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ABSTRACT: Cloud storage, a core component of cloud computing, plays a vital role in the storage and management
of data. Electronic Health Records (EHRs), which document users’ health information, are typically stored on cloud
servers. However, users’ sensitive data would then become unregulated. In the event of data loss, cloud storage providers
might conceal the fact that data has been compromised to protect their reputation and mitigate losses. Ensuring the
integrity of data stored in the cloud remains a pressing issue that urgently needs to be addressed. In this paper, we
propose a data auditing scheme for cloud-based EHRs that incorporates recoverability and batch auditing, alongside
a thorough security and performance evaluation. Our scheme builds upon the indistinguishability-based privacy-
preserving auditing approach proposed by Zhou et al. We identify that this scheme is insecure and vulnerable to
forgery attacks on data storage proofs. To address these vulnerabilities, we enhanced the auditing process using masking
techniques and designed new algorithms to strengthen security. We also provide formal proof of the security of the
signature algorithm and the auditing scheme. Furthermore, our results show that our scheme effectively protects user
privacy and is resilient against malicious attacks. Experimental results indicate that our scheme is not only secure and
efficient but also supports batch auditing of cloud data. Specifically, when auditing 10,000 users, batch auditing reduces
computational overhead by 101 s compared to normal auditing.
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1 Introduction
In the era of big data, a vast amount of sensitive information is being stored on cloud servers, and

the associated data security issues in cloud storage have become increasingly prominent. In the cloud
storage environment, the security measures provided by a single service provider are insufficient. Although
cloud storage services are provided by major internet companies, absolute security cannot be guaranteed.
Furthermore, in the event of data loss or corruption, companies may try to conceal the issue in order to
protect their reputation and minimize potential losses. This highlights a critical issue: once users upload
their data, they lose control over the original data, leading to a lack of trust in cloud storage. In electronic
healthcare systems, Electronic Health Records (EHRs) are used to document users’ health data and identify
their health status. Due to the large number of patients, some medical institutions store EHRs on cloud
servers to reduce the pressure on local storage. However, since EHRs contain sensitive patient information,
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users must verify the integrity of their EHRs while ensuring their privacy is protected. Data integrity auditing
can verify users’ data.

Generally, a cloud storage auditing protocol involves three entities: the user, the auditor, and the cloud
server. Based on the security parameters, the user initializes the system and generates the system parameters.
Subsequently, the user signs each block with a private key to obtain the block’s tags. The cloud server stores
the data and the corresponding tags, while the user deletes all locally stored data and the generated tags. The
auditor sends an audit request to the cloud server. The cloud server must return valid proof to the auditor.
The auditor then verifies the proof.

1.1 Our Contribution
A practical data audit scheme has garnered significant interest from researchers because of its broad

practical utility. Recently, Zhou et al. [1] proposed a practical data audit scheme with retrievability. Their
solution can achieve many excellent features, such as retrievability, indistinguishable privacy preservation,
and dynamic updates. Nevertheless, it has come to our attention that a malicious cloud server has the
capability to fabricate the labels of data blocks. Thus, even if a malicious cloud server were to remove
all externally stored data, it could still present falsified evidence of having outsourced the data. Based on
the scheme of Zhou et al., we provide data owners with a data audit scheme for cloud-based EHRs with
recoverable and batch auditing. Our scheme can resist forgery attacks.

Specifically, we observed that during the auditing phase, a malicious cloud server, using public informa-
tion, outsourced data, and auxiliary information related to the data at its disposal, can forge proof. This means
that when the auditor verifies the validity of the proof, the forged proof provided by the malicious cloud server
can still satisfy the verification equation. To address this, we redesigned the auditing phase by incorporating
random masking techniques and hash functions. Moreover, the evidence provided by the cloud server must
undergo stricter verification equations by the auditor. By combining random masking techniques and hash
functions, our algorithm can resist both proof forgery attacks and replay audit attacks. Additionally, our
scheme supports batch auditing, enabling the auditor to audit more data in the same amount of time. For
users, this means they can monitor data dynamics in real time and quickly detect any data corruption.

1.2 Organization
In Section 2, we present recent work on cloud auditing protocols. In Section 3, we review Zhou et al.’s

practical data audit scheme and introduce attacks against their algorithm. We introduce the system model,
threat model, design goals, and preliminary knowledge in Section 4. In Section 5, we present a data audit
scheme for cloud-based EHRs with recoverable and batch auditing. In Section 6, we provide formal proof of
the security of the signature algorithm and the auditing scheme. Additionally, we demonstrate the privacy
protection of the scheme and its ability to resist malicious attackers. In Section 7, we conduct a comparative
analysis with other schemes. In Section 8, we present the conclusion of our paper.

2 Related Work
In 2007, Ateniese et al. [2] introduced the Provable Data Possession (PDP) scheme, enabling users to

securely store data on untrusted servers. Users have the capability to verify the integrity of the original
data. However, this scheme only supports static auditing. During that same year, Juels et al. [3] presented
the “Proofs of Retrievability” (POR) scheme, which utilizes sampling and erasure code techniques in
cloud servers to ensure the retrievability and possession of data files. The scheme is capable of validating
the integrity of stored data files and restoring data in the presence of sporadic errors. However, this
scheme supports only a limited number of verifications. Both schemes verify data integrity, but the POR
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scheme incorporates erasure code techniques for data recovery. As the amount of stored data grows, users’
auditing tasks become increasingly burdensome. To solve this challenge, Wang et al. [4] proposed a publicly
verifiable dynamic auditing scheme, which leverages Third Party Auditors (TPAs) to validate the integrity of
dynamically stored data in the cloud. Cui et al. [5] improved the efficiency of auditing and user revocation by
leveraging TPA, reducing many time-consuming operations. Wang et al. [6] also proposed a PDP protocol
that supports third-party verification, implementing blind auditing and leveraging homomorphic signatures
to aggregate data labels for batch auditing. For batch auditing, Huang et al. [7] implemented batch auditing
for multiple files to reduce computational overhead. However, this scheme is vulnerable to malicious TPAs.
Li et al. [8] designed a certificateless public auditing scheme that supports batch auditing, in which only
designated auditors can verify the data.

To support dynamic updates of cloud data, Erway et al. [9] were the first to propose an integrity
auditing scheme for dynamic data. To address the significant computational overhead generated during
updates, Tian et al. [10] introduced the Dynamic Hash Table (DHT) for updating cloud data; however, their
approach raises concerns about data confidentiality. Yuan et al. [11] designed a novel framework to support
provable data possession schemes for dynamic multi-replica data. Bai et al. [12] and Zhou et al. [13] leveraged
blockchain technology to enable dynamic updates on cloud data. However, their efficiency is constrained by
the blockchain consensus protocol. Recently, Zhou et al. [14] implemented a dynamic multi-replica cloud
auditing scheme using the Leaves Merkle Hash Tree (LMHT), which demonstrates improved performance
in data deletion. Yu et al. [15] found that a malicious TPA could obtain sensitive information through replay
audit attacks, posing significant privacy concerns. Shah et al. [16] proposed a public auditing scheme capable
of resisting malicious TPA attacks. However, this scheme limits the number of audits and is restricted to
encrypted files.

Numerous public auditing schemes [17,18–21], built upon Public Key Infrastructure (PKI), face the key
limitation of expensive certificate management. Wang et al.’s identity-based PDP scheme [22] eliminates
the need for certificate management. In the literature, an identity-based auditing scheme [23] has also been
proposed. In their work, Wang et al. [23] tasked the auditor with creating tags and encrypting the file.
Both PKI-based and identity-based auditing schemes face several challenges. Wang et al. [24] introduced a
certificate-driven auditing approach that leverages bilinear pairings for verification in both private and public
validation processes. The scheme supports both private and public verification, with private verification
incurring lower computational costs than public verification. Shen et al. [25] proposed a certificateless PDP
scheme for cloud-based electronic health records, enabling the restoration of corrupted data. In 2023, Zhou
et al. [1] introduced a practical data auditing scheme. The auditing process is fast and efficient. However, Zhou
et al.’s scheme [1] is vulnerable to evidence fabrication by adversaries. Our scheme retains the advantages
of the original scheme while enhancing security. Importantly, our scheme addresses security flaws, offering
improved security and resistance against forged evidence attacks.

3 Analysis Zhou et al.’s Scheme
Zhou et al. proposed an auditing scheme that ensures retrievability and privacy preservation [1]. In this

section, we first review Zhou et al.’s scheme. Then, we identify the security weaknesses in its construction.

3.1 Review of Zhou et al.’s Scheme
Leveraging the Invertible Bloom Filter (IBF), Zhou et al. proposed a data auditing scheme. Due to the

properties of the IBF, in the event of data corruption, users can utilize the remaining blocks to recover the
damaged data blocks. Additionally, the scheme achieves indistinguishable privacy protection, even in the
face of replay audit attacks.
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The scheme proposed by Zhou et al. employs the notation summarized in Table 1.

Table 1: Notation

Symbols Meanings
p One large prime
λ One security parameter
G One multiplicative cyclic group of order p
g The generator of G
e One bilinear map over G

Zp One integer group of order p
Hid One full-domain hash function

π One pseudorandom permutation
f One pseudorandom function

Ke yGen (1κ) → (pk, sk): The user executes the algorithm by selecting random element u in G, k
independent hash functions H = {h1 , h2, . . . , hk}, and a random number x in Zp. Then, the user computes
v = gx ∈ G, stores its private key sk = (x ,H) and sends the public key pk = (g , u, v) to the cloud server (CS)
and the third party auditor (TPA).

StateGen(pk, sk, M , λ) → (SIG , Φ, B)∶The user executes the algorithm by splitting the M into data
blocks m1 , . . . , mn . For mi(1 ≤ i ≤ n), it sequentially computes idi = Hid(mi) and the homomorphic
verification label (HVL) σi = (idi ⋅ umi)x . Meanwhile, based on λ and H, the user initializes IBF and
computes the IBF B = U pdateIBF (B, mi , 1) for data recovery. The identifier (ID) sequence used to update
the data is represented as ID = {id1 , id2, . . . , idn}, and the HVL sequence for block verification is repre-
sented as Φ = {σ1 , σ2, . . . , σn}. The user computes SIG = Rx , where R = id1 ⋅ id2 ⋅ . . . ⋅ idn . The user stores
(pk, sk, ID, R, B) locally and sends the (pk, SIG , M , Φ) to the CS.

SIGVeri f y(pk, M , SIG) → (Rm)∶ The CS computes R based on M and verifies the SIG. When the
verification is successful, the CS responds with Rm = {1, Sig(R)}.

The user modifies a block after the i-th data block. It computes ID value id⋆ = Hid (m⋆), generates σ⋆ =
(id⋆ ⋅ um⋆)

x
, and creates SIG⋆ = (R⋆)x , where R⋆ = R ⋅ id⋆ or R⋆ = R/idi . The user then sends a modify

request Ur = {I, σ⋆, SIG⋆} or Ur = {D, SIG⋆} to the CS.
For the modify request Ur, the CS computes R⋆ and verifies SIG⋆.

e (v , R⋆) ?= e (SIG⋆, g) . (1)

If the verification Eq. (1) holds true, the CS modifies the M and the HVL Φ, then computes the signature
Sig (R⋆) for R⋆. The CS outputs Rm = {1, Sig (R⋆)} or Rm = {1, mi , Sig (R⋆)}. Otherwise, if the equation
does not hold, the CS outputs Rm = {0}. Based on Rm, the user modifies the IBF by running the algorithm
Bnew ← U pdateIBF (B, mi , l). At the same time, the user also updates the ID and R.

Chal l enge (1κ) → chal ∶The TPA randomly selects two random numbers k1 and k2 in Zp. Based on
the required confidence level, the TPA selects a number c and outputs chal = (c, k1 , k2).

Response(pk, chal , Φ, M) → P ∶ The CS randomly selects a number r in Zp. Based on the chal =
(c, k1 , k2), for 1 ≤ j ≤ c, the CS uses the public pseudorandom permutation (PRP) and the pseudorandom
function (PRF) to compute i j = πk1( j) and a j = fk2( j), respectively. For i1 , i2, . . . , ic , it then computes the
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aggregated HVL σ = σ a1
i1
⋅ σ a2

i2
, . . . , ⋅σ ac

ic
⋅ vr , and calculates μ = uμ′ ⋅ gr ∈ G, where μ′ = a1mi1+, . . . ,+ac mic .

The CS outputs the proof P = (σ , μ).
CheckProo f (pk, P, chal , ID) → {1, 0} ∶ Based on chal = (c, k1 , k2), for each 1 ≤ j ≤ c, the TPA uses

the public PRP and PRF to compute i j = πk1( j) and a j = fk2( j), respectively. Denoted the subset of indices
I = {i1 , i2, . . . , ic}, the TPA verifies the proof P as follows:

e(σ , g) ?= e ((∏
i∈I

idai
i ) ⋅ μ, v) . (2)

If the Eq. (2) holds, it outputs 1; otherwise, it outputs 0. The TPA returns the result to the user.
Retrieve(pk, P, chal , ID) → {1, 0} ∶ When the TPA detects data corruption, the user uses two algo-

rithms to restore the corrupted data. The user sends parameters params = {H, λ} to the CS for generating
the IBF. We assume that λ data blocks are corrupted, and the sequence of noncorrupted data blocks is denoted
as MK . For mi ∈ MK , where (1 ≤ i ≤ n − λ), based on the parameters params = {H, λ}, the CS generates a
new IBF Bk and then sends it to the user. Based on the IBF B and the IBF Bk , the user retrieves the λ corrupted
data blocks.

3.2 Attack
We observe that when the CS executes the polynomial time algorithm Response, it is possible to forge

a proof P based on the public information available, outsourced data, and auxiliary information related
to the data. Specifically, a malicious CS first computes idi = Hid(mi) based on the data M, obtains ID =
{id1 , id2, . . . , idn}, R = id1 ⋅ id2 ⋅ . . . ⋅ idn , and then verifies the signature SIG. Next, in the update phase, the
malicious CS computes the updated block’s ID⋆ and R⋆. It executes the algorithm Response and randomly
selects r from the group Zp, then computes i j = πk1( j) and a j = fk2( j) based on the challenge chal =

(c, k1 , k2). For i1 , i2, . . . , ic , it computes σ = vr and sets μ = (∏
i∈I

idai
i )
−1

⋅ gr ∈ G. The proof P = (σ , μ) is then

sent to the TPA.
In this way, when the TPA executes the algorithm CheckProo f to verify the validity of the proof P =

(σ , μ), the proof provided by the malicious CS passes Eq. (2). This works because

e ((∏
i∈I

idai
i ) ⋅ μ, v) = e (gr , v) = e (vr , g) = e (σ , g) .

The malicious CS does not need to store the data M and HVLs Φ = {σ1 , σ2, . . . , σn}. It only needs to store
the sequence ID = {id1 , id2, . . . , idn}, significantly reducing storage requirements. The malicious CS has
both the incentive and the ability to forge data storage proofs, and the forged proof will not be detected by the
TPA. Furthermore, during the update phase, the malicious CS can still interact with the user normally, verify
the signature SIG⋆, and output the response message Rm. Since the output from the algorithm CheckProo f
is always 1, the TPA cannot detect data corruption.

Finally, the malicious CS is able to successfully attack Zhou et al.’s scheme by only storing the
sequence ID = {id1 , id2, . . . , idn}, without storing the data M and HVLs Φ = {σ1 , σ2, . . . , σn}. This allows
the malicious CS to bypass the intended security measures perfectly.
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4 Definition and Preliminary

4.1 System Model
We propose a data auditing scheme with recoverability and batch auditing capabilities for EHRs. Our

scheme is designed for patients and healthcare institutions, enabling patients to outsource their electronic
health records to cloud services. If the data is found to be corrupted or lost, patients can recover it, ensuring
the integrity and availability of the electronic health records. The TPA can perform batch audits on the
patients’ EHRs. Our scheme’s system comprises five entities: data owners, sensors, data users, a third-party
auditor, and a cloud server. The system model of our scheme is illustrated in Fig. 1.

• Sensors: Comprising wearable devices, embedded sensors, and body area sensors, they collect real-time
health data from patients, such as heart rate, blood glucose levels, and physical activity status. As a result,
sensors are considered trusted entities.

• Data Owner (DO): The data owner, who is always a patient, generates EHRs using sensors and other data
collection devices. Once the data is collected, the patient encrypts and transmits it to the cloud server.
The patient can dynamically update the data stored on the cloud server and recover it if the data is found
to be corrupted or lost. The data owner is regarded as a trusted entity.

• Cloud Server (CS): The CS provides storage and computational resources for the medical data of data
owners. When the third-party auditor issues an audit request, the CS generates a proof in response.
However, due to unforeseen circumstances, the stored data may become corrupted, and in an effort to
protect its reputation, the CS may forge a proof. As a result, the CS is regarded as a semi-trusted entity.

• Third Party Auditor (TPA): The TPA is authorized by the data owner to periodically audit the medical
data stored in the cloud. However, the TPA may exhibit curiosity, such as by conducting repeated audits
on the same data to gain additional insights. As a result, the TPA is regarded as a semi-trusted entity.

• Data User (DU): The DU is a user authorized by the DO to access the relevant EHR. Typically, the DU is
the patient’s attending physician. During medical visits, the DO can grant key authorization to the DU,
enabling them to download the encrypted EHR from the CS and decrypt it. The DU is regarded as a
trusted entity.

Figure 1: System model
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The system leverages wearable devices, embedded sensors, and body-area sensors to collect real-time
health data from patients, such as heart rate, blood sugar levels, and exercise status. This data is used to
generate EHRs for the patients. Due to limitations in storage and computational resources, patients encrypt
the data and transmit it to the cloud server, where dynamic update algorithms ensure timely updates to
the health data. The CS stores the patients’ EHRs and generates data possession proofs in response to audit
requests from the TPA. When doctors request access, the CS provides the relevant electronic health records.
Authorized by the data owner, the TPA periodically sends audit requests to verify the integrity, accuracy,
and privacy of the EHRs stored in the cloud. If the auditing algorithm fails, the TPA promptly notifies the
patient of data corruption or loss. In such cases, the patient can utilize a data recovery algorithm to restore
the damaged data. When seeking medical treatment, the patient provides the doctor with the decryption key.
The doctor then downloads and decrypts the EHR from the CS to facilitate accurate diagnosis and treatment.

This system model integrates medical IoT, cloud computing, and privacy protection technologies to
deliver an efficient, transparent, and secure collaborative framework for patients, doctors, and data auditors
in complex healthcare environments.

4.2 Threat Model
In our threat model, the cloud server is considered untrustworthy and may behave maliciously. The

cloud server may attempt to forge valid proofs to conceal data loss and preserve its reputation. The TPA
is assumed to be curious. While it performs public verification of outsourced data integrity under user
authorization and honestly participates in the auditing protocol, it may attempt to infer sensitive data
information. We assume that the DO and DU will not compromise the scheme.

We classify potential adversaries into two categories:
Type I Adversary (AI): A malicious CS that possesses the data and corresponding tags. It has knowledge

of the system’s public parameters and other public information. The AI generates evidence messages in
an attempt to pass the verification equation, thereby concealing activities such as data modification, loss,
or deletion.

Type II Adversary (AII): A curious TPA that may launch replay auditing attacks to infer sensitive data.
By conducting repeated audits on the same data block, the TPA attempts to deduce its content.

It is important to note that both the CS and the auditor are considered ’semi-trusted,’ and their behavior
may not always align with real-world scenarios. A malicious cloud server, having access to the data and tags,
can generate forged proofs. A malicious auditor may exploit mathematical techniques to launch replay audit
attacks and infer the content of the data. As a result, we treat both the CS and the TPA as untrusted entities.
To address the issue of untrusted entities, we enhance the security of the signature algorithm to mitigate
malicious cloud servers and strengthen the auditing algorithm to counteract malicious auditors. This ensures
the integrity and privacy of the data while enhancing the reliability of the auditing process.

4.3 Design Goals
We aim to design a data auditing scheme with recoverability and batch auditing capabilities for EHR

systems. The scheme not only enables data recovery but also facilitates batch auditing. Additionally, the
scheme ensures correctness, privacy protection, and resistance to forgery attacks.

To ensure effective integrity auditing of outsourced data within the threat model, our scheme must fulfill
the following objectives:

Functionality: Support for Dynamic Updates: Since the EHR of the DO may be updated dynamically, the
data auditing scheme must support dynamic auditing. Data Recoverability: To enhance data availability, the



1540 Comput Mater Contin. 2025;83(1)

scheme should enable the DO to recover corrupted data through data recovery operations, thereby improving
data security. Batch Auditing: The auditor should deliver audit results to multiple data owners simultaneously.
This ensures that the DO can promptly monitor the status of their EHR. In the event of a batch audit failure,
a normal audit identifies the specific data owner’s EHR that is compromised and recovery algorithms can be
applied to restore the corrupted data.

Security: Privacy Protection: The DO should encrypt their EHR data to safeguard the privacy of their
medical information. During the auditing process, the auditor should neither require access to nor be able
to retrieve the user’s stored data. Furthermore, the auditor must not infer any sensitive information about
the user from the response messages.

Efficiency: Lightweight: To ensure the scheme is suitable for resource-constrained devices, the design
should minimize communication overhead and computational costs during data auditing.

4.4 Invertible Bloom Filter
We use an IBF to compute data differences and improve IBF for recovering data blocks in cases of

corruption. We first initialize the IBF as an empty table with b = (k + 1) ⋅ λ cells, where λ is the maximum
number of corrupted data blocks. Let H = {h1 , h2, . . . , hk} denote k independent hash functions. For a
given data block in the M = (m1 , m2, . . . , mn), we map it to k different hash values, 1 ≤ j ≤ k, h j ∶ {0, 1}∗ →
{1, 2, . . . , b}. Each cell in the IBF contains three fields: Count, HashSum and DateSum. Count represents
the number of data blocks mapped to the cell. DateSum represents the XOR of all data blocks mapped to
the cell. HashSum represents the product of the hashes of all data blocks mapped to the cell. Here, Hid ∶
{0, 1}∗ → G is used to generate the hash value for each data block. The fields Count and DateSum are both
initialized to zero, while HashSum is initialized to the generator of G. To process the IBF, we set l = 1 or
l = −1 to handle the data blocks.

1. Encoding: Given a data M = (m1 , m2, . . . , mn), the client initializes the IBF B. For each data block
mi , it uses k independent hash functions to generate k different hash indices. For each hash index, it XORs
(Exclusive OR) mi with the B[index]. DateSum, multiplies Hid (mi) with B[index]. HashSum, and
increments the count by 1.

2. Decoding: Given two data M1 and M2 along with their respective IBFs B1 and B2, the client computes
the difference IBF B3, where it XORs DateSum, multiplies HashSum and subtracts Count. A cell in B3 is
considered a pure cell if it satisfies the following two conditions: Count = 1 and HashSum = Hid(mid). The
decoding process terminates when B3 no longer contains pure cells, indicating that the corrupted or differing
data blocks between M1 and M2 have been successfully recovered.

4.5 U pdataIBF and RetrieveData Algorithms
To recover corrupted data, we set l = 1 or l = −1 to process the IBF and propose the Algorithm 1

U pdataIBF and Algorithm 2 RetrieveData. We execute the U pdataIBF algorithm n times to generate
the IBF B1 for the data M = (m1 , m2, . . . , mn). When data corruption occurs, the IBF B2 is generated for the
remaining data blocks using the same algorithm. Based on B1 and B2 we use the RetrieveData algorithm
to compute the IBF B3 which allows the recovery of corrupted data blocks. A cell in B3 is considered a pure
cell if it satisfies the following two conditions: Count = 1 and HashSum = Hid(mid). The decoding process
terminates when B3 no longer contains pure cells, indicating that the corrupted or differing data blocks
between M1 and M2 have been successfully recovered.
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Algorithm 1: B← Update IBF (B, m, l)
1: for each j = 1, . . . , k
2: ind = h j(mi);
3: B[ind]. Count ← B[ind]. Count + l ;
4: B[ind]. HashSum ← B[ind]. HashSum ⋅Hid(mi)l ;
5: B[ind]. DataSum ← B[ind]. DataSum ⊕mi ;
6: end for
7: return B

Algorithm 2: MB3 ← RetrieveData(B1 , B2)
1: for ind in 1, . . . , b
2: B3[ind]. Count ← B1[ind]. Count − B2[ind]. Count;
3: B3[ind]. HashSum ← B1[ind]. HashSum/B2[ind]. HashSum;
4: B3[ind]. DataSum ← B1[ind]. DataSum ⊕ B2[ind]. DataSum;
5: end for
6: while there is a pure cell ind in B do
7: mi = B3[ind]. DataSum;
8: Hi d(mi) = B3[ind]. HashSum;
9: add (mi , Hid(m)) to MB3 ;
10: run U pdateIBF(B3 , mi ,−1);
11: end while
12: return MB3

5 Our Scheme
In this section, we propose a secure cloud-based EHR data auditing scheme designed to prevent data

leakage. The scheme also incorporates an improved IBF to facilitate the recovery of corrupted data. In large-
scale EHR systems, the DO collects real-time health data through sensors and uploads it to the CS. Our
scheme comprises two components: Normal Audit and Batch Audit.

Normal Audit: The TPA performs a data possession challenge on the EHR stored in the cloud and
verifies the response proof. If data corruption is detected, the scheme initiates the data recovery phase. The
data owner provides the necessary parameters to enable the CS to generate a new IBF. The corrupted data is
then recovered using the newly generated IBF and the locally retained IBF.

Batch Audit: The batch auditing function provides timely audit results to multiple data owners,
enhances the real-time performance and efficiency of auditing, and enables data owners to promptly monitor
the status of their EHR. If the batch audit fails, a normal audit is conducted to identify the specific data
owner’s EHR data that is compromised and the recovery algorithm is applied to restore the corrupted data.

5.1 Construction of Our Scheme
In this section, we propose a more secure and privacy-preserving cloud auditing scheme. We adopt the

same notation as Zhou et al.’s scheme [1]. The procedures of our scheme are illustrated in Fig. 2.
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Figure 2: Procedures of our scheme

Normal Audit∶
Ke yGen (1κ) → (pk, sk)∶ The DO executes the algorithm by selecting a random number u in G, k

independent hash functions H = {h1 , h2, . . . , hk}, and a random element x in Zp. Then, the DO computes
v = gx ∈ G, stores its private key sk = (x ,H) and sends the public key pk = (g , u, v) to the CS and the TPA.

StateGen(pk, sk, M , λ) → (SIG , Φ, B)∶ The DO executes the algorithm by splitting the M into
m1 , ..., mn . For mi(1 ≤ i ≤ n), it sequentially computes idi = Hid(mi) and the label σi = (idi ⋅ umi)x . Mean-
while, based on λ and H, the DO initializes the IBF and computes the IBF B = U pdateIBF (B, mi , 1). The
ID sequence used to update the data is represented as ID = {id1 , id2, . . . , idn}, and the HVL sequence for
block verification is represented as Φ = {σ1 , σ2, . . . , σn}. The DO computes SIG = Rx to record the operation,
where R = id1 ⋅ id2, . . . , idn . The DO stores (pk, sk, ID, R, B) locally and sends the (pk, SIG , M , Φ) to
the CS.

SIGVeri f y(pk, M , SIG) → (Rm)∶ The CS computes R based on the M and verifies the SIG. When
the signature verification is successful, the CS responds with Rm = {1, Sig(R)}, where Sig(R) is the
CS’s signature.

Request(pk, sk, ID, R, {I, D}) → Ur ∶ The DO inserts a block m⋆ after the i-th data block, which
is the insert operation I = (i , m⋆). It computes a new ID value id⋆ = Hid (m⋆), generates a new σ⋆ =
(id⋆ ⋅ um⋆)

x
, and creates a new SIG⋆ = (R⋆)x , where R⋆ = R ⋅ id⋆. The DO then sends an update request

Ur = {I, σ⋆, SIG⋆} to the CS. Additionally, the DO deletes the i-th data block, which is the delete operation
D = (i). It computes a new SIG⋆ = (R⋆)x , where R⋆ = R/idi . The DO then sends the update request Ur =
{D, SIG⋆}. Through both the insert and delete operations, the DO also supports modifying the data.
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U pdateCS(pk, ID, Φ, M , Ur) → Rm ∶ For the insert request Ur = {I, σ⋆, SIG⋆}, the CS computes R⋆
and verifies SIG⋆.

e (v , R⋆) ?= e (SIG⋆, g) . (3)

If Eq. (3) holds true, the CS updates the data M and the corresponding HVL Φ, then computes the
Sig (R⋆) for R⋆. The CS outputs a response message Rm = {1, Sig (R⋆)}. Otherwise, if the equation does not
hold, the CS outputs Rm = {0}. Similarly, for the delete request Ur = {D, SIG⋆} and ID, the CS computes
R⋆ and verifies SIG⋆. If the equation holds true, the CS updates the data M and the corresponding HVL Φ,
then computes the Sig (R⋆) for R⋆. The CS outputs Rm = {1, mi , Sig (R⋆)}. Otherwise, if the equation does
not hold, the CS outputs Rm = {0}.

U pdateDO(Ur, Rm) → Bnew ∶ For the insert operation, based on I = (i , m⋆) and Rm = {1, Sig (R⋆)},
the DO runs the Bnew ← U pdateIBF (B, m⋆, 1) to update the IBF. For the delete operation, based
on D = (i) and Rm = {1, mi , Sig (R⋆)}, the DO updates the IBF by running the algorithm Bnew ←
U pdateIBF (B, mi ,−1). At the same time, the DO also updates the ID and R.

Chal l enge (1κ) → chal ∶The TPA randomly selects two random numbers k1 and k2 in Zp. Based on
the required confidence level, the TPA selects a number c and outputs chal = (c, k1 , k2).

Response(pk, chal , Φ, M) → P: The CS randomly selects a number r in Zp. Based on the chal =
(c, k1 , k2), for 1 ≤ j ≤ c, the CS uses the PRP and the PRF to compute i j = πk1( j) and a j = fk2( j), respectively.
For i1 , i2, . . . , ic , it then computes the aggregated HVL σ = σ a1

i1
⋅ σ a2

i2
, . . . , ⋅σ ac

ic
, and calculates μ = μ′ + r ⋅

h (R), where μ′ = a1mi1+, . . . , ac mic , R = ur . The CS outputs the proof P = (σ , μ, R).
CheckProo f (pk, P, chal , ID) → {1, 0} ∶ Based on chal = (c, k1 , k2), for each 1 ≤ j ≤ c, the TPA uses

the public PRP and PRF to compute i j = πk1( j) and a j = fk2( j), respectively. Denoted the subset of indices
I = {i1 , i2, . . . , ic}, the TPA verifies the proof P as follows:

e(σ , g) ?= e (∏
i∈I

idai
i ⋅ u

μ ⋅ R−h(R), v) . (4)

If Eq. (4) holds, it outputs 1; otherwise, it outputs 0. TPA returns the result.
Retrieve(pk, P, chal , ID) → {1, 0} ∶ When the TPA detects data corruption, the DO uses two algo-

rithms (U pdataIBF, RetrieveData) to restore the corrupted data. The DO sends parameters params =
{H, λ} to the CS for generating the IBF. We assume that λ data blocks are corrupted, and the sequence of
noncorrupted data blocks is denoted as MK . For mi ∈ MK , where (1 ≤ i ≤ n − λ), based on the parameters
params = {H, λ}, the CS runs the U pdataIBF algorithm n − λ times to generate a new IBF Bk and then
sends it to the DO. The DO uses the RetrieveData algorithm, inputting the IBFB and the IBF Bk , to retrieve
the λ corrupted data blocks.

Batch Audit:
To deliver timely audit results for multiple users, we introduce the batch auditing feature. In the event of

a batch audit error, the normal audit is employed to identify the specific user and the problematic data block.
Subsequently, the data recovery algorithm is applied to restore the corrupted data. If an error is detected
during the batch audit, the need for separate audits for each user is minimized by isolating the issue to the
specific user and data block, enabling faster response and recovery. The scheme facilitates batch auditing of
cloud data for multiple data owners.

Let DOw(1 ≤ w ≤ t) randomly select xw ∈ Zp as private key and compute vw = gxw ∈ G as public key.
The DOs split their data Mw into (mw

1 , . . . , mw
n ). For each data block, the DO sequentially computes
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idw
i = Hid(mw

i ) and the HVL σ w
i = (idw

i ⋅ umw
i )xw

. Meanwhile, based on λ and H, the DO initializes
the IBF and computes IBF Bw = U pdateIBF (Bw , mw

i , 1). The ID sequence used to update the data is
represented as IDw = {idw

1 , idw
2 , . . . , idw

n }. The DO stores (pkw , skw , IDw , Rw , Bw) locally and transmits
(pkw , SIGw , Mw , Φw) to the CS.

The TPA selects two random numbers k1 and k2 from the group Zp and sends the chal = (c,
k1 , k2) to the CS. The TPA and CS utilize public PRP and PRF to compute i j = πk1( j) and a j =
fk2( j), respectively. Upon receiving the challenge indices, the CS computes the aggregated HVL σ =

t
∏

w=1
(σ w

i1
)a1 ⋅ (σ w

i2
)a2 , . . . , ⋅(σ w

ic
)ac and calculates μw = (μ′)w + r ⋅ h (R), where (μ′)w = a1mw

i1
+, . . . , ac mw

ic
,

R = ur . The CS then sends the proof P = (σ , μw , R) to the TPA. Denoted the subset of indices I =
{i1 , i2, . . . , ic}, the TPA verifies the proof P.

e(σ , g) ?=
t
∏
w=1

e (∏
i∈I
(idw

i )
ai ⋅ uμw

⋅ R−h(R), vw). (5)

If Eq. (5) holds, it confirms that the user’s data is intact. In this case, the TPA proceeds to perform
batch auditing. Otherwise, the TPA conducts a standard audit to identify the specific DO and the data block
that is compromised. The damaged data is then recovered using the recovery algorithm described in the
following section.

Retrieve(pk, P, chal , ID) → {1, 0} ∶ When the TPA detects data corruption, the DO uses two algo-
rithms (U pdataIBF, RetrieveData) to restore the corrupted data. The DO sends parameters params =
{H, λ} to the CS for generating the IBF. We assume that λ data blocks are corrupted, and the sequence of
noncorrupted data blocks is denoted as MK . For mi ∈ MK , where (1 ≤ i ≤ n − λ), based on the parameters
params = {H, λ}, the CS runs the U pdataIBF algorithm n − λ times to generate a new IBF Bk and then
sends it to the DO. The DO uses the RetrieveData algorithm, inputting the IBF B and the IBF Bk , to retrieve
the λ corrupted data blocks.

5.2 Correctness Analysis
The correctness of Eq. (4) is derived as follows:

e(σ , g) = e (∏
i∈I

idai
i ⋅ u

μ ⋅ R−h(R), v)

= e (∏
i∈I

idai
i ⋅ u

a1 mi1+. . .+ac mic+rh(R)u−rh(R), v)

= e (∏
i∈I

idai ⋅x
i ⋅ (ua1 mi1+. . .+ac mic )x , g)

= e ((idi1 ⋅ umi1 )x a1 ⋅ ... ⋅ (idic ⋅ umic )x ac , g)
= e (σ a1

i1
⋅ σ a2

i2
⋅ . . . ⋅ σ ac

ic
, g)

= e(σ , g).
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The correctness of Eq. (5) is derived as follows:

e(σ , g) =
t
∏
w=1

e (∏
i∈I
(idw

i )
ai ⋅ uμw

⋅ R−h(R), vw)

=
t
∏
w=1

e (∏
i∈I
(idw

i )
ai ⋅xw

⋅ (ua1 mw
i1
+. . .+ac mw

ic )
xw

, g)

=
t
∏
w=1

e ((σ w
i1
)a1 ⋅ (σ w

i2
)a2 ⋅ . . . ⋅ (σ w

ic
)ac , g)

= e (
t
∏
w=1
((σ w

i1
)a1 ⋅ . . . ⋅ (σ w

ic
)ac) , g)

= e(σ , g).

6 Security Proof
In this section, we present the security proof of our scheme from two aspects: (1) the unforgeability

of the auditing scheme and (2) the resistance to type I adversary AI and type II adversary AII as defined
in Section 4.
Theorem 1. Our signature algorithm is existentially unforgeable under adaptive chosen-message attacks (EUF-
CMA).

Specifically, assume there exists an EUF-CMA adversary A that can break the signature algorithm with
an advantage of ε(K). Then, there must exist an adversary B capable of solving the Computational Diffie-
Hellman (CDH) problem with an advantage of at least AdvCDH

B (K) ≥ ε(K)
eqH

.
Proof. The following proves that the signature algorithm can be reduced to the CDH problem. The adversary
B, given (g , gb , h), usesA (which attacks the signature algorithm) as a subroutine, with the goal of computing
hb . In the actual proof, B aims to hide the problem instance (g , gb , h) within the simulation.

The reduction process is as follows:
(1) B sends the generator g and the public key u = ga , v = gx to A.
(2) Hash Query (up to qH Query): B constructs a list Hlist , initially empty, where each element is a tuple

of the form (mi , ri , yi). When A makes its i-th query, the response is as follows:
(1) If the list Hlist already contains (mi , ri , yi) corresponding to mi , B responds with the value yi .
(2) Otherwise, B randomly chooses a value ri←R Zp. If i = j, it computes yi = hgri ∈ G. Otherwise, it

computes yi = gri ∈ G. It uses yi as the response and stores the tuple (mi , ri , yi) in the list Hlist .
(3) Tag Query (up to qH Query): When A requests the signature for the message m, let m = mi . Denote

the queried value for the i-th Hsah query as mi . B answers the query. If i ≠ j, there exists a tuple (mi , ri , yi)
in the list Hlist . It computes the signature σi = (gx)ri ⋅ (gx)ami and responds toAwith σi . This works because
σi = (yi ⋅ umi)x = (gx)ri ⋅ (gx)ami . If i = j, it aborts the simulation.

(4) Output: The adversary A eventually outputs (m, σ), where m and σ are the forged proof. If m ≠ m j,
B aborts the simulation. Otherwise, B outputs σ

(gx)r i (gx)am as hb to the CDH problem. This works because
σ = (yi ⋅ umi)x = (hgri)x ⋅ (gx)ami = hx ⋅ (gx)ri ⋅ (gx)ami . ◻
Theorem 2. Assume the hash function H is a random oracle. If the CDH assumption holds, then our scheme is
existentially unforgeable under an adaptive chosen message attack.
Proof. Assume there is a challenger C, who has a CDH instance (g , gx , h). To output hx , C interacts with the
adversary A.
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Setup. The C sends the generator g and u = ga ⋅ hb , v = gx to the adversary A.
Query. The C responds to the adversary A ’s adaptive Hash query and signature query as follows:
Hash query. The C constructs a list Hlist , initially empty, where each element is a tuple of the form

(mi , ri , yi). When A submits a data mi for a hash query, C checks whether (mi , ri , yi) exists in Hlist . If it
exists, the hash value yi is returned; otherwise, C randomly choses ri←R Zp, computes yi = gri ⋅ h−bmi as the
return value, and inserts the tuple (mi , ri , yi) into Hlist .

Signature query. The C constructs a list T l ist , initially empty, where each element is a tuple of the form
(mi , ri , yi , σi). When A submits a data mi for a signature query, C checks whether (mi , ri , yi , σi) exists in
T l ist . If it exists, the σi is returned; otherwise, C computes σi = (gx)ri+ami . This works because σi = (yi)x ⋅
(ga hb)mi x = (gri ⋅ h−bmi ⋅ gami ⋅ hbmi)x = (gx)ri+ami . C inserts the tuple (mi , ri , yi , σi) into T l ist .

Forgery. Finally, under the challenge chal∗ = (c, k1 , k2), A forges a proof P∗ = (σ∗, μ∗). Moreover,
P∗ = (σ∗, μ∗) can pass the TPA’s verification, and at least one data mi

∗ has not been submitted for a signature
query, where i ∈ I∗. The challenger C searches the list Hlist and finds y∗i , where i ∈ I∗. In this case, the
challenger C obtains

e(σ∗, g) = e (∏
i∈I∗

idai
i ⋅ u

μ∗ ⋅ R−h(R), v) (6)

Moreover, the challenger C possesses the valid proof P = (σ , μ) and obtains

e(σ , g) = e (∏
i∈I∗

idai
i ⋅ u

μ ⋅ R−h(R), v) (7)

Based on Eqs. (6) and (7), the challenger C obtains

e(σ∗σ−1 , g) = e (∏
i∈I∗

idai
i ⋅ u

μ∗ ⋅ R−h(R), v)

⋅ e(∏
i∈I∗

idai
i ⋅ u

μ ⋅ R−h(R), v)
−1

= e (uμ∗ ⋅ u−μ , v)

= e ((ga ⋅ hb)x(μ∗−μ)
, g)

= e ((gx)a(μ∗−μ) ⋅ (hx)b(μ∗−μ), g)

In this way, C gets hx = (σ∗σ−1v−a(μ∗−μ))
−b(μ∗−μ)

, because e (σ∗σ−1v−a(μ∗−μ), g) = e(hx , g)b(μ∗−μ).
Thus, the challenger C computes hx from g, gx , and h, thereby solving the CDH problem. ◻
Theorem 3. Our scheme is resistant to malicious TPA attacks, thereby ensuring privacy protection. A malicious
TPA cannot obtain the actual data from the proof provided by the CS.
Proof. We use random masking techniques to ensure data privacy and security. The CS introduces random
numbers to protect data security. In our scheme, P = (σ , μ, R) is the proof generated by the CS. First, the
CS aggregates the challenged data blocks into μ′ = a1mi1+, . . . , ac mic . By using a random number r, μ′ is
blinded into μ = μ′ + rh (R), where R = ur . Here, r is a random value chosen by the CS in the group Zp and
is kept secret from other entities. In this way, the malicious TPA is unable to perform a replay audit attack to
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extract the challenge data blocks μ′ = a1mi1+, . . . , ac mic from the blinded μ = μ′ + rh (R). Second, the CS
generates different data possession proofs for each challenge chal = (c, k1 , k2). Since the CS selects a new
random number r each time it generates a proof, even for the same challenge, the generated P = (σ , μ, R)
will be different. As a result, the actual data information will not be leaked to the malicious TPA. ◻
Theorem 4. Our scheme is resistant to forgery attacks as described in Section 3.
Proof. In Response algorithm, we compute the homomorphic verification label (HVL) σ ← σ a1

i1
⋅

σ a2
i2

, . . . , ⋅σ ac
ic

, and calculate μ ← μ′ + r ⋅ h (R), where μ′ ← a1mi1+, . . . , ac mic , R = ur . The malicious CS is
unable to forge the proof P based on the public information, outsourced data, and auxiliary information
related to the data. The malicious CS can compute idi ← Hid(mi) based on the dataM to obtain ID =
{id1 , id2, . . . , idn}. It can then compute i j ← πk1( j) based on the challenge chal = (c, k1 , k2), as well as a j ←

fk2( j). However, the malicious cloud cannot forge μ ← (∏
i∈I

idai
i )
−1

⋅ gr ∈ G, because in the equation.

e(σ , g) ?= e (∏
i∈I

idai
i ⋅ u

μ ⋅ R−h(R), v) ,

μ is in the exponent of u, and it is not combined with u as a single entity in the proof. Unless the malicious

cloud can solve the discrete logarithm problem to make uμ = (∏
i∈I

idai
i )
−1

⋅ gr , it cannot successfully forge P.

Similarly, for R, the malicious cloud may also attempt forgery. However, before forging, it must first know
h (R), which is only generated after R is determined. Therefore, the malicious cloud cannot forget R. If the
malicious cloud attempts to forge the proof P, the TPA will immediately detect that the proof is fraudulent.
◻

7 Performance Analysis

7.1 Functional Comparison
We compared our scheme with schemes [5,7,8], and [1] in terms of functionality. As shown in Table 2,

our scheme supports features such as dynamic updates, privacy protection, data recovery, and batch auditing.
In contrast, none of the schemes [7,5,8], or [1] simultaneously satisfy all these functional requirements.
Scheme [7] only supports batch auditing, while scheme [5] only supports privacy protection. Scheme [8]
does not support data recovery for corrupted data, and scheme [1] does not support batch auditing. Our
scheme overcomes these limitations and provides comprehensive functionality.

Table 2: Feature comparison

Schemes Dynamic Privacy Data Batch
update protection recovery audit

Huang et al. [7] N N N Y
Cui et al. [5] N Y N N
Li et al. [8] Y Y N Y

Zhou et al. [1] Y Y Y N
Our scheme Y Y Y Y
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7.2 Computational Cost
We compare the computational costs of each phase with schemes [5,7,8], and [1]. The notations in our

scheme are described in Table 3. In our scheme, the data owner generates homomorphic verification labels
before outsourcing the data. In Table 4, the computational cost for generating labels is (2eG +mG +H) n,
where eG represents the cost of exponentiation in G, mG represents the cost of multiplication in G, and H
represents the cost of a hash function mapping to G. The TPA first generates a challenge and sends it to the CS.
Upon receiving the challenge, the CS generates the verification proof. The computational cost of generating
the challenge index is negligible and thus omitted. The computational cost of generating the verification proof
is ceG + (c + 1)mZ p + caZ p + h, where mZ p represents the cost of multiplication in the Zp, aZ p represents the
cost of addition in the Zp, and c denotes the number of challenged data blocks. In the CheckProo f phase,
the TPA spends (c + 2) eG + 2mG + 2P to check the integrity of the data, where P represents the cost of a
bilinear pairing operation. Similarly, during batch auditing, the TPA spends P + t ((c + 2) eG + 2mG + P),
where t is the number of users.

Table 3: Notations for operations

Symbols Meanings
H One hash function which mapping to G
h One hash function which mapping to Zp

aZ p One addition on Zp
mZ p One multiplication on Zp
eZ p One exponentiation on Zp
aG One addition on G
mG One multiplication on G
eG One exponentiation on G
P One bilinear pairing ê ∶ G ×G → GT

Table 4: The computation cost comparison in each phase

TagGen Response CheckProof BatchAudit
Huang et al. [7] (2aZ p +mZ p + h) n ceZp + cmZ p +

caZ p + caG + cmG

ceZp + caG + cmG +
2P

cteZp + ctaG +
ctmG + 2P

Cui et al. [5] (2mZ p + h) n 2caZ p + 2cmZ p 2 (c + 1)mG + 2h −
Li et al. [8] (h + aG +mG) n ch + caG + caZ p 4P 4P

Zhou et al. [1] (2eG +mG +H) n (c + 3) eG +
cmZ p + caZ p

ceG +mG + 2P −

Our scheme (2eG +mG +H) n ceG +
(c + 1)mZ p +

caZ p + h

(c + 2) eG + 2mG +
2P

t((c + 2)eG +
2mG + P) + P

Table 4 shows that our scheme has the same computational cost as scheme [1] for generating homo-
morphic verification labels. For the Response algorithm, compared to scheme [1], our scheme introduces
an additional mZ p + h but reduces 3eG . This leads to a reduction in overall computational cost. For the
CheckProo f algorithm, our scheme increases the computational cost for proof verification to an acceptable
level. Assuming the TPA audits the data of t users, our scheme only requires a computational cost of P +
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t ((c + 2) eG + 2mG + P), while scheme [1] incurs a higher computational cost of t ((c + 2) eG + 2mG + 2P),
as bilinear pairing operation P is very time-consuming.

Compared to scheme [7], our scheme requires roughly the same computational cost in the Response
and CheckProo f phases but incurs higher computational costs during the batch auditing phase. Addition-
ally, in the verification label generation phase, our scheme’s computational cost is slightly higher than that of
scheme [7].

7.3 Experimental Results
In this section, we analyze our scheme in terms of communication overhead and computational cost.

Our experiments were conducted on a computer equipped with I7-9750H 2.60 GHz processor and 8 GB of
memory. We implemented our scheme using the JAVA programming language and the JPBC cryptographic
library. In the experiments, we selected a 512-bit base field size and a 160-bit size element in Z∗p .

Here, n represents the number of data blocks uploaded by the user, and c represents the number of
data blocks challenged by TPA. We use a 2 MB file as the outsourced file and divide it into 50, 100, 150, 200,
250, 300, 350, 400, 450, and 500 blocks. For the setting of challenge blocks, based on [2], we know that a
constant number of 460 blocks need to be challenged with 99% confidence. When the number of data blocks
n exceeds 460, we set the number of challenge blocks c to 460. When the number of data blocks n is less
than 460, we set the number of challenge blocks c to n.

We perform a simulation of our scheme on the computer. In Fig. 3a, we can see the runtime of each
phase for scheme [1], and in Fig. 3b, we can observe the runtime of each phase for our scheme. Since we
only modifies the Response and CheckProo f algorithms, the overall computational cost of the TagGen
(StateGen) algorithm shows little difference between the two schemes.

Figure 3: (a) Computation cost of the original scheme; (b) Computation cost of our scheme

In Fig. 4a, we compare the runtime of the StateGen phase between our scheme and scheme [1]. The
runtime of our scheme is approximately the same as that of scheme [1]. The runtime of the StateGen phase
increases as the number of data blocks increases. Furthermore, since we did not modify the algorithm in the
StateGen phase, the runtime remains essentially the same.
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Figure 4: (a) Computational cost comparison in the TagGen phase; (b) Computational cost comparison in the
Response phase

In Fig. 4b, we compare the runtime of the Response phase between our scheme and scheme [1].
Although we add a few operations in this phase, the impact on the overall overhead is minimal. The
computational cost of both schemes increases with the number of data blocks.

In Fig. 5a, we compare the runtime of the CheckProo f phase. In practice, we add two exponentiation
operations in G and one multiplication operation in G. However, based on the experimental results, the
impact on performance is minimal. Consequently, despite the differences in the verification equations
between the two schemes, their computational overhead is nearly identical.

In Fig. 5b, we evaluate the computational cost of auditing 0 to 10,000 different users simultaneously. The
results in Fig. 5b demonstrate that the computational cost increases with the number of users. As the number
of users increases, the advantages of batch auditing become more pronounced. Specifically, for 10,000 users,
batch auditing reduces the computational cost by 101 s compared to normal auditing. Our scheme supports
batch auditing, allowing the TPA to audit a larger volume of data in the same timeframe. For users, this
enables timely monitoring of data status and rapid detection of data corruption.

For larger datasets, we implemented our auditing scheme across varying file sizes. As shown in Fig. 6,
the signature time increases proportionally with the file size. It is worth noting that the proof generation
and verification times exhibit minimal variation, as c is set to 460. Comparing Fig. 6a and b, we observe
that although our scheme introduces additional computations during the auditing phase, the computational
overhead remains minimal. Simultaneously, the scheme ensures enhanced security.
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Figure 5: (a) Computational cost comparison in the CheckProof phase; (b) Comparison of normal auditing and batch
auditing

Figure 6: (a) Computation cost of the original scheme with different file sizes; (b) Computation cost of our scheme
with different file sizes

8 Conclusion
To ensure the security of users’ data, Zhou et al. proposed a practical data auditing scheme. However,

certain security issues have been identified during the auditing process. After identifying the issues in the
original scheme, we propose an auditing scheme with recoverability and batch auditing capabilities to address
these challenges. Our scheme incorporates masking techniques to enhance the auditing phase, ensuring
secure data storage at a reduced cost. Additionally, we utilize an improved IBF to efficiently recover damaged
data in the event of corruption. The security analysis demonstrates enhanced security, while the performance
analysis reveals only a marginal increase in computational overhead. Most importantly, our scheme supports
batch auditing, enabling the TPA to audit a larger volume of data within the same timeframe and allowing
users to monitor data dynamics and rapidly detect data corruption.
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