Railway pole detection; point cloud data; mobile LiDAR; dual-region adaptive method; PCA-based
dimensionality reduction

1 Introduction
In recent years, with the continuous development of railways in China, the operating mileage of railways

in China has reached 159,000 km, including 45,000 km of high-speed rail. The immense railway network
brings a high level of management complexity [1].

Railways are a comprehensive system influenced by various factors, which can be categorized into
equipment-related and human-related factors. Equipment-related factors mainly include train equipment
and railway infrastructure, such as utility poles, railway electrical boxes, and issues like the aging or damage
of contact networks. Human-related factors primarily involve illegal intrusions by pedestrians. The aging
or damage of utility poles can severely jeopardize train operations [2], necessitating the positioning and
identification of utility poles. Currently, the inspection of railway utility poles mainly relies on manual
inspections, which are inefficient and time-consuming.

In the new era, with the development of AI (artificial intelligence), object detection has gradually
replaced manual inspection methods. Object detection is a crucial aspect of computer vision, used for the
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identification and localization of one or multiple objects. In the railway field, AI is primarily used for rail
detection [3,4], rail transit detection [5], railway foreign object detection [6,7], and ballast detection [8], with
little focus on utility pole detection.

The framework of this paper on railway can be divided into two parts: detection based on 2D images and
detection based on point cloud data. Video sequence-based detection methods typically involve installing
video equipment on high-speed trains to capture the environmental conditions along the railway. In recent
years, with the development of AI, detecting each frame from large-scale video images has become feasible,
enabling the monitoring of anomalies in railway infrastructure. For example, Jiang et al. [9] constructed a
rectangular sampling area with dynamic width for each video frame, obtaining a panoramic image through
image stitching for detection. Duan et al. [10] improved YOLOV5, using a hyperbolic scatter panoramic
imaging system to adapt to dark scenes like tunnels. Others [11] have mounted cameras on drones to monitor
railway infrastructure.

Despite providing powerful tools for the railway industry, image detection technology has significant
shortcomings in dynamic environment adaptability. However, point cloud data allows for a digital three-
dimensional representation of the environment, enabling the automated study of its geometric shapes.
Currently, the mainstream acquisition methods include Mobile Laser Scanning (MLS) [12,13], Geographic
Information Systems (GIS) [14,15], and Building Information Modeling (BIM) [16,17]. MLS has advantages
in railway scenarios due to its mobility, which allows for data collection during the movements on fixed
railway lines, significantly improving data collection efficiency. Additionally, since the measurement process
does not require personnel to be in close proximity to the railway lines, it enhances the safety of the
measurement process.

At present, 3D point cloud-based object detection is widely used in fields such as autonomous
driving [18–20] and construction [21]. 3D point cloud detection provides millimeter-level accuracy, which
is crucial for identifying issues with railway utility poles. Using 3D point clouds can capture detailed three-
dimensional shapes of utility poles and offers significant advantages in dealing with adverse weather and
complex terrain.

In railway scenarios, LiDAR technology, with its high accuracy, efficiency, and unaffected performance
under various weather conditions and complex road conditions, provides robust technical support for
railway planning, construction, and maintenance, greatly improving the accuracy and efficiency of work.
Therefore, we propose the Dual-Region Adaptive Point Cloud Preprocessing (DAPCP) detection system,
with the following contributions:

1. This study adopts three-dimensional point cloud data technology to replace traditional image pro-
cessing methods for object detection, effectively overcoming the negative impact of extreme weather
conditions and complex terrain on detection accuracy, and significantly improving the stability and
reliability of detection results.

2. We designed and implemented the Dual-Region Adaptive Point Cloud Preprocessing (DAPCP), which
is a point cloud preprocessing module suitable for large-scale railway scenarios. This module partitions
the railway scene dataset into track and non-track regions, optimizing the efficiency and accuracy
of subsequent processing workflows and laying the foundation for generating high-quality point
cloud data.

2 Literature Review
In recent years, the integration of 3D detection technology with railway systems has become a cutting-

edge and highly applied research field in science and engineering. 3D detection technology typically utilizes



Comput Mater Contin. 2025;83(2) 3061

LiDAR, laser scanners, or similar imaging technologies to capture the external shape and spatial position
information of objects or environments. The principle involves obtaining the distance between the emission
point and the target, combined with the position and posture of the laser emission point, to jointly solve and
obtain the three-dimensional point cloud of the target area [22]. In current railway detection tasks, the main
issues are concentrated on point cloud segmentation and track anomaly detection.

Yang et al. [23] proposed using denser features to better detect track surface texture defects. Yang
et al. [24] introduced an unsupervised detection method for railway tracks, detecting foreign objects by
learning the similarity between normal objects and their corresponding regions.

Presently, the main issues with railway utility poles include the risk of damage or anomalies in sections
with increased railway mileage and prolonged usage. Most object detection methods in the literature rely
on manual inspections and video-based methods. These methods have drawbacks, such as being easily
influenced by environmental and human factors, and often fail to accurately detect issues with utility poles.
Therefore, precise measurement and data acquisition using LiDAR have become indispensable in current
railway construction and maintenance fields [25].

To address the challenges posed by noisy point cloud data (Fig. 1) and to simplify the data, we need
to filter out unnecessary points to avoid wasting resources on irrelevant data in detection tasks. Enhancing
detection speed and accuracy ensures that the final results are more precise and effective. Noise points and
irrelevant points in detection tasks are often characterized by their outlier and sparse nature. Currently,
the field of point cloud denoising employs methods such as Statistical Outlier Removal (SOR) filters [26],
bilateral filtering [27], and density clustering [28]. However, these methods are generally suitable for
low-density, simple environments and perform poorly in high-density, complex environments.

Figure 1: Railway point cloud data

To fundamentally address the complexity and noise in point cloud data, we propose the Dual-Region
Adaptive Point Cloud Preprocessing (DAPCP) method. The workflow of this method is illustrated in Fig. 2.
This method is developed based on the characteristics of railway point cloud data and meets the requirements
for processing large-scale point cloud data in railway scenarios.

In this paper, we designed a preprocessing method specifically tailored for railway detection. This
approach divides the railway scene into two regions: track and non-track regions. For these two regions,
we perform denoising and data simplification operations separately to facilitate subsequent analysis and
application. This method not only significantly reduces the complexity of data processing but also speeds up
detection and improves accuracy.
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Figure 2: Dual-region adaptive point cloud preprocessing flowchart

3 Methodology

3.1 Track Region Point Cloud Denoising
In this study, we use Mobile Laser Scanning (MLS) to obtain point cloud data and segment it into

two main regions—track and non-track regions. When processing the track region point cloud, we project
it along the mileage direction based on the characteristics of the railway scene. This projection helps in
simplifying the data and enhancing the efficiency and accuracy of subsequent processing steps. This module
can be illustrated in Fig. 3, where (a) shows the original point cloud data and (b) shows the projected point
cloud data.

Figure 3: Track region point cloud

The uniqueness algorithm is mainly based on the following criterion, set P = {p1 , p2, . . . , pn} be the
original point cloud collection in 3D space where pi = {xi , yi , zi} denotes the coordinates of a single point.
In the uniquification process, we define a distance threshold ε which is the distance between two points when
and only when the distance between them is less than ε, i.e., ∣∣pi − p j∣∣ < ε, which will be pi and p j considered
as duplicate points. Here the ∣∣ ∗ ∣∣ denotes the Euclidean distance. Therefore, the set of point clouds after
uniquification P̂ can be obtained by the following: P̂ = {p ∈ P∣∀q ∈ P, q ≠ p∶ ∣∣p − q∣∣ ≥ ε}. In this paper, the
uniquification process is accelerated using the grid method The method works by creating a virtual grid in
3D space and mapping each point to the corresponding grid cell based on its coordinates.
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Phash = [
p
ε
] (1)

Here, [*] denotes the floor operation. Fig. 4 illustrates the division of the track area using the
grid method.

Figure 4: Grid method for unique point cloud division in the track region

By performing two-dimensional density clustering on unique point clouds, noise in the two-
dimensional images is turned red. Subsequently, these marked noise points are reintroduced into the original
high-dimensional data set. This approach, on the one hand, maintains the integrity of the data while, on the
other hand, achieves noise elimination in a more precise manner. The denoising effect is shown in Fig. 5.

By using density clustering methods, all point cloud data is divided more clearly into normal points
and outliers. In the track region, outliers typically represent some degree of data deviation, affecting the final
detection results.

Figure 5: Denoising effect in the track region
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3.2 Simplification of Point Cloud Data in Non-Track Regions
3.2.1 PCA-Based Dimensionality Reduction Method

Principal Component Analysis (PCA) [29] is a statistical method aimed at reducing the dimensionality
of data while retaining as much information as possible from the original dataset. Before performing PCA,
it is usually necessary to center the point cloud data, which involves subtracting the mean of each variable,
so that the dataset has a mean of zero. Using the centralized data matrix X, which contains the point cloud
values and three features, we then calculate the covariance matrix C:

C = 1
n − 1

XT X (2)

Next, solve for the eigenvalues and corresponding eigenvectors of the covariance matrix C, and sort
them based on the size of the eigenvalues. The eigenvectors corresponding to the largest eigenvalues represent
the directions with the greatest data variance, while the smallest eigenvalues are associated with noise in
the dataset.

Typically, eigenvectors are calculated through the decomposition of C:

Cvi = λivi (3)

Construct the principal component matrix V, where each eigenvector becomes a column of V.

V = [v1, v2, . . . , vk] (4)

Given the centralized dataset X, the goal of PCA is to find a set of orthogonal bases, i.e., the principal
components, which define the coordinates of the data in a lower-dimensional space. Let V be the matrix of
principal components, with columns representing the eigenvectors sorted by their corresponding eigenval-
ues. To transform the data into this lower-dimensional space, the transformed data Y can be calculated as:

Y = XVk (5)

Among them, Vk is the matrix composed of the eigenvectors corresponding to the top k largest eigen-
values. By selecting k, the amount of information retained after dimensionality reduction can be controlled.
PCA reduces data complexity while retaining enough variance to capture the essential characteristics of the
data, facilitating easier visualization and analysis.

3.2.2 Building a 3D Spatial Index with k-d Tree
K-d Tree (k-dimensional tree) is a binary tree structure used for organizing and searching multidimen-

sional spaces. The construction of a k-d tree begins at the root node, selecting a dimension for partitioning.
In the selected dimension, the median is chosen as the node. The reason for choosing the median is to ensure
that the left and right sides have as equal a number of points as possible. The left subtree is constructed using
the partition point on the left side, and the above partitioning operation is performed on each subtree. Fig. 6
shows the schematic diagram of tree construction.
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Figure 6: Schematic diagram of k-d tree

3.2.3 Density-Based Clustering Denoising Method
In non-track regions, this method has two important parameters: ε and minpts, Since the non-track

area is usually farther from the collection device, the point cloud density is much lower than in the track
region. Therefore, it is necessary to set an appropriate ε for the non-track area to achieve efficient clustering
(see Fig. 7). In the original data, the point cloud can be represented by a sequence:

γ = {(XI , YI , ZI)T i = 1, 2, 3 . . . m} (6)

where, (XI , YI , ZI)T ∈ R3, m is the total number of points in the point cloud. After passing the 3D point
cloud sequence through PCA, the original 3D data can be changed into 2D data, which at this time can be
expressed as:

ω = {(αI , βI)T i = 1, 2, 3 . . . m} (7)

where, (XI , YI , ZI)T ∈ R2, m is the total number of points in the point cloud.
In the DBSCAN clustering algorithm, all the points are first set to the unvisited state. Based on the

number of points in the neighborhood, determine whether p is a core point. If yes, start a new cluster and
join p and all its density reachable points. If the number of points in the ∈-neighborhoods is insufficient
MinPts, p is marked as noise. The set of points after removing noise is denoted as:

ω′ = {(αI , βI)T i = 1, 2, 3 . . . n} (8)

Figure 7: Schematic diagram of density reachability
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Among them, (XI , YI , ZI)T ∈ R2, n is the number of point clouds after noise removal. After removing
the noise, the 2D data is recovered into 3D point cloud data. Thus, new point cloud data without noise
is obtained.

3.3 3D Point Cloud Object Detection
In recent times, the application of AI with point clouds has become increasingly prevalent, leading to

the development of many novel networks for detection tasks. Currently, deep learning methods for point
clouds mainly include point-based methods and voxel-based methods. PointNet++ [30] is an improved
network architecture based on PointNet [31], which predicts target results by processing point coordinates.
This network is more efficient for sparse point clouds but can be slower for dense point clouds, making it
difficult to capture features over a large range of the point cloud. Voxel-based methods structure the data and
convert 3D object detection into a similar 2D image detection for feature extraction. By adjusting the voxel
size, it becomes easier to handle objects of different scales.

The Second [32,33] network has been widely applied in literature with good results. Second uses
sparse convolution instead of regular convolution based on Voxel Net, as shown in Fig. 8. Additionally,
the authors have made significant improvements to the Region Proposal Network (RPN) layer. The RPN
layer consists of two main branches, one for object classification and the other for position regression.
In the improvement, the authors introduced an additional branch specifically for object orientation
classification. The purpose of this new branch is to enhance the accuracy and reliability of object ori-
entation prediction in 3D space. This issue is addressed by using an angular regression loss during the
classification process.

Lθ = SmoothL1 (Sin (θ p − θt)) (9)

where, θ p is the predicted orientation angle and θt is the true orientation angle.

4 Experiment
The experimental data for this study comes from real railways, utilizing AI technology to train

and evaluate the detection performance of railway infrastructure. The experimental data includes three
railways, each 1.8, 4.6, and 9.6 km long, respectively. Point cloud data for railway infrastructure was
collected using LiDAR mounted on a train. The laser collection equipment is positioned at the origin
of the coordinate system, with a collection range of −45 to 45 m horizontally and −5 to 15 m vertically.
In the current study, we used point cloud collection equipment to gather detailed data from the three
railway lines.

4.1 Point Cloud Denoising Effect
In actual railway environments, the noise in point cloud data typically originates from LiDAR

equipment and environmental factors.
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Figure 8: SECOND detection module

The preprocessing effect is shown in Fig. 9: through such preprocessing, we can ensure the clarity
and accuracy of the point cloud data while maintaining detection speed, providing a good foundation for
subsequent data analysis and applications.

In this study, to evaluate the denoising effect of point cloud data, we chose to use the F1 score as the
performance evaluation standard. The F1 score is a statistical measure commonly used to test the accuracy
of data processing algorithms, combining information from both precision and recall. Noise and redundant
points were uniformly labeled as noise manually. The calculation formula is:

Precision = TP
TP + FP

(10)

Recal l = TP
TP + FP

(11)

F1 =
2 × Precision × Recal l

Precision + Recal l
(12)
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Figure 9: Results of preprocessing in four different scenarios

Table 1 below shows the comparison of different denoising algorithms’ effects and processing times in
the same scene.

Table 1: The comparison of different denoising algorithms’ effects and processing times

Facility name Effects and processing times Our method Radius kdtree kd+Density
Tunnel Time 4.8 10 19 9

F1 0.9661 0.8600 0.8786 0.9296
Precision 0.9540 0.8264 0.8545 0.9445

Recall 0.9784 0.9004 0.9043 0.9152
Forest Time 6.8 33 25 12

F1 0.9612 0.8628 0.9200 0.9300
Precision 0.9575 0.850 0.9300 0.9400

Recall 0.9653 0.870 0.9200 0.9200
House Time 1.5 8.0 8.0 5.0

F1 0.9616 0.8712 0.8446 0.9451
Precision 0.9448 0.8424 0.8028 0.9141

Recall 0.9832 0.9021 0.8912 0.9687
Open railway Time 3.4 13 24 7.5

F1 0.9674 0.8727 0.8887 0.9202
Precision 0.9651 0.85128 0.8583 0.8850

Recall 0.9723 0.8953 0.9200 0.9584
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4.2 Comparison of Detection Results
The 295 point cloud data obtained from LiDAR were divided into training and testing sets in an 8:2

ratio. Among them, 261 were used as the training set and 34 as the testing set. Table 2 shows the experimental
environment in this section.

We adopted commonly used metrics in autonomous driving to evaluate the effectiveness: bbox
(bounding box), 3D (3D bounding box), BEV (Bird’s Eye View), and mAP (mean Average Precision).

• bbox (bounding box): It is the smallest rectangle or cuboid surrounding the detected object. It is used
to indicate the position of the object and its size in space. A common measure is IoU (Intersection over
Union), calculated as follows:

IoU = Volume o f (A∩ B)
Volume o f (A∪ B) (13)

• 3D (3D bounding box): This refers to detecting and recognizing objects in three-dimensional space.
This differs from 2D detection, which is only performed in the image plane (i.e., two-dimensional space).
3D detection typically involves using point cloud data or a combination of point cloud and image data
to accurately locate objects and estimate their spatial dimensions.

• BEV (Bird’s Eye View): This is a view of the objects from above. In 3D object detection, BEV is used to
represent the 2D projection of objects in 3D space. The calculation formula is:

IoUBEV =
Area o f (A′ ∩ B′)
Area o f (A′ ∪ B′) (14)

A’ and B’ are the 2D projections of 3D Bounding Boxes in BEV. mAP (mean Average Precision) is used
to measure the performance of detection algorithms. It is the mean of the average precision.

To calculate mAP, first compute the AP (Average Precision) values for all categories, and then average
these AP values to obtain the mAP.

mAP = 1
N

N
∑
i=1

APi (15)

where, N is the number of categories and APi is the AP value of the i-th given category.

Table 2: The experimental environment used

Configuration Version
GPU 2080 ti
Memory 12 G
Programming Language Python 3.8

4.3 Comparison before and after Preprocessing
To reduce data complexity, this approach can optimize the efficiency of the voxelization process, as fewer

points need to be allocated into voxels, while still preserving the overall structural information.
We conducted a comparison of detection results before and after denoising, with the visualization results

shown in Fig. 10. For the effect of denoising, the identified poles are marked with yellow boxes, while blue
and green boxes which are denoised because they are not poles.
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Figure 10: The 3D bounding box of the LiDAR point cloud is shown, where the yellow box clearly indicates the utility
pole

Based on the training results in Table 3, we can observe that the point cloud effect after preprocessing is
better than the point cloud effect without preprocessing. From the earlier dimensionality reduction figures,
we know that in railway scenarios, there is a large amount of noise near the objects being detected. This
noise can affect the training results, leading to poor feature extraction and reduced detection accuracy. In
performing detection tasks, preprocessing is an important component.

Table 3: The comparison of results

Comparison Result mAP 0.5 0.5 0.25
Without preprocessing Bbox mAP_R40@ 90.3431 90.3431 90.4902

3D 65.9562 65.9562 64.7666
bev 70.0055 70.0055 69.1902

With preprocessing Bbox mAP_R40@ 93.6346 93.6346 93.3410
3D 69.8945 69.8945 69.8945
bev 71. 5137 71. 5137 70. 8229

5 Conclusion
For the detection of railway poles, we established preprocessing steps for the collected point cloud

data and conducted highly efficient detection using the SECOND model. In the preprocessing stage, we
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introduced a dual-region adaptive point cloud preprocessing strategy. We divided the acquired point cloud
data into railway track regions and railway non-track regions.

For the railway track region, we directly projected the original point cloud and used grid technology to
deduplicate the projected data. This approach is very advantageous for denoising large-scale point clouds as
it reduces the data’s dimensionality while retaining important information.

For the railway non-track region, we adopted a density clustering method based on PCA (Principal
Component Analysis). This method converts the 3D point cloud data into 2D, allowing density clustering
operations on the dimensionality-reduced results, thus achieving efficient point cloud density clustering.
Compared to other methods, our dual-region adaptive point cloud preprocessing method achieved signif-
icant improvements in both effectiveness and time. It eliminates noise and simplifies data while preserving
the features of the detected objects, further reducing computational complexity. The proposed method
effectively addresses the needs of large-scale preprocessing in railway scenarios and, when combined with
the characteristics of railway point cloud scenes, shows a notable improvement in efficiency compared to
other methods, while also demonstrating good performance in accuracy.

Comparing the training results with and without preprocessing, it is clear that the results with
preprocessing are significantly better. This confirms the necessity of preprocessing, as the acquired point
cloud data contains a large amount of noise, which can degrade detection performance.
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