
echT PressScience

Doi:10.32604/cmc.2025.062819

REVIEW

A Literature Review on Model Conversion, Inference, and Learning Strategies in
EdgeML with TinyML Deployment

Muhammad Arif1,* and Muhammad Rashid2

1Department of Computer Science and Artificial Intelligence, Umm Al-Qura University, Makkah Al-Mukarama, 21955, Saudi Arabia
2Department of Computer and Network Engineering, Umm Al-Qura University, Makkah Al-Mukarama, 21955, Saudi Arabia
*Corresponding Author: Muhammad Arif. Email: mahamid@uqu.edu.sa
Received: 28 December 2024; Accepted: 13 February 2025; Published: 26 March 2025

ABSTRACT: Edge Machine Learning (EdgeML) and Tiny Machine Learning (TinyML) are fast-growing fields that
bring machine learning to resource-constrained devices, allowing real-time data processing and decision-making at
the network’s edge. However, the complexity of model conversion techniques, diverse inference mechanisms, and
varied learning strategies make designing and deploying these models challenging. Additionally, deploying TinyML
models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications
across various sectors. These factors underscore the necessity for a comprehensive literature review, as current reviews
do not systematically encompass the most recent findings on these topics. Consequently, it provides a comprehensive
overview of state-of-the-art techniques in model conversion, inference mechanisms, learning strategies within EdgeML,
and deploying these models on resource-constrained edge devices using TinyML. It identifies 90 research articles
published between 2018 and 2025, categorizing them into two main areas: (1) model conversion, inference, and learning
strategies in EdgeML and (2) deploying TinyML models on resource-constrained hardware using specific software
frameworks. In the first category, the synthesis of selected research articles compares and critically reviews various
model conversion techniques, inference mechanisms, and learning strategies. In the second category, the synthesis
identifies and elaborates on major development boards, software frameworks, sensors, and algorithms used in various
applications across six major sectors. As a result, this article provides valuable insights for researchers, practitioners,
and developers. It assists them in choosing suitable model conversion techniques, inference mechanisms, learning
strategies, hardware development boards, software frameworks, sensors, and algorithms tailored to their specific needs
and applications across various sectors.

KEYWORDS: Edge machine learning; tiny machine learning; model compression; inference; learning algorithms

1 Introduction
Deep Learning (DL) has emerged as a new Machine Learning (ML) paradigm, capable of automatically

learning complex data representations at multiple levels of abstraction [1]. At the same time, the processing
and communication capabilities of embedded devices have tremendously increased [2]. As a result, the term
Internet of Things (IoT) has emerged that refers to a network of interconnected embedded devices [3].
However, IoT devices generate vast amounts of data and have limited resources. Therefore, cloud computing
is integrated into IoT frameworks to provide the required computational and storage capacity. While the
cloud offers essential processing power, cloud-stored data may not always be secure [4]. Consequently,
IoT frameworks utilize edge computing, which relies on devices that can perceive their environment and
process data locally. In this context, Edge Machine Learning (EdgeML) extends edge computing by directly

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.062819
https://www.techscience.com/doi/10.32604/cmc.2025.062819
mailto:mahamid@uqu.edu.sa

14 Comput Mater Contin. 2025;83(1)

integrating ML and DL capabilities into edge devices. This recent ML paradigm shifts all or part of the
machine learning computation from the cloud to edge devices [5].

Fig. 1 illustrates a typical EdgeML architecture with three layers. The edge layer (front end) is equipped
with sensors and signal-processing algorithms. This layer is responsible for data collection and processing.
As a result, inference and training of local models take place. It connects to the edge computing layer
(near end) via wireless communication. The edge computing layer acts as an intermediary, linking edge
devices to the cloud. It supports inference and learning of new data in collaboration with edge devices. It
may involve splitting the model across multiple devices for collaborative (distributed) inference or running
the entire model on a single device. If an edge device lacks sufficient resources, it can collaborate with
other edge devices or the edge server [5,6]. Its key advantages include enhanced data privacy and security,
as data is not transmitted to a centralized server. Additionally, the failure of a single device has minimal
impact on the learning process, and scalability is easily managed by engaging multiple devices as needed.
Strategies for distributed learning on edge devices include federated learning, model splitting/partitioning,
and hierarchical clustering learning [7].

� Training Data Pre-Processing

� Global Model Training

� Fine-Tuning of Pre-Trained Mod-

� Model Training

� Collaborative/Distributed Inference

� Collaborative/Distributed Learning

� Data Pre-Processing

� Local Model Inference

� Local Model Training

Cloud Computing Layer
(Far End)

Edge Computing Layer

(Near End)

Edges Layer

(Front End)

Data\ Feature
Model Updates

Model Updates

Figure 1: A typical three-layer edge machine learning architecture

While the edges layer and edge computing layer perform local and distributive model training, a
cloud computing layer (far end) contains extensive computational resources for global model training
and running high-demand algorithms using pre-processed data. Moreover, pre-trained models can be
fine-tuned for specific tasks but often require model conversion to reduce complexity for edge device
deployment [8]. Consequently, there are various distributed model design and deployment strategies. These
distributed or collaborative strategies must be compared in terms of latency, privacy, security, reliability,
energy consumption, and computational capabilities.

From the above discussion, it can be concluded that the EdgeML framework involves three main steps.
The first step is model conversion or compression, which creates smaller models or converts complex models
into simpler ones through pruning, quantization, and knowledge distillation. The model’s complexity is
tailored to the edge device’s resources. The second step is optimized inference that minimizes resource

Comput Mater Contin. 2025;83(1) 15

usage on edge devices. Finally, protocols such as collaborative learning across multiple devices should be
implemented to update the model if further learning is needed.

In addition to three major steps in EdgeML, another trend is performing complex processing tasks
entirely on edge devices [2]. TinyML (Tiny Machine Learning) enables ML and DL algorithms to run on tiny
devices like microcontrollers [9]. TinyML architecture focuses on designing memory-efficient models for
edge devices, ensuring high performance. It has led to the concept of the Internet of Intelligent Things (IoIT),
which combines embedded hardware, wireless networking, and artificial intelligence. TinyML frameworks
rely on specialized sensors, software frameworks, and tools for developing, training, and deploying models
on resource-constrained devices [10].

1.1 Motivation for the Review and Limitations of Existing Reviews
Given the variety of model conversion techniques in EdgeML, and the importance of scalable and

efficient inference mechanisms and learning strategies for large-scale deployments, conducting a literature
review on these topics can enhance understanding of performance improvements in speed, latency, and
energy efficiency. Additionally, it can offer a comprehensive overview of TinyML applications across different
domains, exploring the latest advancements in hardware, software, and sensor technologies. The limitations
of state-of-the-art review articles have been highlighted in Table 1. These limitations reveal that there is
no comprehensive literature review that covers model conversion, inference, and learning in EdgeML and
TinyML deployment at the same time. Therefore, by synthesizing existing research, the literature review
can identify knowledge gaps and suggest future research directions in the most promising areas of EdgeML
and TinyML.

Table 1: Summary of state-of-the-art review articles on EdgeML and TinyML

Ref. Year Focus Limitations
Edge ML

[5] 2023 • Examines various edge computing
paradigms from various perspectives

• Provides an overview of EdgeML for
limited computing resources

• Does not review state-of-the-art
techniques on model conversion,
inference mechanisms, and
learning strategies

• Does not discuss hardware and
software frameworks for the
deployment of ML and DL on
edge devices

[11] 2024 • Emphasizes the evolution of EdgeML
• Pinpoints research opportunities in

EdgeML to unify ML and
edge computing

[12] 2023 • Addresses key issues in EdgeML and
summarizes optimization techniques

(Continued)

16 Comput Mater Contin. 2025;83(1)

Table 1 (continued)

Ref. Year Focus Limitations
[13] 2023 • Highlights the potential of

edge computing
• Describes lightweight

ML frameworks
• Explores privacy issues

• Does not review techniques to create
lightweight ML models and
learning mechanisms

[14] 2024 • Compression techniques of DNN
• Explore the applicability of

compressed models in
visual applications

• Does not cover the learning and
inference aspects of EdgeML on
resource-limited architectures

TinyML
[10] 2024 • Classifies model

optimization techniques
• Hardware and software frameworks

Discuss TinyML
educational resources

• Does not classify hardware and
software frameworks as well as model
conversion, inference, and
learning strategies

[2] 2024 • Ahistorical evolution of IoIT and
reviews TinyML models on
embedded devices

[15] 2024 • Edge computing platforms and their
role in the deployment of
EdgeML workflows

• Reviews frameworks and libraries for
ML and models on constrained
edge devices

• Only limited to the deployment of
EdgeML workflows and does not
discuss the deployment of
TinyML workflow

[16] 2024 • Systematically reviews TinyML
models on embedded devices with
hardware and software frameworks

• Only limited to TinyML deployment
and does not review model
conversion, inference, and
learning strategies

1.2 Contributions
The limitations of state-of-the-art review articles, highlighted in Table 1, have been rectified by perform-

ing this literature review. Particularly, it has explored the answers to the following five research questions:
Research Question 1: What are the state-of-the-art model conversion techniques used in EdgeML, and

how do they impact the performance, efficiency, and deployment of machine learning models on resource-
constrained devices?

Research Question 2: What are the current state-of-the-art inference mechanisms used in EdgeML,
and how do they compare in performance and efficiency?

Research Question 3: How do different learning strategies impact the performance and efficiency of
ML models deployed in edge computing environments?

Comput Mater Contin. 2025;83(1) 17

Research Question 4: What are the key challenges and problems and the associated ML/DL models in
deploying TinyML on resource-constrained devices in various sectors?

Research Question 5: What are the latest advancements in hardware, software frameworks, and sensors
designed explicitly for TinyML frameworks?

It can be observed from the above research questions that the contribution of this literature review
is twofold: (1) a critical review of model conversion techniques, inference mechanisms, and learning
strategies in EdgeML, (2) identification of hardware development boards, software frameworks, sensors,
ML/DL models and applications across various sectors for the deployment of TinyML models on resource-
constrained devices.

Table 2 provides an overview of the literature review on model conversion, inference, and learning
in EdgeML with TinyML deployment in different sectors. The process starts by developing a review
protocol, selecting 90 research articles from renowned databases, categorized into two main areas: (1)
model conversion, inference, and learning in EdgeML and (2) model deployment in six different sectors
on resource-constrained devices with TinyML. The first category includes 60 articles, divided into model
conversion (40 articles), inference (10 articles), and learning (10 articles). The second category comprises 30
articles, divided into six sectors with five articles each.

Table 2: Overview of the literature review on model conversion, inference, and learning in EdgeML with TinyML
deployment in different sectors

Selection of 90 research articles according to a review protocol
Model conversion, learning, and inference in EdgeML

(60 articles)
Model deployment with TinyML in

(30 articles)
IEEE
(18)

Elsevier (34) ACM
(4)

Springer (4) IEEE
(15)

Elsevier
(6)

ACM
(6)

Springer (3)

Classification of selected research works into subcategories (total = 90)
Model

Conversion
(40)

Inference
Mechanisms

(10)

Learning
Strategies

(10)

Smart
Agri.
(5)

Health
& En.

(5)

Vehic.
& Aut.

(5)

Indus.
& Rob.

(5)

Ener.

(5)

Secu.

(5)
Synthesis of qualitative and quantitative analysis

� Pruning
� Quantization
� Factorization
� Knowledge

Distillation

� On-device
� Distributed

� On-device
� Continual
� Federated

� Identification and comparison of Hardware
Development Boards

� Identification of Software Frameworks
� Identification of 30 applications (examples) in 6

sectors with models and sensors

It can be seen in Table 2 that most research in EdgeML centers on model conversion, adapting resource-
intensive models for deployment on resource-limited devices. This focus stems from the widespread use
of powerful deep-learning models in various real-world applications. However, research into learning and
inference mechanisms on edge devices remains challenging and needs further exploration.

The first category’s comprehensive analysis covers four model compression techniques (pruning, quan-
tization, low-rank factorization, and knowledge distillation), inference mechanisms (on-device inference
and split-model inference), and learning strategies (on-device learning, continual learning, and federated
learning). The second category’s synthesis provides an in-depth discussion on hardware development boards
and software frameworks for deploying TinyML models, identifying 30 applications with corresponding
ML/DL models and sensors across six major sectors.

18 Comput Mater Contin. 2025;83(1)

1.3 Organization
This article is organized as follows: Section 2 defines categories and reviews protocol development.

The summary of major findings on model compression techniques, inference mechanisms, and learning
strategies is presented in Section 3, while the results of TinyML deployment on resource-constrained
devices are presented in Section 4. Discussion of results from Sections 3 and 4, addressing research
questions, is presented in Section 5. A discussion of important aspects and limitations of the research is
presented in Section 6. Exploration of challenges and future research directions are presented in Section 7.
Finally, Section 8 concludes the article.

2 Methodology of the Literature Review
In order to obtain the answers to research questions formulated in the introductory part of this article,

literature review process guidelines provided in [17] have been used. A typical literature review procesds
defines categories and develops a review protocol for selecting research articles. Therefore, Section 2.1
describes the essential background of different categories. Subsequently, various steps of the review protocol
are described in Section 2.2.

2.1 Background on Categories
The research articles, selected according to the review protocol, are categorized into two types: (1) model

conversion, inference, and learning (2) model deployment on resource-constrained devices.

2.1.1 Model Conversion, Inference, and Learning
As the Introduction section mentions, edge devices have computational power, memory, and energy

resource constraints. Therefore, it is essential to design ML and DL models considering these limitations.
There are two main approaches to achieve this: (a) develop a model tailored to the edge device’s limitations
and train it on a large dataset to ensure satisfactory performance across various environments, and (b)
adopt a large pre-trained model to make it suitable for edge devices. Moreover, due to limited resources,
model inference requires device-specific or problem-specific strategies. Inference can be adapted based on
available resources and task requirements. Furthermore, retraining models with new data is essential in
some scenarios, optimizing performance over time. Therefore, the following subsections provide essential
background on model conversion, inference, and continuous learning.

The main goal of model conversion is to reduce model size without compromising performance. Fig. 2
shows various stages of model conversion, which can be applied individually or in combination. After
training the original model on sensor data, parameters can be quantized and pruned. Other techniques to
reduce model size include knowledge distillation and low-rank factorization. As shown in Fig. 2, the training
data is collected from various sensors based on task requirements. A conventional model is developed
using knowledge of the problem, data, and performance needs. DL models, popular for tasks like image
processing and object detection, have numerous parameters and require significant computational and
memory resources. These models are typically trained on cloud platforms or high-performance machines
and then converted into edge device-friendly models using pruning. Pruning removes insignificant or
redundant parameters, creating sparser models without significantly reducing performance.

Comput Mater Contin. 2025;83(1) 19

Figure 2: Block diagram of model conversion and compression

While pruning removes less important connections in a model without compromising performance,
quantization maps higher bit-width values to lower bit-width values, with accuracy depending on optimal
quantization levels. Parameters like weights, biases, and activation functions in deep neural networks can be
quantized. On edge devices, gradient and error values may also be quantized. Quantization can be applied
to pre-trained models to assess accuracy or performance compromise. Fixed-precision quantization maps
32-bit floating points to k-bit integers, where k is less than 32 bits. For k-bit quantization, the procedure is
defined as follows:

Qk (r) = round (r
Δ
) − Z (1)

where Z is an integer zero point value, Δ is the step size, and r is the 32-bit floating point value ranging from
α to β. Two simple methods of k-bit quantization are MaxRange method and MinPQE [6]. The MaxRange
method selects the step size based on the real value range as follows:

Δ = β − α
2k − 1

(2)

In contrast, the MinPQE method optimizes step sizes for each neural network layer based on quantiza-
tion error, improving performance and reducing error through quantization granularity. For instance, 8-bit
quantization on the NasNet–A model increases classification error from 4% to 5%. Extreme quantization
uses less than 4-bit quantization. The step size, or scaling factor, is crucial for minimizing quantization loss,
with much research focused on its optimization. Post-quantization training can enhance accuracy, and pre-
training quantization benefits edge devices with limited resources. Low-rank decomposition can reduce the

20 Comput Mater Contin. 2025;83(1)

number of parameters in deep neural networks by approximating the weight matrix to a low-rank structure.
However, it may cause significant performance degradation, making it less suitable for model compression.

Fig. 3 explains two types of quantization strategies in model compression. In the quantization-aware
training of the model, a quantization policy is defined as one that quantizes the weight, activation function,
filters, etc. The model’s learning depends on its performance based on the model parameters and the
current quantization policy. Hence, the model parameters and the quantization mechanism are updated
simultaneously or in batch mode. Meanwhile, in post-training quantization, a model is trained on the dataset
first, and then the model parameters are quantized.

Figure 3: Block diagram of quantization process

A complex teacher model with many parameters is trained on a dataset in knowledge distillation.
Once trained and tested, its knowledge is transferred to a smaller, simpler student model. Student models
are lightweight, can be deployed on resource-constrained devices, and can be customized according to
hardware requirements. This process creates a simpler model with a smaller memory footprint and lower
computational requirements. There are three main categories for transferring knowledge: response-based,
features-based, and relation-based knowledge distillation [18].
Inference Strategies

Once deployed on an edge device, a machine learning model infers decisions based on its task. Due to
limited resources, different inference techniques are used for efficiency [19]. Lightweight models like TinyML
or SqueezeNet can perform direct inference on the edge device, offering low latency, no communication
requirement, high privacy, and data security. For heavier computation, the model can be split into parts
to run on multiple edge devices or servers or in collaboration with the cloud. It preserves data privacy by
preprocessing on the edge device and sharing features with the server. Partitioning-based inference methods
include data-based partitioning, where input data is divided among devices, and model partitioning, where
the model is split among devices or servers.
Learning Strategies

Deep neural network-based solutions on edge or IoT devices are crucial for automation, offering high
latency, privacy, and reduced communication bandwidth. High latency enables faster decision-making,

Comput Mater Contin. 2025;83(1) 21

which is essential for many applications. Edge machine learning often uses computational offloading to
manage limited resources, transferring tasks to robust edge servers or cloud platforms. Task offloading
decisions depend on the network connection, latency requirements, and DL model structure. Various
strategies exist for offloading tasks. Federated learning (FL) enhances data privacy on edge devices by
training models collaboratively with other devices or servers [20]. Data remains on edge devices, and only
model parameters are shared, reducing network bandwidth utilization and latency while improving model
generalization on heterogeneous data. Each device trains on a subset of data using stochastic gradient descent
method variants. The main server initializes tasks, assigns them to edge devices, and aggregates optimized
model parameters to create a global model. This process iterates to minimize global loss, with the server
updating and distributing the global model parameters.

2.1.2 Model Deployment on Resource-Constrained Embedded Devices
TinyML enables the deployment of ML and DL models on embedded devices like microcontrollers and

single-board computers. This technology makes low-power edge devices “smart,” allowing them to perform
complex tasks independently. Implementing ML and DL models on these devices is more challenging than
the conventional EdgeML approach, where models are hosted in the cloud and run on powerful computers.
Hardware Requirements

It is challenging for a hardware platform to simultaneously meet energy, cost, and processing efficiency.
Some platforms may have enough processing power but lack energy efficiency or cost-effectiveness, and
vice versa. Choosing the right device for a specific application is crucial in the TinyML paradigm. Devices
with higher computational power that still consider energy efficiency and cost are called High-end TinyML
architectures. Similarly, devices with lower computational power, suitable for small tasks only, are called
Low-end TinyML architectures [2]. Examples of high-end TinyML architectures are single-board computers
(SBCs), which run entire operating systems and TinyML models in real-time. They are used as sensor nodes
and gateways in IoT. On the other hand, low-end TinyML architectures target energy efficiency and cost-
effectiveness, making them suitable for more straightforward tasks. This class includes microcontroller units
(MCUs) with low-power processors, limited RAM, and simple interfaces.
Software Frameworks

Software frameworks for model deployment offer pre-built tools and libraries, allowing developers
to focus on model optimization rather than low-level hardware details. These frameworks optimize ML
and DL models for resource-constrained devices, reducing model size and improving inference speed.
They enable models to run on different hardware with minimal changes, making it easier to scale TinyML
applications across various devices. Commonly used frameworks include Edge Impulse, TensorFlow, and
TensorFlow Lite.
Model Types

Different machine learning models are tailored for specific tasks based on the application prob-
lem. For example, CNNs (Convolutional Neural Networks) identify objects, faces, and scenes in
images. Similarly, time-series models like RNNs (Recurrent Neural Networks) and LSTMs (Long
Short-Term Memory Networks) handle sequential data and capture temporal dependencies. Cluster-
ing models like K-Means and DBSCAN group similar data points without predefined labels used in
anomaly detection.
Applications

TinyML models are ideal for battery-operated devices and real-time decision-making applications. They
require small, inexpensive hardware, reducing deployment costs. Their adaptability across different devices

22 Comput Mater Contin. 2025;83(1)

and platforms makes them suitable for scalable applications. Local processing enhances privacy and security
by keeping data on the device. Consequently, TinyML models can be deployed in various fields, such as
healthcare, agriculture, smart homes, and industrial automation.
Sensors

Different sensors are used in TinyML applications to capture various data types for specific tasks—
for example, cameras for image classification and accelerometers for activity recognition. The right sensor
ensures accurate and relevant data, improving model performance and reliability. Different environments
require different sensors, like soil moisture sensors for agriculture and temperature sensors for smart homes.
Power-efficient sensors are suitable for battery-operated devices, maintaining overall power efficiency.
Ensuring sensor compatibility with hardware and software platforms ensures seamless integration and better
performance of the TinyML system.

2.2 Review Protocol Development
The development of a review protocol is essential in a typical literature review process. The developed

protocol in this section contains all the required steps. These steps are: criteria for selecting and rejecting
studies (Section 2.2.1), search process (Section 2.2.2), and data extraction & synthesis (Section 2.2.3).

2.2.1 Selection and Rejection Criteria
i. Subject-Relevant: Select research only if it is relevant to our research context and supports the answers

to our research questions.
ii. Publication Date (2018–2025): Select research published between 2020 and 2025 to include the latest

studies. Reject any research published before 2018.
iii. Publisher: Select research published in one of the four renowned scientific databases: IEEE, Springer,

Elsevier, and ACM.
iv. Crucial Effects: Select research that significantly affects IIoT development through the EdgeML and

TinyML approach.
v. Results-Oriented: Select results-oriented research with proposals and outcomes supported by solid

facts and experimentation.
vi. Repetition: Avoid including identical research within the same context.

2.2.2 Search Process
The selection and rejection criteria outlined in Section 2.2.1 indicate that we have chosen four scientific

databases (IEEE, ELSEVIER, SPRINGER, and ACM). These databases include high-impact journals and
conference proceedings. Using search terms like Edge AI, TinyML, and EdgeML, we applied a “2018–
2025” filter. The search terms and results for each database are summarized in Table 3. If a search term has
produced thousands of results, we used advanced search options (e.g., “where abstract contained”, “where
title contained”) provided by these databases to get more precise results. Finally, Fig. 4 shows various steps
during the selection of research articles. We specified search terms in four scientific databases and analyzed
approximately 43,651 results based on our selection and rejection criteria. We discarded 26,991 studies by title,
9173 by abstract, and 6495 after a general review. Finally, we performed a detailed review of the remaining
992 articles and selected 90 research articles.

Comput Mater Contin. 2025;83(1) 23

Table 3: Details of search terms and search results in selected databases

S. no. Search term Number of search results

IEEE Elsevier Springer ACM
1. Edge AI 4077 1012 51 586
2. EdgeML 1741 857 2 373
3. TinyML 497 59 31 254
4. TinyML hardware 161 13 27 216
5. TinyML applications 273 36 31 250
6. TinyML software 79 8 24 197
7. Edge machine learning 5899 2155 717 1189
8. Internet of intelligent things 7847 1794 42 565
9. TinyML model 416 44 32 4
10. TinyML microcontroller 212 23 100 18
11. Edge quantization 820 227 549 154
12. Edge pruning 750 176 858 320
13. Edge low-rank factorization 17 4 223 74
14. Edge knowledge distillation 348 91 421 66
15. Edge federated learning 2650 412 504 295
16. Edge continual learning 94 21 215 35
17. Edge model splitting 521 212 1537 145

Springer
5364 articles

Total Ar�cles = (43651 ar�cles)

IEEE
26402 articles

Elsevier
7144 articles

ACM
4741 articles

1 ar���cle

Rejec�on based on the TITLE
(26991 ar�cles)26991 a

Rejec�on based on the ABSTRACT (9173 ar�cles)

Rejec�on based on the GENERAL STUDY (6495 ar�cles)

Detailed Study of (992 ar�cles)

Selected
(90)

Rejected
(902)

tal ArA �c ((

n bbbaased

Figure 4: Search process (various steps during the selection of research articles)

24 Comput Mater Contin. 2025;83(1)

2.2.3 Data Extraction and Synthesis
As shown in Table 4, data extraction and synthesis are conducted for selected studies to address our

research questions. For data extraction (serial numbers 2 to 6), we gather essential details from each study to
ensure they meet the selection and rejection criteria. We perform a detailed analysis for data synthesis (serial
numbers 7 to 10), thoroughly examining and categorizing each study. Each study is meticulously reviewed to
fit the corresponding category. Statistics of research articles according to the publication year are provided
in Fig. 5.

Table 4: Details of data extraction and synthesis

S. no. Description Details
1. Bibliographic

information
Title, author, publication year, publisher details, and type of

research (i.e., journal or conference)
Data extraction

2. Overview The basic proposal and objective
3. Results Results acquired from the selected research
4. Data collection Quantitative or qualitative
5. Assumption Assumptions (if any) to validate the results
6. Validation Validation method used to validate its proposal

Data synthesis
7. Model conversion

techniques
Table 5: Results of structured pruning methods

Table 6: Results of quantization methods
Table 7: Results on quantization-aware training

Table 8: Results of low-rank factorization
Table 9: Results of knowledge distillation

8. Inference
mechanisms

Table 10: Results of inference strategies

9. Learning strategies Table 11: Results of continual learning methods
Table 12: Results of federated learning methods

10. TinyML sectors,
applications, and

models

Table 13: Applications and machine learning models in six
identified sectors

11. Hardware boards Table 14: Summary of development boards
12. Software

frameworks
Table 15: Distribution of selected research works according to

three software frameworks
13. Sensors Table 16: Sensors used for the deployment

3 Results on Model Conversion, Inference and Learning
Based on the methodology of Section 2, the selected research studies have been classified into two major

categories: (1) model conversion, inference, and learning in EdgeML (2) model deployment on resource-
constrained devices with TinyML. Consequently, the results on model conversion (Section 3.1), efficient
inference (Section 3.2), and continuous training strategies (Section 3.3) are presented in this section, while
the results of model deployment will be presented in Section 4.

Comput Mater Contin. 2025;83(1) 25

Figure 5: Statistics of research articles according to the publication year

3.1 Model Conversion Methods
Deploying large models on resource-constrained edge devices is impractical. Two options are available:

(1) Customize a small DL model with fewer layers and full precision parameters to fit within the edge device’s
memory and require less computational power, (2) Convert and compress an existing model by removing
insignificant parameters and using quantized parameters with lower precision or bit-width to achieve similar
performance. The learning process can incorporate quantized gradients if training occurs on edge devices.
The following subsections will detail various techniques for model conversion and compression.

3.1.1 Pruning Methods
Pruning methods are divided into structured and unstructured methods. Unstructured pruning creates

irregular, sparse models by pruning any weight without constraints, followed by retraining to mitigate
performance loss. However, this method requires specific hardware and software redesigns for efficiency.
Therefore, Li et al. [21] proposed a flexible rate filter pruning method (structured) using a loss-aware process.
Structured pruning removes redundant filters and channels to make the models lighter in size. Filter norms
can help identify insignificant filters. For example, low norm filters exhibit low activation in feature maps and
can be pruned. The sensitivity of each filter to model performance can be measured to prune unimportant
filters [22]. Structured pruning is straightforward for DL models with simple convolutional layers. However,
the pruning strategy must consider the consistency of feature maps and residual flows for residual block-
based networks. Due to the complexity of DL models in pattern recognition, most research focuses on
structured pruning methodologies, as shown in Table 5.

In CNNs, filters in convolutional layers are pruned to improve efficiency. Various methods have
been proposed, such as Capped L1-norm balances regularization and filter selection [23]. Yu et al. [24]
treat pruning as a nonconvex-constrained optimization problem, using information from a Taylor-based

26 Comput Mater Contin. 2025;83(1)

approximation to quantify filter contributions and prune the network. Another method, proposed by He
et al. [22], prunes filters layer by layer using a standard loss function like cross-entropy, followed by fine-
tuning to improve performance. This process is repeated for each layer until the entire network is pruned.
The goal of these methods [22–24] is to optimize the model’s performance while reducing complexity.

Table 5: Results of structured pruning methods on CNN architectures

Ref. Dataset/
Model

Pruning method Baseline
accuracy

Accuracy Pruned
parameters

Model size
reduction

Flops
saved

[21] CIFAR-10
ResNet-110

Flexible pruning 94.2% 94.2% — — 64%

[22] CIFAR-10
VGG-16

Filters 93.6% 93.3% — — 52%

[23] CIFAR-110
VGG-16

Filters 73.4% 73.6% 6.4 M 56% 44%

[23] CIFAR-110
ResNet-164

Filters 76.8% 76.8% 0.8 M 30% 51%

[24] CIFAR-10
VGG-16

Hybrid 93.7% 93.5% 0.76 M 94% 73%

[24] CIFAR-10
ResNet-56

Hybrid 93.9% 90% 0.08 M 90% 87%

[25] CIFAR-100
VGG-16

Filters 73.9% 73.6% — 50% —

[25] CIFAR-100
ResNet50

Filters 75.9% 74% — — 51%

[26] CIFAR-10
VGG-16

Filters 93.9% 93.4% — 93% 81%

[26] CIFAR-10
ResNet-110

Filters 93.2% 93.2% 62% 62%

[27] CIFAR-100
VGG-16

Filters 73.6% 73.4% 0.85 M 94% 84%

[27] CIFAR-100
ResNet-50

Filters 71% 70.9% 18 M 76% 76%

[28] CIFAR-10
VGG-16

Filters 93.9% 92.8% 1.15 M 92% 84%

[28] CIFAR-10
ResNet-110

Filters 93.5% 93.4% 0.52 M 69.9% 73%

[29] CIFAR-10
VGG-16

Weights 93.6% 93.2% — 77% 64%

[29] CIFAR-10
ResNet-110

Weights 92.5% 92.3% — 46% 49%

In addition to the works in [22–24], some filter pruning methods are based on the statistics of the feature
map generated by the entire training dataset. In this context, Mondal et al.’s method [25] evaluates filter
importance for each class separately using the normalized L1-norm of the feature map. Filters generating

Comput Mater Contin. 2025;83(1) 27

dominant patterns for a class are not pruned. Similarly, Sarvani et al.’s knowledge transfer method [26] uses
a customized regularizer function to transfer knowledge from pruned filters to important ones, minimizing
information loss by adjusting L1-norm values. The mutual information theory method, proposed by Lu
et al. [27], prunes filters in two steps. The first step calculates the class relevance of each filter using conditional
mutual information on mini-batches. The second step averages class synthesis evaluation criteria (relevance
and redundancy) across mini-batches and prunes filters with lesser contributions.

While methods in [25–27] aim to optimize model performance by selectively pruning filters based
on their importance and relevance, Wavelet Transform-Based pruning uses cosine similarity and energy-
weighted components of high and low frequencies to determine the importance score of each feature
map [28]. A multi-objective evolutionary framework by Chung et al. [29] balances performance and
efficiency for edge devices using a fitness function based on the pruned model’s flops ratio and error rate.
It employs three pruning criteria: L1-norm-based, percentage of zero activations, and gradient-based. The
converged pruned architectures provide a Pareto front for solutions balancing accuracy and inference time.
These methods [28] and [29] aim to optimize model performance while considering hardware constraints
and efficiency.

To summarize, Table 5 highlights the performance of different pruning methods and their performance
on various architectures and problems. The tables show that pruning the weights or filters can reduce the
computational cost of the model without sacrificing accuracy. For a higher reduction of Flops (78%), a drop
of around 3% accuracy is observed. Structured pruning (Table 5) is based on the selection or pruning of the
filters present in deep learning architectures. Such a pruning method deals with the weight matrix sparsity
in a better and more optimized way when considering hardware implementation.

3.1.2 Quantization Methods
State-of-the-art model conversion methods using quantization are shown in Table 6. Various

quantization methods used in the research works of Table 6 are mixed precision quantization [30],
vector quantization [31], quantization-loss aware algorithm [32], smart-DNN+ [33], multi-branch topol-
ogy [34], ultra-low bit quantization [35], Quantized MobileNetV2 [36], tiny CNN for fall prediction [37],
EtinyNet [38], Weight quantization based on clustering [39], layer-wise quantization [40] and extreme
quantization [41].

Table 6: Results of post-training quantization methods (*DSC = dice similarity coefficient)

Ref. Dataset/Model Bits
W/A

Baseline
accuracy

Accuracy FP32 model Compressed
model

[30] UFPR
ResNet-50

2 99.6% 99.92% 328.5 M 20.5 M

[31] CIFAR-10
VGG-Like

3 93.5% 93% 20.44 M 1.94 M

[32] ILSVRC-12
ResNet-18

3/3 69.2% 68.6% — —

[33] CIFAR-100
VGG-16

2 66% 66% 138 M 23 M

[34] CIFAR-100
ResNet-20

4 68.7% 69.4% 0.27 M 0.19 MB
(Memory)

(Continued)

28 Comput Mater Contin. 2025;83(1)

Table 6 (continued)

Ref. Dataset/Model Bits
W/A

Baseline
accuracy

Accuracy FP32 model Compressed
model

[35] BRATS
Residual UNet

2 0.8418 DSC* 0.8363 DSC* 5.9 M 0.25 M

[35] LiTS
3D UNet

2 0.7843 DSC* 0.7509 94.8 M 3.1 M

[36] MobileNetV2
Tongue Dataset

8 99% 98% 26 M (Flash
memory)

5.4 (Flash
memory)

[37] SisFall
TinyCNN

8 98.4% 98.3% Parameter
size = 546

Parameter
size = 546

[38] ETinyNet — — 66.5% — 477 K
[39] 1D MINIST

LeNet5
Clustering 83.7% 83.5% 114.06 M 70.27 M

[40] LiTs, BraTS2020
3D Unmet

4/4 78.36%,
84.8%

78.26%,
84.4%

— —

[41] YOLOv5l
MPQ-YOLOl

1/1 + 4/4 87% 74% 178.4 M 12.6 M

Kolf et al.’s mixed precision quantization [30] reduces model memory footprint by first quantizing a
32-bit floating point model to an 8-bit integer model, then iteratively training and reducing weights to as low
as two bits. As a result, the method achieves a 16-fold reduction in memory with minimal accuracy loss on
models like ResNet18, ResNet50, and MobileFaceNet. Vector Quantization [31] balances quantization loss
and model accuracy, achieving 5 to 16 times size reduction with minimal accuracy loss on different models.
The quantization-loss-aware algorithm [32], uses Taylor’s expansion to quantize deep neural network weights
to low bit-widths for stable convergence. Smart-DNN+ [33] provides a layer-wise quantization protocol
to compress models from full-precision to binary quantization. The multi-branch topology [34] avoids
quantization error due to bit-width switching by using fixed 2-bit weights in each branch and combining
branches to achieve the desired bit-width.

Ultra-low bit quantization [35] employs an adaptive quantizer with two tunable parameters to minimize
quantization error. Both weights and activation functions are quantized, and full-precision weights are
discarded after training. It achieves a comparable segmentation accuracy with one- and two-bit quantization.
In [36], a 8-bit quantized MobileNetV2 model has been deployed on a Cam H7 Plus embedded device to
classify oral cavity cancer. Tiny CNN for fall prediction [37] is trained on wearable sensor data, achieving
over 98% accuracy on two datasets after being quantized to 8 bits. Xu et al.’s EtinyNet [38] is a seven-layer
CNN with an extremely tiny backbone for visual processing, operating at 160 mW and processing 30 frames
per second (FPS).

Automated quantization and retraining of the deep neural network models using multi-objective
optimization (NSGA-II) is proposed in [39]. The authors have used two objectives, accuracy and model size,
to find the Pareto front of the solutions. Quantization is done through vector quantization by representing
the weight space into sub-regions, and a centroid of every sub-region is selected as a quantized weight rep-
resentation. Results of various models and datasets showed a decrease in model size by at least 30% without
significant loss of accuracy. Zhang et al. [40] have proposed a layer-wise quantization framework with an

Comput Mater Contin. 2025;83(1) 29

alternating direction method of multipliers to achieve fast convergence during deep neural network training.
They have applied the proposed method for volumetric medical image segmentation. A weight regularization
term is added to the quantization objective to retain the knowledge of the full precision weights.

The MPQ-YOLO [41] is an ultra-low mixed quantization of the YOLO model for edge devices,
combining 1-bit backbone and 4-bit head quantization with a dedicated training policy. The backbone,
containing convolutional layers, is highly compressed with 1-bit quantization, while the head, sensitive to
quantization error, uses 4-bit quantization. When compressing the model with extreme quantization, a
compromise is desired between efficiency and the model’s accuracy or performance [35,41].

To summarize, quantization methods map full-precision values to the nearest quantized value, but
clustering-based quantization assigns similar weight values to a single cluster center. As evident from Table 6,
It is challenging to decide which quantization method is better considering the accuracy and model
compression ratio tradeoff. Regularization, which prevents overfitting in neural networks, must be modified
for quantized networks. Post-training quantization can significantly drop model performance, so retraining
or fine-tuning is necessary. Therefore, quantization-aware training simulates the effect of low precision
during training, allowing the model to learn parameters that improve performance and reduce quantization
errors simultaneously. Quantization to a lower number of bits may reduce the model size considerably.
However, activation functions associated with each layer of the deep neural networks are difficult to quantize
due to their nonlinear nature. A combination of the quantization of weights and the activation function
achieves better results in terms of performance. Moreover, the quantization levels depend on the model
architecture and the problem it is solving. A combination of weight and activation function quantization
performs better in accuracy in many models. Therefore, the results of quantization-aware training are shown
in Table 7.

Table 7: Results of quantization-aware training methods

Ref. Dataset/Model Bits W/A Baseline
accuracy

Accuracy FP32 model Compressed
model

[42] CIFAR-10
GXNOR-Nets

3 92.88% 92.5% — —

[43] CIFAR-10
DenseNet

2 94.3% 94% 7 M 0.49 M

[44] CIFAR-10
ResNet-20

2 91.8% 90.9% — —

[45] CIFAR-10
ResNet50

2.68/4 76% 75.4% 97.28 M 9.45 M

[46] CIFAR-10
ResNet-18

8 88% 79% — —

[47] ImageNet
ResNet-18

3/3 70.2% 69.2% 11.6 M ~45%
decrease

[47] ImageNet
ResNet-18

5/5 70.2% 70.4% 11.6 M ~35%
decrease

Note: W: Weights, A: Activation.

The work in [42] has introduced a multi-step activation function quantization method and a derivative
approximation technique for backpropagation in discrete deep neural networks. This algorithm quantizes

30 Comput Mater Contin. 2025;83(1)

both activation functions and weights to ternary values, creating a binary sparse network. A symmetric
mixture of Gaussian modes [43] is a soft quantization-aware method that uses low-bit fixed quantization.
It involves training with real-valued weights and generating posterior distributions for post-quantization.
In [44], a training mechanism in a finite weight search space is presented. A Hessian-based mixed precision
quantization-aware training method is used to optimize the search for the best bit configuration [45],
employing a Pareto frontier method based on the average Hessian trace for different configurations. The
quantized process does not consider energy consumption in quantization-aware training. Hence, Hamming
Weight-based Energy Aware Quantization (HAMQ) is proposed in [46]. Considering the Compute-in-
memory (CIM) architecture for edge devices with limited resources, HAMQ provides better quantization for
energy efficiency. Jung et al. [47] proposed a trainable quantizer based on a quantization-interval-learning
(QIL) framework. They obtained the optimal values of quantization intervals by minimizing the task loss
of the network. Using the QIL framework, better quantization levels of weights and activation functions are
achieved on ResNet variants without degrading the ImageNet dataset’s accuracy, as shown in Table 7.

3.1.3 Model Compression Using Low-Rank Factorization
Table 8 provides the results of low-rank factorization methods. The tensor decomposition method

leverages shared tensor structures and parameters across DNN layers [48]. The optimization achieves 93%
accuracy with an eight-fold compression on ResNet-18 using CIFAR-10. It is important to note that matrix
and tensor decomposition identify and remove redundant parameters, decomposing larger weight matrices
into smaller, storage-friendly ones. On the other hand, convolutional layers are factorized into depth-wise
or pointwise convolutions, reducing the computational time during inference.

Table 8: Results of low-rank factorization methods to compress the model

Ref. Factorization Model Dataset Compression
[48] Tensors

decomposition
ResNet-18 CIFAR-10 8 times

[49] Sparse low-rank
factorization

VGG-16, VGG-19 CIFAR-10 C* = 3.6

[50] Tensor decomposition VGG16, VGG19,
ResNet-50

CIFAR-100 Compression ratio
98%, 97%, 95%

[51] Joint matrix
decomposition

ResNet-50
ResNet-34

CIFAR-10 6 times
22 times

[52] Deep compression VGG-16 ImageNet 15 times

Note: *C = Sparsified Compression ratio (ratio between truncated SVD and SLR).

The low-rank factorization is effective for compressing fully connected layers in deep neural networks
and can act as a regularization method to improve performance. Higher-order singular value decompo-
sition (SVD) can compress convolutional layers. Therefore, sparse low-rank factorization, using SVD and
truncating SVD matrices, achieves good compression ratios on VGG16, VGG19, and Lenet5 [49]. However,
it is challenging to deploy bigger models due to mobile devices’ limited storage, computational power,
and energy. Hence, the Tensor decomposition method can compress the network parameters [50]. A rank
decomposition algorithm decomposes the tensor into a limited number of principal vectors. Hence, all
the convolutional layers of the DNN can be decomposed and compressed. The original parameters can
be reproduced and applied from these principal vectors in DNN architecture. When applied to VGG16,

Comput Mater Contin. 2025;83(1) 31

VGG19, and ResNet50, a compression ratio of 98%, 97%, and 95% is achieved, respectively, with insignificant
loss of accuracy on the CIFAR100 dataset. Due to the similarity among weight tensors of the different
layers within a neural network model, simultaneous tensor decomposition can compress the model without
considerably decreasing performance. The authors developed two tensor decompositions for fully or partially
structure-sharing cases.

Chen et al. [51] proposed joint matrix decomposition to improve the compression ratio. They have
suggested that compressing the convolutional layers separately produces less efficient CNN. Hence, three
different joint matrix decomposition methods are tested on three CNN architectures. After compression,
finetuning recovers some of the accuracy loss. On ResNet-34, a good compression ratio is achieved with an
accuracy loss of less than 1%. However, the compression ratio on ResNet-50 is low (x6.2), with an accuracy
loss of 3%. A deep compression technique is proposed in [52] based on global average pooling, iterative filter
pruning, applying truncated SVD on the fully connected layers, and quantization. A pre-trained VGG16
model is used for the experiments on the ImageNet dataset. They have achieved a compression rate of
60 times (VGG16: 138 M, VGG16 compressed: 8.66 M parameters) with degradation in the classification
accuracy of 0.85%.

3.1.4 Model Compression Using Knowledge Distillation
Table 9 shows results on knowledge distillation methods. The background on knowledge distillation

techniques has been provided in Section 2.1.1. The work in [53] has used Efficient-Net-B0, with some
modifications, as a teacher model to train a lightweight student model using a knowledge distillation
technique. The student model is a simplified Efficient-Net-B0 model with a frozen convolution head and
MBConvBlock-25. A response-based knowledge distillation method is used to calculate distillation loss. A
distillation loss in the response-based knowledge distillation is calculated based on the difference between
the logit of the teacher and student models. The student model is trained along with the teacher model
using distillation loss and ground truth labels. If the gap between the teacher and student models is too
big, then knowledge distillation may fail, and the student model may not follow the teacher model [54].
Hence, the teacher model can be simplified by using Tucker decomposition of the tensors to ensure that the
student model follows the teacher model during knowledge distillation. Using VGG16 as a teacher model
and replacing the convolutional layers with the tucket decomposition layers, a simpler model can distill
the knowledge to the student model (LeNet in this paper). The decomposition rank is 16 to maximize the
accuracy improvement of the student model.

Table 9: Results of knowledge distillation methods used to compress the models

Ref. Dataset Teacher model Student model

Model Accuracy Size Flops Size Accuracy Flops
[53] BOSSbase Efficient-

Net-B0
97.8% 5.3 M 0.56 B 3.6 M 98% 0.34 B

[54] UTKinect-
Action3D

VGG16 99% 138 M 15 B 4.3 M 98.7% 4.4 M

[55] DFU dataset InceptionV3 98% 28.5 M 5.71 M 0.49 M 96% 0.42 M
[56] FaceForensics++ XceptionNet 96.3% 20.8 M 6 B 2.74 M 96% 1.2 B
[57] CIFAR-100 ResNet56 72.3% 0.85 M — 0.27 M 72% —

(Continued)

32 Comput Mater Contin. 2025;83(1)

Table 9 (continued)

Ref. Dataset Teacher model Student model

Model Accuracy Size Flops Size Accuracy Flops
[58] URBAN100 RCAN 29.09

PSNR
15.44

M
35.3 G 4.28 M 32.85 PSNR 9.79 G

[59] Histopathologic
cancer dataset

ResNet50 95.75% 26 M — 11 M 95.8%
96.6%

(Ensemble)

—

[60] Vaihingen ResNet50 88% 24 M 4.1 B 14 M 84% 116 B

Amjad et al. [55] proposed a lightweight model called DFU-LWNet and trained it by InceptionV3
(teacher model) through knowledge distillation. The proposed model contains three convolutional layers
with the max-pooling layers, and convolutional modules are borrowed from the Efficient-Net model. Finally,
a customized classifier is added. Response-based knowledge distillation is used to transfer knowledge.
Comparable classification accuracy is achieved with a DFU-LWNet with only 0.48 M parameters compared
to the InceptionV3 model with 28.5 M parameters. Xu et al. [56] used a feature-based knowledge distillation
technique to train the student model using cross-entropy loss, knowledge distillation loss, and gradient-
guided feature distillation loss. XceptionNet is used as a teacher model and trained on the deepfake
video dataset FaceForensics++ dataset. In the gradient-guided feature loss (feature-based distillation), the
intermediate layers of the teacher and student models are mapped to define the distillation target. Gradient-
guided weights define the importance of different channels in the feature maps. A decayed teaching strategy
I used to modify the gradient-guided weights. A comparable accuracy is achieved by the student model with
only 2.74 M parameters compared to the teacher model (20.8 M parameters). Usually, the SoftMax scaling
factor (fixed temperature value) does not change for the data samples and considers all the samples of equal
difficulty level. Hence, Ham et al. [57] explored the effect of data difficulty level on knowledge distillation.
The model distills the knowledge based on three difficulty levels. The difficulty level is estimated through the
Euclidean distance between the teacher’s and pruned teacher’s predictions. They have tested their method
on various combinations of teacher-student models for CIFAR-100 and FGVR datasets.

A hybrid knowledge distillation from intermediate layers of the teacher and student model is used to
create a single image super-resolution [58]. For this purpose, auxiliary up-samplers are added to the teacher
and student models to create intermediate super-resolution images. Once the up-samplers of the teacher
model are trained, the frequency similarity matrix (using discrete wavelet transform) and adaptive channel
fusion are used to distill the knowledge and update the student model’s up-samplers parameters. The models
are trained using the DIV2K dataset and tested on various datasets, including BSD100 and Urban100. The
comparable peak signal-to-noise ratio (PSNR) achieves a compression ratio of four times in 2X and 4X super-
resolution. Niyaz et al. [59] used an interesting concept of knowledge distillation from one teacher model to
multiple student models with collaborative learning among the student models.

Furthermore, they have compared the offline KD (training the teacher model first) and online KD
(both teacher and students trained simultaneously) effect on the classification performance. An ensemble
makes the final prediction of the prediction of the student models. Moreover, different learning styles, final
prediction with one student, and intermediate layer features with other students are also investigated. Results
of ResNet50 (teacher) and ResNet18 (students) are given in the table below for the histopathologic cancer
detection dataset.

Comput Mater Contin. 2025;83(1) 33

A multidimensional KD approach is adopted to improve the capability of transferring knowledge from
the teacher to the student model [60]. ResNet-50 is the backbone of the teacher model, and MobileNet V2 is
the backbone of the student model. Outputs of five different channels from the teacher and student models
are fused, multiscale information is extracted, and feature-based distillation loss is calculated. Apart from
this distillation loss, five other distillation losses, namely, inter-layer relation-based distillation loss, intra-
layer feature-based distillation loss, wavelet transform response-based distillation loss, and logits distillation
loss. They tested their methodology on two datasets, Potsdam and Vaihingen, and compared them with other
published methods to prove the efficacy of the proposed method.

3.2 Inference Strategies
Once the model is deployed on the edge device, the inference mechanism has two options. Either

the inference is performed entirely on the device, with the results utilized and communicated by the edge
device (on-device inference), or the inference is carried out in collaboration with other edge devices or
edge servers (distributed inference). Sections 3.2.1 and 3.2.2 describe on-device inference and distributed
inference, respectively. A summary of different inference mechanisms is presented in Table 10.

Table 10: Comparison of inference strategies used in the edge ML

Ref. Inference strategy Dataset Model Performance
[61] On-device inference KTH, UCI CNN (7.7 K

parameters)
Inference < 3 s

Energy = 250 mJ
[62] Model split

(Multiple points)
— GoogleNet Latency = 2.058 s

Energy = 7616 mJ
[63] Model split

(Layers based)
Customized AlexNet Save inference time by

12% to 66%
Best latency = 1.45 s

[64] Task-aware
Splitting

Metal casting
dataset

CNN Better latency under
different bandwidth

[65] Optimal
Splitting

— ResNet, AlexNet,
VGG

Latency and energy
consumption under

different settings
[66] Model

Partitioning
ImageNet VGG-16, ResNet-34,

MobileNetV1
84% reduction in

Latency, 14x speedup
[67] Model split

(Layers based)
ModelNet40 VGG-16 Inference latency

compared with different
Inference schemes

[68] Horizontal
Partitioning

— AlexNet, VGG16-BN,
ConvNext

More robust at the
expense of maximum
memory and energy

[69] Energy-aware
Model split

— VGG-16,
MobileNetV2

Load reduction in ESS =
15%–20%, LSS = 60%,

Energy saving 18%, 52%
[70] Privacy-aware

Model split
CIFAR-10,

MNIST
Customized CNN Strong privacy, better

runtime on datasets

34 Comput Mater Contin. 2025;83(1)

3.2.1 On-Device Inference
The on-device inference is feasible when the small model size and the edge device have sufficient

computational and energy resources. TinyML models, typically with parameter sizes under 1 M, often
make on-device inference a viable option. For instance, Nooruddin et al. [61] introduced a two-stream
multi-resolution fusion method for human activity recognition from video data. They utilized a customized
CNN model with quantization-based conversion. This compressed model was deployed on three tiny edge
devices and tested on the KTH and UCF11 datasets. The proposed model achieved 98% accuracy, with 7.7 K
parameters requiring 575 KB of memory. The inference time on the Arduino Nano 33 BLE Sense device was
under 3 s, with a power consumption of 250 mJ.

3.2.2 Distributed Inference
A comparison of state-of-the-art inference methods is provided in Table 10.
The DeepWear framework in [62] offloads deep learning tasks from wearable sensors to handheld

devices via Bluetooth, eliminating the need for an internet connection. This approach enhances model
performance and reduces the energy footprint of edge devices. The authors have explored various model-
splitting strategies, examining their impact on latency and energy consumption. The model has achieved an
inference speedup of two to three times and energy savings of 18% to 32%.

In [63], a DNNOff strategy is proposed, which comprises three components. The extraction component
extracts the structure and parameters of the DNN mode, an offloading mechanism, and an estimation model
that defines the offloading strategy on edge devices. In the adaptive offloading scheme, a decision must be
made for each layer on whether the computation will be on the edge of the server. A random forest regression
is used to predict the execution time of each layer. The offloading schemes are tested on the AlexNet model,
splitting the model into edge server, cloud server, and edge devices. Gautam et al. [64] proposed a task-aware
DNN splitting scheme for EdgeML smart manufacturing. The model contains sensing and edge layers. The
edge layer consists of an edge computing node and an edge server. Each layer of DNN is a potential splitting
point, and the splitting policy is based on the task execution time, bandwidth between the device and the
edge server, and profiling parameters. An optimal splitting policy is adopted based on minimizing average
execution time. Energy optimization of the edge devices is not considered [65].

Self-aware model partitioning [66] considers the model partitioning by the edge device according
to its computational resources status or time constraint on the inference. It engages a subset of available
devices with sufficient resources to collaborate in the inference task by offloading partial inference tasks.
Collaborative inference with two to four devices shows an improvement in inference performance. Another
work on collaborative inference on edge devices focuses on a selective scheme that reduces data redundancy
and bandwidth resource availability [67]. Multi-view images have a lot of spatial correlation taken by
different edge devices. So, multi-view classification from edge devices can collaborate with centralized
servers, splitting the inference tasks. In the selective ensemble inference, each edge device decides whether
it provides its inference to the server for ensemble decision or not. The above methods focused on vertical
partitioning of the model in which an entire layer is assigned to a node. Hence, different layers are assigned
to different nodes. This type of partitioning produces high throughput but has a higher failure risk. In case
of failure of one node, the whole inference procedure is affected as the entire layer is comprised.

Guo et al. [68] proposed the RobustDiCE method for robust distribution of the tasks among the infer-
ence nodes. This method divides and distributes every model layer among the inference nodes (horizontal
partitioning). In case of a node failure, it is easy to recover the inference flow of the model. Hence, in this
scheme, neurons of every layer are evenly distributed and assigned to the edge devices taking part in the

Comput Mater Contin. 2025;83(1) 35

inference. The method is evaluated on AlexNet, VGG16, and ConvNext models against failures of the devices.
Experimental results showed that accuracy does not drop significantly for one device failure. However, more
than one device failure affects the accuracy by more than 20%. In [69], authors proposed two strategies of
model splitting for battery-operated IoT devices and regular-powered IoT devices. In the early split strategy,
the maximum part of the model is offloaded to the edge server, saving the energy consumption of the
battery-operated edge devices.

In contrast, in the late-split strategy, layers of the model requiring heavy computation are offloaded to
the edge server. Wang et al. [70] proposed a privacy-preserving protocol for the edge device and edge server
collaborative inference in the industrial Internet of Things. Two edge servers participate in the inference and
calculate the model output without knowing the data or the model. The results showed that the proposed
method can achieve a good tradeoff between latency and throughput.

To summarize the results, the most effective inference strategy is the model splitting among the edge
devices. Much research has been done on optimizing. Hence, the inference strategy may vary according to
the available resources, inference demand, and energy consumption.

3.3 Learning Strategies
We have classified our results into (a) online learning strategies, (b) continual learning or life-long

learning, and (c) federated Learning. Sections 3.3.1–3.3.3 provide results on online learning strategies,
continual learning or life-long learning, and federated Learning. Tables 11 and 12 summarize continual
learning and federated Learning, respectively.

Table 11: Comparison of continual learning methods in the edge ML

Ref. Model dataset TinyModel Baseline
accuracy

TinyModel
accuracy

Memory requirement

[71] Customized MLP
Three diseases

Full precision — 92.8% Buffer size: 2.8 MB
Model size: 0.35 M

[72] MobileNetV2
OpenLORIS

— — 97.6% 5.90 M

[73] MobileNetV1
Core50

Quantized
UNIT-8/UINT-7

77% 68%
75%

<4 MB
<40 MB

[74] MCUNet multiple UINT-8 73.3% 73.7% 0.48 M
[75] ResNet-20

CIFAR-10
3-bit gradient
quantization

90% 89.8% —

3.3.1 On-Device Learning
In offline strategies, large datasets are collected and used to train deep learning or machine learn-

ing models on high-performance computing resources. Once trained, models are reduced in size using
techniques like quantization and pruning to fit edge devices, often called TinyML. Model inference can
be performed on the edge device alone through model splitting, task offloading, or distributed inference
across multiple edge devices. In decentralized learning, edge devices collaborate to train the model. On-
device learning is beneficial when new data is continuously available, requiring continuous model updates.
It necessitates reliable and continuous wireless communication between edge devices, typically within
fixed topologies.

36 Comput Mater Contin. 2025;83(1)

Table 12: Comparison of federated learning methods for Edge ML

Ref. FL
method

Dataset No. of
nodes

Sample per
node

Performance Time complexity

[76] DeFL Credit card 8000 ~31 89.5% —
[77] DeFL CIFAR-10 ~80 — ~80% Model: 10.7 s

W/update: 0.015 s

[78] HetFL CIFAR-100 10 10 76% FLOPs 11.5 M
[79] HierFL MNIST 100/3** — 97.9% —
[80] HetFL CIFAR-10 50 1000 64.5% 60 s (GPU: RTX3080)

Note: DeFL: Decentralized FL, HetFL: Heterogenous FL, HierFL: Hierarchical FL. ** Nodes/servers.

3.3.2 Continual Learning or Life-Long Learning
Continual learning, or life-long learning, involves continuously recording data and learning in a non-

stationary environment without losing previously acquired knowledge. It can be done on edge devices,
enhancing security and privacy, though memory constraints make it challenging. Various learning methods
have been compared in Table 11.

A continual learning framework for disease detection using wearable medical sensors has been pro-
posed [71]. Authors have used a data preservation method to retain the most informative previously learned
data. Subsequently, a multilayer perceptron (MLP) was trained and achieved an average accuracy of 92.8%
on the edge device. Similarly, the latent replay concept was proposed to address catastrophic forgetting in
continual learning by storing activations of initial model layers instead of raw data [72]. The work in [73]
has adapted this for 8-bit quantized models, calling it quantized latent replay-based continual learning. They
found a tradeoff between latency layers and accuracy. The work in [74] has explored on-device training on
Cortex-M MCUs using MCUNet, employing dynamic sparse gradient updates for fully quantized training.
Finally, the work in [75] has proposed a framework for continual learning in noisy, dynamic environments,
using selective experience replay and low bit-width quantization, achieving minimal accuracy loss (0.02%)
with ResNet-20 on CIFAR-10 under heavy image degradation.

3.3.3 Federated Learning
Architectures in this category vary based on aggregation methods and task assignments to edge devices.

In centralized FL, a server connects to all edge devices or nodes, selects nodes, and aggregates the model,
suitable for a limited number of nodes. In hierarchical FL, instead of a centralized server, various nodes act
as aggregation nodes, with edge devices connected to these aggregation nodes. In decentralized FL, all nodes
participate in training and aggregating the global model. Similarly, heterogeneous FL addresses variations in
data distribution, communication environments, device hardware, and model architectures.

Table 12 compares state-of-the-art federated learning methods in terms of various performance
attributes. A deep autoencoder for FL uses non-iterative training to reduce training time [76]. In a multi-node
environment, nodes send local model information via the Queuing Telemetry Transport (MQTT) broker
protocol, which updates and aggregates this information. This method has proven effective in accuracy,
latency, and energy consumption on several datasets. Similarly, Zhang et al. [77] have designed an efficient
FL mechanism for edge devices successfully applied to MNIST and CIFAR-10 datasets. Yang et al. [78]
have proposed a resource-efficient heterogeneous federated continual learning algorithm for edge devices,

Comput Mater Contin. 2025;83(1) 37

reducing resource consumption by dividing the model into adapter and retainer sub-models. Qiang et al. [79]
have introduced a multi-layer federated edge learning framework using edge servers between devices and
the cloud to reduce latency and energy consumption. Similarly, Cao et al. [80] have proposed feature-
space and output-space alignments for aggregating local models to minimize performance loss due to
data heterogeneity. They found that for the CIFAR100 dataset, achieving a target accuracy of 35 requires
30 communication rounds with significant data distribution deviation and 20 rounds with more uniform
data distribution.

It is important to note that aggregating local model updates is crucial in federated learning. The issues
in aggregating local model updates include imbalanced, varied quality, non-uniformly distributed data
subsets among FL clients, and the heterogeneity of edge devices affecting global model training efficiency.
Moreover, the convergence is also challenging due to device heterogeneity and asynchronous updates.
However, standard aggregation averages model updates, outliers, or malicious updates can corrupt the global
model. Therefore, clipping model updates within a defined range can counter outliers [81]. Furthermore,
momentum-based aggregation, where edge devices send the momentum term and local model update,
speeds up the convergence process [82].

Another critical factor in FL methods is the contribution of local model updates to the global model for
defining edge device performance. Therefore, weights are assigned to each contributing edge device based
on its reliability and representation in global model training. Similarly, incorporating predictive uncertainty
during aggregation can enhance the global model’s generalization capability [83]. Furthermore, quantizing
local updates improves communication efficiency and energy management for edge devices. While homo-
geneous quantization simplifies aggregation, real-world scenarios often involve heterogeneous quantization,
where devices have varying precision levels. Federated learning with heterogeneous quantization assigns
different weights to edge devices to account for quantization errors [84]. For more details on aggregation
and learning strategies in federated learning, refer to a comprehensive survey [85].

4 Results on Model Deployment on Resource-Constrained Devices Using TinyML
Section 3 critically reviews model conversion, inference mechanisms, and learning strategies. This sec-

tion reviews state-of-the-art model deployment techniques on resource-constrained devices using TinyML.
Moreover, the results have been classified according to different sectors, as TinyML has numerous appli-
cations in various sectors. Therefore, we have identified six major sectors where TinyML-based model
deployment has shown promising results. This classification aims to highlight the target problems (practical
examples) in each sector, along with the corresponding ML/DL models.

i. Smart agriculture, or smart farming sector, involves monitoring/collecting real-time data about
various parameters (corps, livestock, soil quality, etc.) in farming and optimizing it to increase yields.

ii. Medical or healthcare with environmental safety sector targets monitoring vital signs, using wearable
devices to diagnose early health anomalies. Moreover, it also includes monitoring environmental
conditions (such as air quality, water quality, and weather patterns) to enable pre-emptive actions.

iii. Vehicles or the automotive sector collect and process real-time data for multiple driver assistance
systems, enhancing vehicle safety and efficiency.

iv. The industrial and robotics sectors focus on monitoring equipment and facilities for signs of wear and
tear to enable predictive maintenance, reducing downtime and maintenance costs.

v. The energy sector mainly contains applications for managing renewable energy from different sources.
vi. Secure smart cities and the consumer electronics sectors include data collection from smart cameras

and sensors to detect unusual activities or security breaches in real time, enhancing public safety.
In addition to the security of smart cities, this sector also covers the security of smart homes using

38 Comput Mater Contin. 2025;83(1)

various consumer electronic devices. Other applications of TinyML in smart cities are discussed in the
environmental sector (such as monitoring air quality, noise levels, and other environmental factors) and
the vehicle sector (such as optimizing traffic flow).

The achieved results have been synthesized in different ways to perform a critical analysis and
comparative evaluation of the methodologies. The synthesis results are shown in Tables 13–16. Table 13
shows applications (practical problems) and associated ML/DL models used for each practical problem in
different sectors. Similarly, Table 14 summarizes fifteen hardware development boards and compares their
features for TinyML deployment. The development boards in Table 14 have been extracted from the selected
research works. It implies that Table 14 compares selected research works regarding hardware development.
In addition to the comparison in terms of hardware development, Table 15 classifies and compares the
selected research studies in terms of three major software frameworks. Finally, Table 16 details the sensors
used in all the chosen research work.

In the following, we briefly discussed all the selected research studies, organized into six categories.
Consequently, Sections 4.1–4.6 provide a critical summary of selected research studies in smart agriculture,
healthcare, vehicles, industry, energy, and security, respectively.

4.1 Smart Agriculture or Farming
It is a high-priority sector since it creates economic opportunities and generates most of the world’s food.

To satisfy the food demand, the major portion of agricultural tasks are required to be automated. While IoT
communication technologies in smart agriculture have been reviewed previously [86], the use of intelligent
IoT systems in the agriculture sector is a relatively new idea. This subsection provides practical examples
(applications) of smart farming, where decision-making operations are performed using edge resources and
TinyML techniques and tools.

Table 13: Applications and machine learning models in six identified sectors

Sector name Applications (practical problems) Model type Year Ref.

Smart
agriculture or

farming

Watering process automation Not specified 2022 [87]
Maize leaf disease detection and

classification
CNN 2024 [88]

Soil quality monitoring and management CNN, RNN,
Q-learning

2024 [89]

Maize leaf disease detection and
classification

CNN 2024 [90]

Disease detection and classification in
plants

CNN 2023 [91]

Smart
healthcare

Face mask detection on faces CNN 2023 [92]
Recognition of human activities using

wearable sensors
CNN 2023 [93]

Energy-efficient healthcare decision
support system

RF, SVM, DT 2024 [94]

Human activity recognition CNN, LSTM 2024 [95]
Real-time blood pressure (bp) estimation CNN 2024 [96]

(Continued)

Comput Mater Contin. 2025;83(1) 39

Table 13 (continued)

Sector name Applications (practical problems) Model type Year Ref.

Smart
automotive or
smart vehicles

To process vehicular data on edge devices
for fuel consumption prediction

AutoCloud +
TEDA

2024 [97]

Outlier detection and correction TEDA-RLS 2024 [98]
Intrusion detection system CNN 2024 [99]

To enhance the cybersecurity in electric
vehicle

MLP, RF 2024 [100]

Real-time driver behavior analysis AutoCloud +
TEDA

2024 [101]

Industrial
automation

Identifying anomalies using autoencoders Neural
Networks

2021 [102]

Operational efficiency and safety CNN 2022 [103]
Reactive and dynamic online control for

robots
ADMM 2024 [104]

Vibration-based fault diagnosis of
machines

CNN 2023 [105]

Identification of various bolt defects in
steel structures

FOMO 2024 [106]

Energy sector

Real-time fault diagnosis and
classification of defects in PV modules

CNN 2024 [107]

Fault detection in PV modules DCNN 2022 [108]
Forecasting solar energy yield LSTM, BiGRU,

BiLSTM,
BiRNN

2023 [109]

Energy consumption prediction on
mobile devices

LSTM 2024 [110]

Upgradation of energy distribution panel LSTM 2024 [111]

Consumer
electronics and

security

Detection of jamming attacks in wireless
networks

CNN 2022 [112]

Monitoring the condition of handheld
power tools

CNN 2022 [113]

To detect and combat various Wi-Fi
attacks

DNN, LSTM 2024 [114]

Real-time health monitoring and
intrusion detection

Naive Bayes
and SVM

2024 [115]

Energy harvesting resource allocation for
Unmanned Aerial Vehicles

(UAV)-assisted TinyML consumer
electronics

Naive Bayes,
SVM, RF, KNN

2024 [116]

40 Comput Mater Contin. 2025;83(1)

Table 14: Summary of development boards in selected research works

S. no. Development
boards

MCU Core (CPU) Speed
(MHz)

Flash
(MB)

SRAM
(KB)

Ref.

1. Wio terminal ATSAMD51 ARM Cortex-M4F 120 1 256 [87,89]
2. Arduino Nano 33

BLE Sense
nRF52840 ARM Cortex-M4 64 1 256 [88,90–92,95–

98,
102,103,
107,114]

3. ESP32
development board

ESP32 Xtensa LX6, dual
core,
32-bit

240 4 520 [96–98,100,101,
105,109]

4. STM32F746
discovery kit

STM32F746NGH6 ARM Cortex-M7 216 1 320 [91]

5. Espress ESP-EYE ESP32 Tensilica LX6 216 1 320 [91]
6. Arduino Uno R3 ATmega328P 8-bit AVR 16 32 KB 2 [94]
7. Raspberry Pi 3

Model B
Single board

computer
ARM Cortex A-53 1.2 GHz 16 GB 1 GB [96,97,105,112]

8. Raspberry Pi Pico RP2040 chip ARM Cortex M0+ 133 2 264 KB [96,97]
9. Siemens board Not mentioned ARM Cortex-M4 90 1 320 KB [103]
10. Teensy 4.1 Not mentioned ARM Cortex-M7 600 7.75 512 kB [104]
11. Crazyflie 2.1

Quadrotor
Not mentioned ARM Cortex-M4 168 1 192 KB [104]

12. Arduino Nicla
vision

STM32H747AII6 Dual Arm Cortex
M7

480 2 1 [106]

13. Arduino Nano 33
IoT

– ARM Cortex-M0+
32-bit SAMD21

48 256 KB 32 KB [107]

14. Raspberry Pi 4 Broadcom
BCM2711

ARM Cortex-A72 1.5 GHz None Up to 8
GB

[108]

15. nRF52832 – ARM Cortex-M4 64
MHz

512 KB 64 KB [113]

Table 15: Summary of software platforms in selected research works

S.
no.

Software
platform

Supported
development boards

Language for
deployment

Open
source

Manuf. Ref.

1.

2.
3.

Edge impulse

Wio terminal

Arduino Nicla vision
Arduino Nano 33 BLE

sense

C++ No Edgeimpulse

[87,88], [92]
[94]
[106]

[90]̧ [107]

4. Tensor Flow

Arduino Nano 33 BLE
sense Python, C++

Java, javascript,
swift, Go,

TensorFlowLite

Yes Google

[88,91,92,107,114]

Wio terminal [89]
STM32F746 discovery

kit
[91]

Espress ESP-EYE [91]
Not mentioned [93]
Raspberry Pi 4 [108]

(Continued)

Comput Mater Contin. 2025;83(1) 41

Table 15 (continued)

S.
no.

Software
platform

Supported
development boards

Language for
deployment

Open
source

Manuf. Ref.

5. TensorFlow
lite

ESP32 development
board

Python, C++
Java, Swift,

Objective-C,
JavaScript

Yes Google

[96,97,100,101,
105,109]

Arduino Uno R3 [94]
Arduino Nano 33 BLE

sense
[95–98,102,

103,107],
Raspberry Pi 3 Model B [96,97,105,109]

Raspberry Pi Pico [96,97]
Raspberry Pi 4 [108]

nRF52832 [113]
Not mentioned [103]

Table 16: Summary of sensors used in selected research works

Board Sensors Ref.
Wio terminal Monitoring of temperature, humidity, moisture, light levels, and

water levels
[87]

Monitoring of temperature, humidity, moisture, water level,
additional sensors such as motion sensors, microphone, and

infrared emitter

[89]

Arduino Nano
33 BLE sense

Motion sensors, environmental sensors, pressure sensors,
microphones, and light sensors

[88]

Camera [90]
Motion sensors, camera module, LEDs, and buzzer [92]

Motion sensors (accelerometer, gyroscope, magnetometer) [95]
Photoplethysmogram (ppg) sensors, ECG sensors [96]

Fuel sensors, speed sensors, engine sensors, and environmental
sensors

[97]

On-board diagnostics ii (obd-ii) port [98]
3-axis accelerometer sensor [102]

3-axis accelerometer for vibration measurement
Infrared (ir) camera, temperature sensors, imu [107]

ESP32 GPS module, water level detection, and temperature sensors [91]
Photoplethysmogram (ppg) sensors, ECG sensors [96]

Fuel sensors, speed sensors, engine sensors, and environmental
sensors

[97]

On-board diagnostics reader, embedded sensors in vehicles (speed
sensors, fuel sensors, engine sensors, environmental sensors)

[98]

Network traffic sensors [100]
Monitoring speed, engine load, throttle position, GPS [101]

solar irradiance sensors, weather sensors [109]

(Continued)

42 Comput Mater Contin. 2025;83(1)

Table 16 (continued)

Board Sensors Ref.
Raspberry Pi 3

Model B
Photoplethysmogram (ppg) sensors, ECG sensors

Fuel sensors, speed sensors, engine sensors, and environmental
sensors

[96]
[97]

Software defined radio (SDR) [112]
Raspberry Pi

Pico
Photoplethysmogram (ppg) sensors, ECG sensors

Fuel sensors, speed sensors, engine sensors, and environmental
sensors

[96]
[97]

Arduino Nicla High precision and quartz accelerometers, low precision
accelerometers

[105]

acceleration sensors for collecting time-series vibration signals [106]
Arduino Uno

R3
Monitoring of pulse rate and oxygen levels, sensors for room

humidity and temperature, gas sensors for the detection of toxic
gases, sound sensors

[94]

Siemens 3-axis accelerometer for vibration measurement. [103]
Teensy 4.1 3-axis accelerometer, optitrack motion-capture system [104]
Crazyflie 3-axis accelerometer, optitrack motion-capture system [104]
nRF52832 Accelerometer for monitoring tool usage, temperature, and

humidity sensors
[113]

– IMU sensors, heart rate, blood pressure, pulse rate, and temperature [93]

One of the preliminary TinyML-based work in the agriculture sector is presented in [87]. The objective
is to automate the watering of plants by monitoring environmental conditions and soil moisture, as shown
in Table 13. The system is developed around a Wio terminal board, as shown in Table 14. The Edge Impulse
(EI) is used for dataset generation, training, inference, and testing purposes, as shown in Table 15. The
employed sensors are for sensing the temperature, humidity, soil moisture, level of light, and level of water,
as shown in Table 16. While the work in [87] only elaborates on the initial idea, the complete IIoT systems
for smart agriculture have been presented in [88,89,111,112].

The IIoT system in [88] employs a customized CNN model to identify maize leaf disease. An important
feature of this work is to evaluate the performance of TensorFlow and Edge Impulse frameworks. It has been
observed that Edge Impulse is more user-friendly for data collection, labeling, and model deployment. Fur-
thermore, lower memory footprint and power consumption make it suitable for deployment on low-powered
edge devices. On the other hand, TensorFlow offers greater customization and control over the model
architecture and training process. It has higher accuracy but requires more memory and computational
resources. Another IIoT system in smart farming is presented in [89]. The system presents a power-aware and
delay-aware TinyML model for monitoring and managing soil quality in agriculture. The model integrates
dynamic voltage and frequency scaling (DVFS) as well as sleep/wake strategies based on genetic algorithms,
energy harvesting, and task partitioning to optimize energy consumption and reduce delay. It employs CNN,
RNNs, and Q-learning models. Like the work in [87], the Wio Terminal is used as the development board,
while Tensor Flow is employed to deploy the model on the target development board.

A CNN-based approach for maize leaf disease detection and classification is presented in [90]. The
customized CNN model, deployed on Arduino Nano 33 BLE Sense using the Edge Impulse platform,

Comput Mater Contin. 2025;83(1) 43

extracts important visual patterns from maize leaves, enhancing disease identification capabilities. The
work presented in [91] aims to identify plant diseases using a customized CNN model. It has employed
the TensorFlow framework to deploy the model on different development boards. In addition to the
aforementioned applications in smart agriculture [87–91], the other applications include but are not limited
to real-time embedded prediction weather system and an end-to-end strategy for enhancing the security of
the food supply chain.

To summarize the key findings of TinyML deployment in smart agriculture, it can be stated that
TinyML-based agriculture systems offer significant results in analyzing specific conditions of individual
farms, providing customized recommendations and actions based on real-time data. It has allowed prac-
titioners to make decisions and perform tasks without constant human intervention, which is especially
useful for large-scale farming. Moreover, by processing data locally, IIoT-based systems in smart farming
are reducing the need for expensive cloud services. It not only lowers operational costs but also minimizes
reliance on high-speed internet. Since data is processed on the device, the amount of data that needs to be
transmitted is significantly reduced, conserving bandwidth and making the system more efficient.

4.2 Healthcare and Environmental Sector
An intelligent IoT-based healthcare decision support system is becoming paramount in today’s health-

care domain. With the increasing prevalence of chronic diseases and the aging population, continuously
and remotely monitoring patients’ health becomes crucial. IoT devices collect real-time data on vital signs,
medication adherence, and lifestyle habits, enabling healthcare providers to make informed decisions swiftly.
Consequently, it enhances patient outcomes by allowing early detection of potential health issues and timely
interventions. Moreover, it reduces the burden on healthcare facilities by minimizing hospital visits and
enabling efficient resource management.

One of the earlier target problems in healthcare is to process images and identify all those cases where
a person is not wearing a face mask, as shown in [92]. Using the Edge Impulse platform, a low-cost solution
using compressed CNN and transfer learning based on the MobileNetV1 architecture is deployed on the
Arduino Nano 33 BLE Sense board. Another practical example of TinyML deployment in healthcare is
classifying human activities from wearable sensors using an on-device deep learning inference mechanism,
as shown in [93]. A lightweight CNN is trained offline on a stand-alone computer using TensorFlow. The
specific microcontroller is not explicitly mentioned, but it is described as having minimal RAM (320 KB of
SRAM) and operating at an 80 MHz clock frequency.

The classification of human activities in [93] is further extended to the analysis of human health
parameters, as shown in [94]. The framework is centered on Raspberry Pi (fog layer) using TensorFlowLite;
it reduces latency and ensures real-time data processing and analysis, which is crucial for time-sensitive
healthcare applications. Another human activity recognition system is presented in [95]. The motion data
(including acceleration, angular velocity, and magnetic field) is captured at a sampling frequency of 110 Hz.
The compressed deep learning models (CNN and LSTM) with pruning and quantization techniques are
deployed using TensorFlow Lite. Finally, a real-time blood pressure estimation problem is targetted in [96]
using CNN types (AlexNet, LeNet, SqueezeNet, ResNet, and MobileNet) on various edge devices, including
Raspberry Pi, ESP32, Raspberry Pi Pico, and Arduino Nano. The objective is to discuss the trade-offs between
model size, accuracy, and inference time.

In addition to the aforementioned practical examples extracted from selected research works, there are
other IoT healthcare applications, such as the prediction of chronic obstructive pulmonary disease, real-
time activity tracking for elderly people and their nurses, a hand gesture recognition approach, etc. These

44 Comput Mater Contin. 2025;83(1)

advantages make TinyML a valuable technology in the healthcare sector, improving patient outcomes and
operational efficiency.

4.3 Vehicles or Automotive Sector
Smart vehicles, also known as intelligent or connected vehicles, are transforming the automotive indus-

try by integrating embedded technology, communication technology, and artificial intelligence technology
to enhance safety, efficiency, and user experience [117]. The use of intelligent IoT systems has enabled the
monitoring of vehicle components in real-time. For example, predicting maintenance proactively can reduce
unexpected breakdowns and improve vehicle reliability. It, in turn, reduces the cost and warranty claims.
Similarly, IIoT systems in the smart vehicles sector assist in collision avoidance and adaptive cruise control.
It enables critical functions to operate without a constant internet connection, ensuring that safety features
remain active in all conditions. Another problem in this sector is analyzing driver behavior and detecting
signs of drowsiness or distraction, alerting the driver, or taking corrective actions to prevent accidents. It can
also monitor the cabin environment (temperature, air quality) and adjust settings automatically to enhance
passenger comfort. On-device processing ensures minimal delay (low latency) in executing critical functions,
enhancing safety and performance. The low-cost hardware makes advanced features accessible in a broader
range of vehicles and can be easily scaled across different vehicle models and types.

Scalable real-time processing of vehicular data streams on edge devices is presented in [97] by com-
bining AutoCloud and TEDA (Typicality and Eccentricity Data Analytics). Real-time processing provides
immediate insights and predictions, enhancing decision-making and operational efficiency. Four develop-
ment boards (Raspberry Pi 3 Model B, ESP32 Wrover IE, Raspberry Pi Pico, and Arduino Nano 33 BLE) have
been used to demonstrate the proposed algorithm’s feasibility. Another application of smart vehicles is outlier
detection and correction in vehicular data streams, as shown in [98]. The system employs the TEDA-RLS
algorithm to increase data quality and reliability. The algorithm detects outliers using TEDA and corrects
them using RLS filters. C++ is used to implement the algorithm on the ESP-32 microcontroller. In addition
to real-time processing of vehicular data streams, intrusion detection systems are becoming increasingly
important in the smart vehicles sector. An example of such a system can be found in [99], where a CNN-based
approach is deployed on an nRF52840 microcontroller using TensorFlow Lite. A TinyML-based approach,
using Multi-Layer Perceptron (MLP) and RF algorithms, is presented in [100] to enhance cybersecurity
within the context of Electric Vehicle Charging Infrastructures.

The issues of real-time traffic management and driver behavior analysis in intelligent transportation
Systems are addressed in [101] by presenting a multi-layered, stream-oriented data processing methodology
for edge computing environments to detect and classify driver behavior patterns. The approach integrates
the TEDA framework and an incremental clustering algorithm. The process starts by collecting data from
vehicular physical sensors (e.g., speed, engine load, throttle position, RPM) and constructs a radar chart to
represent multidimensional sensor readings as a polygon, with the area within the polygon reflecting the
vehicle’s resource utilization. Subsequently, it identifies and mitigates outliers in the data stream. Moreover,
it implements a dynamic window to adapt to changes in data distribution and informs the incremental
clustering algorithm about potential shifts. Finally, the AutoCloud algorithm is used for incremental
clustering and does not require retaining datasets in memory. The TensorFlow Lite is used to deploy the
machine learning models on the ESP32 microcontroller board. The customized AutoCloud algorithm was
integrated into embedded systems using C++ and deployed on the hardware using the TensorFlow Lite
library through Arduino IDE.

To summarize, the TinyML has been primarily used for predictive maintenance (to monitor vehi-
cle components in real-time), driver assistance systems (to provide real-time alerts for lane departure,

Comput Mater Contin. 2025;83(1) 45

collision warnings, and driver drowsiness detection), and in-vehicle monitoring (monitoring the health
and performance of various vehicle systems, such as the engine, brakes, and battery, to ensure optimal
performance and safety). Moreover, the TEDA algorithm enhances the capabilities of ML and DL models in
the automotive sector by providing robust, real-time data analytics, which is essential for maintaining vehicle
safety, performance, and reliability.

4.4 Industrial and Robotics Sector
It is becoming increasingly important to analyze data from machinery in real time to predict failures

before they occur. Similarly, monitoring production lines and energy usage is critical to ensure higher quality
with reduced cost. In this context, TinyML enables robots to process sensory data in real-time for recognition
and classification.

One of the TinyML-based framework pioneers, TinyOL, is presented in [102] where anomaly detection
using Autoencoders on Arduino Nano 33 BLE Sense board using the TensorFlowLite framework. It processes
streaming data, updates running mean and variance, scales input, makes predictions, and updates weights
using online gradient descent algorithms. Consequently, an unsupervised autoencoder is transformed into a
supervised anomaly classification model. The encoder’s output and reconstruction error are used as features
for classifying different anomaly patterns. The system’s performance is evaluated in terms of fine-tuning (an
ability to adapt existing neural network on MCUs to new data) and multi-anomaly classification (an ability
to replace the final layer of an autoencoder with TinyOL, enabling post-training in an online mode).

The work in [103] leverages the W3C Web of Things (WoT) to semantically express IoT device
capabilities through thing descriptions (TD). The TD describes IoT devices’ metadata and interactions in
a standardized format. It introduces semantic models for on-device applications, specifically for neural
networks (NN) and complex event processing (CEP) rules. Subsequently, the enriched semantic knowledge
is hosted to discover and interoperate edge devices and applications across decentralized networks using a
knowledge graph (KG). The case study of the framework is the implementation of a conveyor belt to monitor
operational processes and detect irregularities. An Arduino board connected to a camera uses a CNN to
detect the presence of workers near a workstation. The CNN processes the image data to determine whether
a worker is present.

A powerful tool for controlling dynamic robotic systems with complex constraints is presented in [104],
where a high-speed model-predictive control solver (named TinyMPC) is implanted using the Alternating
Direction Method of Multipliers (ADMM) algorithm. The ADMM is used to solve convex optimization
problems. The demonstrated applications are high-speed trajectory tracking, dynamic obstacle avoidance,
and recovery from extreme attitudes. Moreover, the Teensy 4.1 Development Board is used to benchmark
TinyMPC against randomly generated trajectory tracking problems. On the other hand, Crazyflie 2.1
Quadrotor demonstrates TinyMPC’s performance in real-time dynamic control tasks, including figure-eight
trajectory tracking, recovery from extreme initial attitudes, and dynamic obstacle avoidance.

The work in [105] presents a transfer learning framework combined with TinyML-powered CNN
architecture for vibration-based fault diagnosis of different machines. Various time-domain features are
extracted from vibration signals for fault diagnosis. Features include mean, median, variance, standard
deviation, skew, kurtosis, crest, impulse, and shape factors. While the conventional transfer learning strategy
is to retain dense layers while freezing convolutional layers, the work in [19] retains convolutional layers
while freezing dense layers. To achieve memory efficiency, it retains only the biases of hidden layers. For edge
implementation, the online training is conducted on a Raspberry Pi single-board computer, while the edge
inference is performed on an ESP32 microcontroller board using TensorFlow Lite.

46 Comput Mater Contin. 2025;83(1)

Another application of intelligent IoT systems in industry and robotics is ensuring the structural
integrity of steel constructions through climbing inspection robots, as presented in [106]. The work intro-
duces a real-time bolt-defect detection system using TinyML and a magnetic climbing inspection robot. The
magnetic climbing robot has 3D-printed wheels embedded with permanent magnets for secure adhesion
to metallic surfaces. The system employs the Faster Objects, More Objects (FOMO) algorithm optimized
for edge computing on microcontrollers. It captures images, processes them using the FOMO model, and
streams annotated images to the user via the real-time streaming protocol (RTSP). The FOMO model is
simplified for multi-object classification and optimized for microcontrollers. Images of bolts in various
conditions (normal, loose, missing) were collected and used to train the model.

TinyML is revolutionizing the industrial and robotics sectors through various innovative applications.
The TinyOL framework enhances anomaly detection, and W3C WoT standardizes IoT device capabilities,
enabling efficient monitoring and worker detection. Similarly, TinyMPC, a high-speed control solver,
improves dynamic robotic tasks like trajectory tracking and obstacle avoidance. Lastly, climbing inspection
robots utilize TinyML and the FOMO algorithm for real-time bolt-defect detection, demonstrating effective
multi-object classification on microcontrollers. These advancements highlight TinyML’s potential to improve
industrial and robotic systems significantly.

4.5 Energy Sector
Integrating digital technologies is important for managing energy resources efficiently and sustainably,

especially when updating old systems. It involves using sensors and devices to monitor and control
energy accurately. The growing reliance on renewable energy requires efficient maintenance of large-scale
photovoltaic (PV) solar plants. The faults in PV panels, such as hot spots, can significantly reduce efficiency,
and therefore, early detection of faults is critical through some monitoring mechanisms.

The work in [107] presents a framework to classify defects in PV modules. The framework captures
infrared (IR) images using a low-cost IR camera and processes these images in real-time. The images
are pre-processed to reduce noise and then fed into the Tiny CNN model for classification. The model
is optimized and integrated into a low-cost, low-power microcontroller for real-time fault diagnosis. The
trained TensorFlow TinyCNN model is converted to a TensorFlow Lite version to optimize it for deployment
on a microcontroller. The Arduino-integrated development environment is used for writing and uploading
the C++ code to microcontrollers, while the OpenCV-Python library preprocesses IR images. Another
microcontroller (Arduino Nano 33 IoT) is used to communicate with the Tiny CNN microcontroller and
post the results online. This setup enables remote monitoring and real-time visualization of the PV module
status on a dedicated webpage.

The work in [108] employs thermographic images of a PV array for fault diagnosis using two deep
convolutional neural network (DCNN) models. A binary classifier model architecture detects whether a PV
module is faulty. Moreover, a multiclass classifier is also used to diagnose the specific type of fault in a PV
module. The models are trained using TensorFlow and Keras libraries. The trained models are converted
to TensorFlow Lite format to reduce their size and make them suitable for edge-devices deployment. The
optimized models are embedded into a Raspberry Pi 4 microprocessor. Python scripts run the models, send
notifications via SMS and email, and display results on an LCD. The work in [109] started by making a solar
farm dataset, including power generation and weather-related information. Then, this data is preprocessed
using min-max scaling. Various machine learning models are trained and evaluated for their performance
in predicting solar energy yield, focusing on tuning hyperparameters to optimize accuracy. Additionally,
the study explores the deployment of these models on resource-constrained edge devices using TinyML to
enable real-time, low-cost forecasting.

Comput Mater Contin. 2025;83(1) 47

The objective of the work in [110] is to develop a privacy-preserving architectural framework for hybrid
energy management systems (HEMS) that leverages TinyML models for short-term energy consumption
prediction on mobile devices. This approach aims to enhance user privacy, ensure efficient energy man-
agement, and provide real-time, on-device processing capabilities. It employs LSTM neural networks to
predict short-term energy consumption in hybrid energy management systems. These models are converted
to CoreML and TensorFlow Lite formats to enable deployment on mobile devices. TensorFlow Lite shows
minimal performance degradation and thus is more suitable for real-time, on-device processing. The
hardware used in the study includes mobile devices, specifically the iPhone 12 Pro, which serves as an edge
device for processing and storing data locally. Finally, the work in [111] presents a framework to upgrade the
energy distribution panel of an old manufacturing plant by installing sensor devices. These sensors enable
remote monitoring and decentralize predictive analysis. The analysis uses 15-min energy demand forecast
models based on two-layer LSTM networks.

The key findings from the aforementioned works highlight the innovative use of TinyML in various
applications. A framework for classifying PV module defects uses IR images processed by Tiny CNN models
for real-time fault diagnosis. Thermographic images of PV arrays are used with DCNN models for fault
detection and classification. A privacy-preserving framework for hybrid energy management systems uses
LSTM models on mobile devices to predict short-term energy consumption, ensuring efficient energy
management. Lastly, sensor devices installed in an old manufacturing plant enable remote monitoring
and predictive analysis using LSTM networks, improving energy management. These findings demonstrate
TinyML’s potential in enhancing real-time monitoring, fault diagnosis, and energy management across
various sectors.

4.6 Consumer Electronics and Safety in Smart Cities
All the above categories (smart agriculture, smart healthcare, smart vehicles, smart industrial processes,

and smart energy management) have significantly enhanced our living standards. All these smart processes
have given birth to “smart cities”. The concept of smart cities also includes consumer electronics in smart
homes and the security of all the automated processes. This section will review some state-of-the-art
consumer electronics in smart homes and the security of some automated processes in smart homes.
Consumer electronics in smart homes include devices that can be controlled remotely via smartphones
or voice assistants. Security in smart cities includes surveillance systems, emergency response systems,
advanced access control systems, cybersecurity, etc. Existing review articles, such as [118], review the
technical advancements in consumer electronics and smart cities. However, they purely discuss smart cities
in terms of IoT, machine learning, cloud computing, and edge computing. This section reviews some
state-of-the-art IIoT in consumer electronics and security.

The work in [112] enhances the detection of jamming attacks in IoT wireless networks using a
CNN-based approach deployed on edge devices. The model is trained to classify two types of jamming
attacks (constant and periodic). Received Signal Strength (RSS) data is the primary metric for detecting
and classifying jamming attacks. The data is collected for different scenarios, including normal channel
conditions and two types of jamming attacks. Finally, the trained model is deployed using TensorFlow
Lite on edge devices like the Raspberry Pi. The deployed model performs real-time inference on RSS data,
detecting and classifying jamming attacks. Another CNN-based approach is presented in [113], where the
objective is to classify the usage of handheld power tools. The model was trained and validated using a dataset
of over 280 min of three-axis accelerations during different activities (tool transportation, no-load, metal

48 Comput Mater Contin. 2025;83(1)

drilling, and wood drilling). The trained CNN model is converted to TensorFlow Lite format using post-
training quantization (to convert the 32-bit floating-point weights to 8-bit integers), reducing the model size
significantly. The converted model is deployed on the NRF52832 board.

The work in [114] presents a framework (TinyAP) for detecting and mitigating attacks at the access
point level in a Wi-Fi network. The objective is to ensure the safety and privacy of smart home devices. It
employs DNN and LSTM, trained on a general-purpose computer, and then converted into a format suitable
for deployment on microcontrollers. While the work in [114] focuses on the security of smart homes, the
security of medical IoT systems is discussed in [115], enabling real-time health monitoring and intrusion
detection. It addresses privacy and security concerns using edge processing for data encryption and TinyML
for real-time vital sign analysis and emergency alerts. Moreover, Naive Bayes and SVM are used for real-
time analysis of vital signs. However, the article does not mention the type of hardware used for monitoring
and processing real-time vital signs (e.g., blood pressure and heart rate). The framework’s encryption and
intrusion detection capabilities help maintain data integrity and privacy.

Finally, the work in [116] presents an energy-harvesting resource allocation algorithm for UAV-assisted
TinyML consumer electronics in low-power IoT networks. Optimizing energy harvesting and resource
allocation in IoT networks involves handling interference, resource conflicts, and real-time decision-making.
Therefore, Naive Bayes, SVM, RF, and KNN are efficient for classification and regression tasks in resource-
constrained environments. However, the article did not provide the corresponding hardware and software
details for the model deployment.

To summarize, the key applications in smart home security and consumer electronics are the detection
of jamming attacks in IoT wireless networks, the usage of handheld power tools, detecting and mitigating
attacks at the access point level in Wi-Fi networks, the security of medical IoT systems and energy-harvesting
resource allocation algorithm for UAV-assisted TinyML consumer electronics in low-power IoT networks,
optimizing energy use and resource allocation. These findings demonstrate the potential of TinyML and edge
computing to enhance the security and efficiency of smart cities.

5 Responses to Formulated Research Question
This section formulates responses to the target research questions (identified in the Introduction

Section). The responses to research questions are based on the results of Sections 3 and 4.
Research Question 1: What are the state-of-the-art model conversion techniques used in EdgeML, and

how do they impact the performance, efficiency, and deployment of machine learning models on resource-
constrained devices?

Answer: This work has classified state-of-the-art model conversion techniques in EdgeML into four
categories: Pruning, quantization, low-rank factorization, and knowledge distillation. Their impact on
performance, efficiency, and model deployment has been discussed in Section 3. The pruning methods
have been compared in Table 5. Results on quantization methods and quantization-aware training have
been summarized in Tables 6 and 7, respectively. Similarly, model conversion methods based on low-rank
factorization and knowledge distillation methods have been analyzed in Tables 8 and 9, respectively.

Research Question 2: What are the current state-of-the-art inference mechanisms used in EdgeML,
and how do they compare in performance and efficiency?

Answer: Edge devices can perform inference in two ways once a model is deployed: either entirely
on the device (on-device inference) or in collaboration with other edge devices or servers (distributed
inference). Sections 3.2.1 and 3.2.2 detail these methods, and Table 10 summarizes the different infer-
ence mechanisms.

Comput Mater Contin. 2025;83(1) 49

Research Question 3: How do different learning strategies impact the performance and efficiency of
ML models deployed in edge computing environments?

Answer: The results of our study on different learning strategies are categorized into three main areas: (a)
online learning strategies, (b) continual or life-long learning, and (c) federated learning. Sections 3.3.1–3.3.3
present the findings for each area, respectively. Additionally, Table 11 summarizes the results for continual
learning, while Table 12 summarizes federated learning. A comprehensive analysis of selected research areas
in these sections and tables highlights how various learning strategies impact the performance and efficiency
of ML models deployed in edge computing environments.

Research Question 4: What are the key challenges and problems and the associated ML/DL models in
deploying TinyML on resource-constrained devices in various sectors?

Answer: Section 4 presents the results of deploying TinyML models on resource-constrained devices
organized in different sectors to reflect TinyML’s diverse applications. Consequently, we have identified six
key sectors where TinyML-based model deployment has shown promising results such that Sections 4.1–4.6
provide critical analysis of the selected research studies in smart agriculture, healthcare, vehicles, industry,
energy, and security sectors, respectively. Moreover, Table 13 lists various applications and the associated
ML/DL models used in each sector.

Research Question 5: What are the latest advancements in hardware, software frameworks, and sensors
designed explicitly for TinyML frameworks?

Answer: The synthesized results for six different TinyML sectors are detailed in Tables 14–16. Table 14
summarizes 15 hardware development boards from the selected research works, highlighting their features
and organizing the articles by hardware development. Table 15 categorizes the selected research works by
three major software frameworks. Finally, Table 16 details the sensors used in all the research papers selected.

6 Discussion and Limitations of the Literature Review
Section 5 has answered the target research questions (listed in the Introduction) by utilizing the results

in Sections 3 and 4. This section further discusses some important aspects of model design and deployment.
Mainly, it includes automating quantization and pruning policies for efficient model conversion (Section 6.1),
an in-depth discussion on fault resilience in distributed edge machine learning models (Section 6.2), the
influence of hardware constraints on edge devices (Section 6.3), ethical concerns of deployment of Edge ML
(Section 6.4) and limitations of this literature review (Section 6.5).

6.1 Automating Quantization & Pruning Policies for Efficient Model Conversion
Section 3 reveals that converting models for edge devices involves transforming large, complex models

into smaller, efficient versions suitable for resource-constrained hardware. Common techniques include
quantization, pruning, low-rank factorization, and knowledge distillation. Quantization, the most widely
used technique, can be applied post-training or during training (quantization-aware training). Post-training
quantization is easier to implement but may reduce accuracy, while quantization-aware training maintains
better accuracy. Pruning, the second most common technique, offers better accuracy but requires more
memory and computation. Low-rank factorization and knowledge distillation are less common due to their
complexity and longer training times.

Hernandez et al. [119] have provided an interesting theoretical analysis of the generalization of the
quantization approaches and studied an algorithm-independent generalization error bound. However, many
quantization-aware training algorithms show efficacy through practical applications with lesser theoretical
proof of the performance bound of asymptotic convergence analysis. Both quantization-aware training

50 Comput Mater Contin. 2025;83(1)

and post-training quantization have advantages and disadvantages. Post-training quantization is easy to
implement and does not usually require retraining. So, in situations where we have a trained model and we
don’t have computational resources and/or time for training the model, post-training quantization is a good
option. A quantization policy during the training can maintain higher model performance in quantization-
aware training. Moreover, a model can be designed according to the hardware requirements. It will require
additional time and computational resources.

In addition to the results in Section 3, automating quantization and pruning policies according to
hardware constraints is crucial in model conversion. In [120], the quantization policy is defined as an
optimization problem aimed at minimizing cross-entropy loss while adhering to a hardware budget con-
straint. This constraint limits the number of bits assigned to the model’s weight tensors within the hardware
budget. On the MNIST dataset, the optimized average bit size of the weights is 1.46, with no accuracy loss,
achieving a compression rate of over 2000 on LeNet. Similarly, hardware-aware automated quantization
in [121] uses reinforcement learning to optimize policies based on latency and energy feedback. The ResPrune
method [122] is another technique that uses stochastic optimization to prune filters, saving over 50% of
FLOPS on various datasets. An evolutionary pruning model [123] optimizes pruned models for better
classification results. Chen et al. [124] have proposed a two-stage framework for optimizing compression
ratios, achieving 3 to 36 times compression with 2 to 3-bit quantization. Guo et al. [125] have introduced a
multi-agent reinforcement learning framework for automatic pruning, achieving 30% to 50% compression.
Albanese et al. [126] used pruned and quantized MobileNetV2 and SqueezeNet models to detect artifacts in
plastic components with high accuracy and inference rates.

6.2 Fault Resilience in Distributed Edge Machine Learning Models
It has been observed from Section 3 that inference can be performed entirely on the device (on-

device inference) or in collaboration with other devices or servers (distributed inference). For this purpose,
EdgeML incorporates various learning strategies to optimize performance and resource usage, including (a)
online learning, (b) continual learning, and (c) federated learning. While distributed edge machine learning
solutions using model conversion techniques are highly effective, these frameworks are also susceptible to
various sources of errors and faults [127]. Therefore, the purpose of fault-resilient edge machine learning
models is to maintain the performance and functionality of the model despite various types of errors
and faults.

There are many sources of faults and errors in these frameworks [128], such as data-related issues, which
include noisy data, incomplete data, and drift in the data distribution used to train the models. Similarly,
ensuring redundancy in the inference of edge machine learning models is crucial for maintaining reliability
and performance. It implies that if one edge device fails, others can take over its tasks without significant
disruption. Communication channels are another critical point where errors can be introduced in edge
machine learning systems. During data transfer between edge devices or between edge devices and servers,
errors such as packet loss, corruption, or delays can occur. It can lead to incomplete or inaccurate data
being processed.

Identifying and diagnosing faults early in the framework can prevent incorrect inferences or system
failures. Making the system fault-tolerant involves error correction codes, inherent model design, and
decentralized or distributed management [129]. Decentralized management distributes decision-making
across multiple nodes, reducing the impact of individual node failures [127]. Deep learning models are
programmed and deployed on the hardware, assuming that input data is genuine and error-free, there is no
error or bug in the program, and the hardware is provided as described without any pre-deployment or post-
deployment fault. In reality, the input data may be corrupt or noisy due to failure or malfunction of sensors

Comput Mater Contin. 2025;83(1) 51

or adversarial attacks [130]. Programs may have bugs or data-oriented wrong calculations, and hardware
may face failures due to environmental or structural effects. The fault resilience of the deep learning models
should be analyzed against these types of faults, reflecting the models’ reliability under such circumstances.
A systematic review of designing a framework for fault injection can be found in [131]. In the following, we
discuss some research works focusing on fault injection.

Narayanan et al. [132] have proposed high-level fault injection frameworks for TensorFlow-based appli-
cations. Similarly, Laster et al. [133] have studied the effect of transient hardware faults on the misclassification
of DNN. Syed et al. [134] investigated the impact of faults on the deep neural network at different quantization
levels. They have found that good quantization of the model increases the resiliency of the DNN. Ruospo
et al. [135] have investigated the effect of fixed and floating point quantization of CNN on reliability. An
open-source fault injection framework, darknet, tests the CNN resilience against the faults. They have tested
LeNet and YOLO architectures by injecting faults at different layers. They have concluded that fixed point
data quantization provides a better tradeoff between memory footprint reduction and resilience.

Liu et al. [136] have proposed a distribution-based error detector to improve the bit error resilience
of DNN. They have used memory errors and register fault injectors. The results on LeNet and AlexNet
showed that DED improved the error resilience of the models. The effect of the two pruning methods, namely
magnitude-based pruning and filter-based structured pruning, on the reliability of the DNN deployed on
FPGA is studied in [137]. A hardware injection tool is used for reliability evaluations.

Furthermore, the effect of weight quantization is also investigated. The classification accuracy of VGG16
on the CIFAR-10 dataset is studied for different quantization levels and pruning methods. They have found
that 8-bit quantization is a better option, and reliability does not increase much as we increase the bit-width to
be larger than 8. Filter-based structured pruning method is less reliable than magnitude-based pruning. DNN
with higher pruning rates is more robust to weight errors but less reliable to errors on the configuration bits.

6.3 Influence of Hardware Constraints on Edge Devices
The specific hardware constraints of edge devices significantly influence the design and deployment of

models in EdgeML and TinyML.
Memory Constraints: Edge devices often have limited memory, necessitating model optimization

techniques to reduce the size of machine learning models. Techniques such as pruning, quantization, and
knowledge distillation are commonly used to compress models without significantly compromising accuracy.
For instance, pruning removes unnecessary parameters, while quantization reduces the precision of the
model weights, both of which help in fitting the model within the limited memory available on edge devices.

Computational Capabilities: The computational power of edge devices varies widely. Devices with
limited computational capabilities require computationally efficient models. It often involves designing
lightweight models or using specialized architectures like MobileNets or SqueezeNet, optimized for low-
power and low-latency inference. Additionally, techniques such as model partitioning can distribute the
computational load across multiple devices or offload some tasks to more powerful servers, balancing the
computational requirements.

Energy Consumption: Energy efficiency is crucial for edge devices, especially those that rely on battery
power. Models deployed on these devices must be optimized to minimize energy consumption. It can be
achieved through techniques like event-driven computing, where the device only activates when necessary,
and by using energy-efficient algorithms that reduce the number of computations required. For example,
event-driven computing can significantly extend battery life by avoiding constant data processing.

52 Comput Mater Contin. 2025;83(1)

6.4 Ethical Concerns of Deployment of Edge ML
When machine learning models are deployed on resource-constrained devices such as smartphones,

smartwatches, and other IoT devices, handling the privacy issue of sensitive personal data is a significant
concern that needs to be addressed. Robust security infrastructure is required to optimize the robustness of
the IoT devices against data breaches. This issue has been discussed in many ways, including with the newly
developed blockchain technology. Still, incorporating robust security measures in resource-constrained
devices is difficult due to limited power availability. The learning of the models with limited access to the
training data from a localized environment may create a bias in the models. Such a problem can be handled
by sharing the models among the edge devices and placing the central model on the cloud or local servers.
Many decisions are made by edge machine learning models in sensitive environments, such as maintaining
security or providing healthcare in smart cities. In such cases, transparency and accountability of automated
decision-making are more significant ethical concerns.

6.5 Limitations of the Literature Review
Despite strictly following the guidelines and adhering to our review protocol, there are certain limita-

tions: (1) While we used appropriate search terms and thoroughly scanned the results, some terms returned
thousands of results that could not be exhaustively reviewed. Additionally, some research was rejected based
on titles, which may not accurately reflect the content. Therefore, we do not claim our research is exhaustive.
(2) We utilized four renowned scientific databases: IEEE, ELSEVIER, ACM, and SPRINGER, which provide
many journal and conference publications. However, other databases also contain significant research work.
Consequently, there is a chance we missed relevant recent studies from other sources. Nonetheless, we believe
the ultimate findings of this literature review are not significantly affected, as the selected databases provide
high-quality, up-to-date research literature.

7 Challenges and Future Directions
Sections 3 and 4 provide results into two major categories: (1) model conversion, inference, and

learning in EdgeML and (2) model deployment on resource-constrained devices with TinyML. Based on
these results, Sections 5 and 6 have formulated responses to identified research questions and associated
discussion. Consequently, this section identifies probable issues due to the rapid increase in smart devices,
which are projected to reach 29 billion by 2030 [138]. These devices generate vast amounts of data, which can
be utilized to build numerous IIoT systems. However, deploying these models on edge devices has several
challenges due to their computational and energy constraints. Here are some key challenges and future
research directions:

Resource Optimization for Dynamic and Heterogeneous Edge Environments: The edge environment
is becoming increasingly dynamic, heterogeneous, and diverse. Edge devices now operate in various environ-
ments, from remote, communication-constrained areas to highly demanding and dangerous situations such
as firefighting, battlefields, and harsh weather conditions [139]. Adaptive solutions are needed to dynamically
allocate resources based on decision-making requirements, current workload, and communication status
among edge devices or between edge devices and edge or cloud servers [140]. Therefore, effective resource
management is crucial for end-to-end machine learning applications deployed on autonomous devices. For
battery-operated edge devices, extending operational life is also a key concern. Consequently, efficient and
innovative computational algorithms are becoming a priority. Developing multi-objective optimal policies
for sharing and balancing resources among collaborating edge devices is another important future research
direction [141].

Comput Mater Contin. 2025;83(1) 53

Additionally, optimizing the placement of edge nodes and servers is essential to enhance the quality
of collaborative tasks for mobile edge devices [142]. We need a suitable prediction mechanism to predict
the workload patterns and allocate the resources in the dynamic environment. Resource scheduling requires
a robust mechanism in the presence of communication instability and variation of available resources.
Reinforcement learning can be a good future direction in solving this problem. In the heterogeneous
environment, scalability issues are a significant concern for resource management strategies, which can be
handled by solving dynamic scheduling issues.

Resource-Aware Learning and Sustainability: Although models can be compressed to fit on-edge
devices, inference, and continual learning (as discussed in Section 3 of this article) still demand additional
resources. It implies that maintaining learned knowledge and acquiring new information from dynamic
environments is challenging. Analyzing data, selecting important information for learning, and discarding
irrelevant data require extra computational resources and energy. When edge devices collaborate or com-
municate with servers, designing an optimal policy for inference and learning is always challenging [143].
Therefore, balancing acquiring new knowledge with making the model available for inference necessitates
task-based scheduling procedures. Moreover, ensuring timeliness and accuracy through specialized model
design will be crucial for future edge ML applications [144]. Consequently, resource sustainability will be a
significant research topic, as resource-aware federated learning uses neural architecture search to generate
deployable models on heterogeneous devices based on their resources. Yu et al. [145] proposed on-demand
customized model deployment considering the available resources on edge devices. Extensive research is
also required in this direction. Selecting the data relevant to the learning already trained is a primary step
in efficient learning without wasting computation resources on learning redundant data. Ge et al. [146]
proposed an adaptive personalized FL when the data distribution among the users is homogenous. Hence,
the scheme identifies users with homogenous patterns and engages them in collaborative FL using one-
shot screening based on the learning loss without communicating the original data. Due to privacy issues
related to personal data, it is not safe to transmit this data to the edge server. Hence, specific properties of
the dataset on which the machine learning model is trained should be kept and used to predict the novelty
of the new information.

New Learning Paradigms and Algorithms: While this literature review has discussed various learning
paradigms, including on-device, federated, continual, or life-long, and split model learning, adapting to
changing data distributions remains a significant challenge and requires stable learning procedures. The
review highlights that substantial work has been done on quantizing and pruning pre-trained models.
However, there is still a need for extensive research in quantization-aware and prune-aware training of
models. Specialized learning algorithms for quantized models based on multi-objective loss functions could
be more beneficial for future model designs [147]. Due to its limited computational resources, TinyML faces
additional challenges in incorporating these learning strategies effectively. Addressing these challenges will
be crucial for advancing the capabilities and applications of TinyML [148].

Hardware-Oriented Model Design: As EdgeML and TinyML technologies evolve, optimizing hard-
ware to meet the specific needs of various applications and algorithms becomes increasingly important [149].
Custom hardware can be designed to accelerate particular machine learning algorithms, improving perfor-
mance and efficiency. Tailoring hardware to the needs of specific applications can significantly reduce power
consumption. By designing hardware optimized for specific tasks, it is possible to reduce latency, enabling
real-time data processing and decision-making. However, creating hardware optimized for particular appli-
cations can limit its scalability across different use cases, requiring multiple designs for various applications.
Moreover, developing custom hardware can be expensive and time-consuming, which may not be feasible
for all organizations. In the hardware-oriented model design, hardware constraints can be identified, and

54 Comput Mater Contin. 2025;83(1)

a multi-objective optimization algorithm can be used to achieve a tradeoff between model complexity and
hardware design.

Better Interoperability and Scalability: Section 4 of this LITERATURE REVIEW has highlighted that
the EdgeML and TinyML paradigms are applied to diverse applications (such as healthcare, automotive,
energy, vehicles, industry, and energy) in a dynamic and varied environment. The diversity of edge devices,
each with unique constraints, adds complexity to EdgeML and TinyML framework [11]. In collaborative
inference and learning, these edge devices must work together to complete tasks despite their hardware
and software variability. This heterogeneity necessitates standard protocols for integrating information
and learning. Recent research [150–152] has addressed some interoperability issues, but much more work
is needed in this area. Scalability is another significant concern in deploying edge computing solutions.
Computation offloading to edge servers or other edge devices can improve performance, save energy, and
reduce computation time. However, the capacity of edge servers to handle requests from numerous edge
devices can constrain performance.

Additionally, the heterogeneity of edge machine learning architectures can lead to scalability challenges.
Interoperability can be improved by ensuring the compatibility of the communication protocols among the
devices. Hence, the standardization of communication protocols for heterogeneous devices is desirable for
future practical applications. Making smart multi-protocol gateways can be a future solution to this problem.

New Computational Algorithms Aiming for Edge Devices: New computational algorithms are
required to efficiently deploy and compute machine learning models and are well-suited for limited-
resource edge devices. Hyperdimensional computing (HDC) is a new learning paradigm suitable for lesser
computation and energy requirements [153]. Hence, efficient machine learning solutions can be developed in
the high-dimensional space with lower precision parameters. Moreover, implementing the HDC on diverse
hardware platforms is challenging and needs further research and development [154].

New Edge AI Architectures Combining Cloud, Fog, and Edge Layers: New edge AI (artificial
intelligence) architectures are needed to accommodate the diverse range of edge devices and servers,
optimizing synchronization and communication within limited bandwidth constraints. Typically, EdgeML
architectures are multi-tiered, comprising multiple computing layers, from edge devices to fog servers and
cloud servers. Efficient resource utilization is challenging due to the varying levels of granularity across
these layers [155]. Multi-tenant edge AI allows multiple applications to run concurrently, optimizing resource
use. However, this architecture faces key challenges in meeting performance requirements such as latency,
accuracy, and energy consumption [156].

Data Privacy and Access Security: Edge ML is decentralized in computing and contains various edge
devices and servers. Therefore, the vulnerability of edge devices is a big issue. Due to their distributed
nature and operation in an untrusted environment, edge devices are prone to various cyber-attacks. Hence,
protecting the sensitive data collected by edge devices and stored locally is a significant challenge. Securing
the transmission of the data over multiple communication channels is also a challenging task. Moreover,
maintaining a dynamic edge ML environment where edge devices may leave or join a dynamic trust model
between devices is an issue to tackle [157]. Conventional cryptographical solutions are no longer safe after
the emergence of quantum computing. So, in edge machine learning, creating quantum-safe protocols will
be a future challenge [158].

Operational Efficiency: While edge devices collect data for inference and learning, misleading data may
corrupt the learning by edge devices. So, avoiding the adversarial data and recognizing the legitimate data
for learning and inference is also challenging [159]. Adversarial robustness in a machine learning model can
be achieved by defining new adversarial learning strategies that can incorporate adversarial examples in the

Comput Mater Contin. 2025;83(1) 55

learning process. In this way, the trained models can recognize and resist adversarial attacks on the continual
learning process. Model hardening is another helpful research direction that includes data sanitization,
adversarial training, and differential privacy to mitigate the threats. A good survey in this direction has
recently been published [17].

Edge ML on Quantum Edge Devices: Integrating EdgeML and TinyML with quantum edge devices is
another promising future research direction that aims to utilize the advantages of quantum computing, such
as enhanced processing power and speed, to optimize further machine learning models deployed on edge
devices [160]. In addition to the ability of quantum computing to solve complex problems more efficiently
than classical computing, post-quantum cryptography algorithms offer advanced security features that could
protect data processed on edge devices [161]. However, it may require developing quantum algorithms
tailored for EdgeML and TinyML applications. Developing specific quantum algorithms for EdgeML and
TinyML can unlock new possibilities for real-time data processing and analytics, making these technologies
even more powerful and versatile.

Photonic Neural Networks on the Edge Devices: Photonic neural networks use light for computations
and leverage important characteristics of light in terms of low energy consumption, parallel implementation,
and faster processing speed. Hence, photonic deep neural networks can be a good choice regarding
efficiency and performance [162]. However, coherent optical processing is challenging in photonic neural
networks [163]. Moreover, deploying the photonic neural network on resource-constrained devices still
requires further research in this area, with a major focus on miniaturization, cost efficiency, and integration
with other components on edge devices.

Compliance with Regulations and Standards: As EdgeML and TinyML technologies become more
integrated into various applications, they must meet regulatory requirements and industry standards for
widespread adoption and safe deployment. Edge devices often handle sensitive data, so compliance with data
protection regulations like GDPR or CCPA is essential [164]. Similarly, meeting safety standards is vital for
applications in critical sectors such as healthcare or automotive. In addition to security and safety standards,
interoperability is also important. Furthermore, developing standards that ensure different devices and
systems can work together seamlessly is important for the scalability of EdgeML and TinyML solutions [165].
Finally, compliance with environmental regulations regarding energy consumption and electronic waste is
becoming increasingly important as the number of deployed devices grows.

8 Conclusion
This literature review has highlighted significant advancements in model conversion, inference mech-

anisms, and learning strategies in EdgeML, emphasizing their impact on the performance, efficiency,
and deployment of machine learning models on resource-constrained devices with TinyML. It identifies
and discusses various techniques, such as pruning, quantization, knowledge distillation, and low-rank
factorization, along with their respective advantages and challenges. The document also explores different
inference mechanisms, including on-device and distributed inference, and various learning strategies like
continual learning and federated learning. Furthermore, it delves into deploying TinyML models across
different sectors, including smart agriculture, healthcare, automotive, industry, energy, and security. It
provides insights into the hardware development boards, software frameworks, and sensors used in these
applications, showcasing the versatility and potential of TinyML in real-world scenarios. Despite the sig-
nificant progress, the review acknowledges several challenges and future research directions. These include
resource optimization, new learning paradigms, interoperability, scalability, security, and the integration of
quantum computing with EdgeML and TinyML. Addressing these challenges will be crucial for the continued
advancement and widespread adoption of these technologies.

56 Comput Mater Contin. 2025;83(1)

In conclusion, this review is a valuable resource for researchers, practitioners, and developers, offering a
detailed overview of the current landscape and future directions in EdgeML and TinyML. Practitioners can
leverage techniques like pruning, quantization, and knowledge distillation to reduce model size and improve
inference speed, making deploying complex models on resource-constrained devices feasible. Similarly,
developers can choose between on-device and distributed inference based on the specific application require-
ments, balancing latency, computational load, and energy consumption. Moreover, continual and federated
learning can help maintain model accuracy over time without frequent retraining, particularly useful in
dynamic environments. The insights into hardware development boards, software frameworks, and sensors
can guide practitioners in selecting the right tools and components for deploying TinyML models in various
sectors such as smart agriculture, healthcare, automotive, industry, energy, and security. By incorporating
these practical implications, practitioners and developers can effectively apply the advancements discussed in
the review to their projects, driving innovation and improving the deployment of machine learning models
on resource-constrained devices.

Acknowledgement: The authors acknowledge the Computers, Materials & Continua for their support for the paper.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm their contribution to the paper as follows: study conception and design:
Muhammad Arif and Muhammad Rashid; data collection: Muhammad Arif; analysis and interpretation of results:
Muhammad Arif and Muhammad Rashid; draft manuscript preparation: Muhammad Arif and Muhammad Rashid.
All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: No dataset is used in the paper.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Ahmed SF, Alam MSB, Hassan M, Rozbu MR, Ishtiak T, Rafa N, et al. Deep learning modelling techniques: current

progress, applications, advantages, and challenges. Artif Intell Rev. 2023;56(11):13521–617. doi:10.1007/s10462-023-
10466-8.

2. Oliveira F, Costa DG, Assis F, Silva I. Internet of intelligent things: a convergence of embedded systems, edge
computing and machine learning. Internet Things. 2024;26(9):101153. doi:10.1016/j.iot.2024.101153.

3. Lesch V, Züfle M, Bauer A, Iffländer L, Krupitzer C, Kounev S. A literature review of IoT and CPS—what they are,
and what they are not. J Syst Softw. 2023;200(3):111631. doi:10.1016/j.jss.2023.111631.

4. Parast FK, Sindhav C, Nikam S, Yekta HI, Kent KB, Hakak S. Cloud computing security: a survey of service-based
models. Comput Secur. 2022;114(1):102580. doi:10.1016/j.cose.2021.102580.

5. Singh R, Gill SS. Edge AI: a survey. Internet Things Cyber-Phys Syst. 2023;3(5):71–92. doi:10.1016/j.iotcps.2023.02.
004.

6. Duan Q, Huang J, Hu S, Deng R, Lu Z, Yu S. Combining federated learning and edge computing toward
ubiquitous intelligence in 6G network: challenges, recent advances, and future directions. IEEE Commun Surv
Tutor. 2023;25(9):2892–950. doi:10.1109/COMST.2023.3316615.

7. Cao X, Başar T, Diggavi S, Eldar YC, Letaief KB, Poor HV, et al. Communication-efficient distributed learning: an
overview. IEEE J Sel Areas Commun. 2023;41(4):851–73. doi:10.1109/JSAC.2023.3242710.

8. Lu S, Lu J, An K, Wang X, He Q. Edge computing on IoT for machine signal processing and fault diagnosis: a
review. IEEE Internet Things J. 2023;10(13):11093–116. doi:10.1109/JIOT.2023.3239944.

9. Immonen R, Hämäläinen T. Tiny machine learning for resource-constrained microcontrollers. J Sens.
2022;2022(1):7437023. doi:10.1155/2022/7437023.

https://doi.org/10.1007/s10462-023-10466-8
https://doi.org/10.1007/s10462-023-10466-8
https://doi.org/10.1016/j.iot.2024.101153
https://doi.org/10.1016/j.jss.2023.111631
https://doi.org/10.1016/j.cose.2021.102580
https://doi.org/10.1016/j.iotcps.2023.02.004
https://doi.org/10.1016/j.iotcps.2023.02.004
https://doi.org/10.1109/COMST.2023.3316615
https://doi.org/10.1109/JSAC.2023.3242710
https://doi.org/10.1109/JIOT.2023.3239944
https://doi.org/10.1155/2022/7437023

Comput Mater Contin. 2025;83(1) 57

10. Tsoukas V, Gkogkidis A, Boumpa E, Kakarountas A. A review on the emerging technology of TinyML. ACM
Comput Surv. 2024;56(10):1–37. doi:10.1145/3661820.

11. Meuser T, Lovén L, Bhuyan M, Patil SG, Dustdar S, Aral A, et al. Revisiting edge AI: opportunities and challenges.
IEEE Internet Comput. 2024;28(4):49–59. doi:10.1109/MIC.2024.3383758.

12. Hua H, Li Y, Wang T, Dong N, Li W, Cao J. Edge computing with artificial intelligence: a machine learning
perspective. ACM Comput Surv. 2023;55(9):1–35. doi:10.1145/3555802.

13. Hoffpauir K, Simmons J, Schmidt N, Pittala R, Briggs I, Makani S, et al. A survey on edge intelligence
and lightweight machine learning support for future applications and services. ACM J Data Inform Qual.
2023;15(2):1–30. doi:10.1145/3581759.

14. Bhalgaonkar S, Munot M. Model compression of deep neural network architectures for visual pattern recognition:
current status and future directions. Comput Elect Eng. 2024;116(3):109180. doi:10.1016/j.compeleceng.2024.109180.

15. Grzesik P, Mrozek D. Combining machine learning and edge computing: opportunities, challenges, platforms,
frameworks, and use cases. Electronics. 2024;13(3):640. doi:10.3390/electronics13030640.

16. Capogrosso L, Cunico F, Cheng DS, Fummi F, Cristani M. A machine learning-oriented survey on tiny machine
learning. IEEE Access. 2024;12(1):23406–26. doi:10.1109/ACCESS.2024.3365349.

17. Paracha A, Arshad J, Farah MB, Ismail K. Machine learning security and privacy: a review of threats and
countermeasures. EURASIP J Inf Secur. 2024;2024(1):1–23. doi:10.1186/s13635-024-00158-3.

18. Gou J, Yu B, Maybank SJ, Tao D. Knowledge distillation: a survey. Int J Comput Vis. 2021;129(6):1789–819. doi:10.
1007/s11263-021-01453-z.

19. Zhao Z, Barijough KM, Gerstlauer A. Deepthings: distributed adaptive deep learning inference on resource-
constrained iot edge clusters. IEEE Trans Comput Aided Des Integr Circuits Syst. 2018;37(11):2348–59. doi:10.1109/
TCAD.2018.2858384.

20. Konečný J, McMahan HB, Ramage D, Richtárik P. Federated optimization: distributed machine learning for on-
device intelligence. arXiv:161002527. 2016.

21. Li G, Ma X, Wang X, Yue H, Li J, Liu L, et al. Optimizing deep neural networks on intelligent edge accelerators via
flexible-rate filter pruning. J Syst Archit. 2022;124(10):102431. doi:10.1016/j.sysarc.2022.102431.

22. He Y, Dong X, Kang G, Fu Y, Yan C, Yang Y. Asymptotic soft filter pruning for deep convolutional neural networks.
IEEE Trans Cybern. 2019;50(8):3594–604. doi:10.1109/TCYB.2019.2933477.

23. Kumar A, Shaikh AM, Li Y, Bilal H, Yin B. Pruning filters with L1-norm and capped L1-norm for CNN compression.
Appl Intell. 2021;51(2):1152–60. doi:10.1007/s10489-020-01894-y.

24. Yu F, Cui L, Wang P, Han C, Huang R, Huang X. EasiEdge: a novel global deep neural networks pruning method
for efficient edge computing. IEEE Internet Things J. 2020;8(3):1259–71. doi:10.1109/JIOT.2020.3034925.

25. Mondal M, Das B, Roy SD, Singh P, Lall B, Joshi SD. Adaptive CNN filter pruning using global importance metric.
Comput Vis Image Underst. 2022;222(12):103511. doi:10.1016/j.cviu.2022.103511.

26. Sarvani C, Dubey SR, Ghorai M. UFKT: unimportant filters knowledge transfer for CNN pruning. Neurocomput-
ing. 2022;514(3):101–12. doi:10.1016/j.neucom.2022.09.150.

27. Lu J, Wang R, Zuo G, Zhang W, Jin X, Rao Y. Enhancing CNN efficiency through mutual information-based filter
pruning. Digit Signal Process. 2024;151(1):104547. doi:10.1016/j.dsp.2024.104547.

28. Liu Y, Fan K, Zhou W. FPWT: filter pruning via wavelet transform for CNNs. Neural Netw. 2024;179(2):106577.
doi:10.1016/j.neunet.2024.106577.

29. Chung K, Lee C, Tsang Y, Wu C, Asadipour A. Multi-objective evolutionary architectural pruning of deep
convolutional neural networks with weights inheritance. Inf Sci. 2024;685(8):121265. doi:10.1016/j.ins.2024.121265.

30. Kolf JN, Elliesen J, Damer N, Boutros F. Towards extreme face and periocular recognition model compression with
mixed-precision quantization. Eng Appl Artif Intell. 2024;137(5):109114. doi:10.1016/j.engappai.2024.109114.

31. Gong C, Chen Y, Lu Y, Li T, Hao C, Chen D. Minimal loss DNN model compression with vectorized weight
quantization. IEEE Trans Comput. 2020;70(5):696–710. doi:10.1109/TC.2020.2995593.

32. Peng H, Wu J, Zhang Z, Chen S, Zhang H-T. Deep network quantization via error compensation. IEEE Trans
Neural Netw Learn Syst. 2021;33(9):4960–70. doi:10.1109/TNNLS.2021.3064293.

https://doi.org/10.1145/3661820
https://doi.org/10.1109/MIC.2024.3383758
https://doi.org/10.1145/3555802
https://doi.org/10.1145/3581759
https://doi.org/10.1016/j.compeleceng.2024.109180
https://doi.org/10.3390/electronics13030640
https://doi.org/10.1109/ACCESS.2024.3365349
https://doi.org/10.1186/s13635-024-00158-3
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1016/j.sysarc.2022.102431
https://doi.org/10.1109/TCYB.2019.2933477
https://doi.org/10.1007/s10489-020-01894-y
https://doi.org/10.1109/JIOT.2020.3034925
https://doi.org/10.1016/j.cviu.2022.103511
https://doi.org/10.1016/j.neucom.2022.09.150
https://doi.org/10.1016/j.dsp.2024.104547
https://doi.org/10.1016/j.neunet.2024.106577
https://doi.org/10.1016/j.ins.2024.121265
https://doi.org/10.1016/j.engappai.2024.109114
https://doi.org/10.1109/TC.2020.2995593
https://doi.org/10.1109/TNNLS.2021.3064293

58 Comput Mater Contin. 2025;83(1)

33. Wu D, Yang W, Zou X, Xia W, Li S, Hu Z, et al. Smart-DNN+: a memory-efficient neural networks compression
framework for the model inference. ACM Trans Archit Code Optim. 2023;20(4):1–24. doi:10.1145/3617688.

34. Zhong Y, Zhou Y, Chao F, Ji R. MBQuant: a novel multi-branch topology method for arbitrary bit-width network
quantization. Pattern Recognit. 2025;158(7):111061. doi:10.1016/j.patcog.2024.111061.

35. Zhang R, Chung AC. MedQ: lossless ultra-low-bit neural network quantization for medical image segmentation.
Med Image Anal. 2021;73(1):102200. doi:10.1016/j.media.2021.102200.

36. Shamim MZM. Hardware deployable edge-AI solution for prescreening of oral tongue lesions using TinyML on
embedded devices. IEEE Embedd Syst Lett. 2022;14(4):183–6. doi:10.1109/LES.2022.3160281.

37. Yu X, Park S, Kim D, Kim E, Kim J, Kim W, et al. A practical wearable fall detection system based on tiny
convolutional neural networks. Biomed Signal Process Control. 2023;86(4):105325. doi:10.1016/j.bspc.2023.105325.

38. Xu K, Zhang H, Li Y, Zhang Y, Lai R, Liu Y. An ultra-low power tinyml system for real-time visual processing at
edge. IEEE Trans Circuits Syst II: Express Briefs. 2023;70(7):2640–4. doi:10.1109/TCSII.2023.3239044.

39. Thonglek K, Takahashi K, Ichikawa K, Nakasan C, Nakada H, Takano R, et al. Automated quantization and
retraining for neural network models without labeled data. IEEE Access. 2022;10:73818–34. doi:10.1109/ACCESS.
2022.3190627.

40. Zhang R, Chung AC. EfficientQ: an efficient and accurate post-training neural network quantization method for
medical image segmentation. Med Image Anal. 2024;97(1):103277. doi:10.1016/j.media.2024.103277.

41. Liu X, Wang T, Yang J, Tang C, Lv J. MPQ-YOLO: ultra low mixed-precision quantization of YOLO for edge devices
deployment. Neurocomputing. 2024;574(7):127210. doi:10.1016/j.neucom.2023.127210.

42. Deng L, Jiao P, Pei J, Wu Z, Li G. GXNOR-Net: training deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization framework. Neural Netw. 2018;100:49–58. doi:10.
1016/j.neunet.2018.01.010.

43. Enderich L, Timm F, Burgard W. SYMOG: learning symmetric mixture of Gaussian modes for improved fixed-
point quantization. Neurocomputing. 2020;416:310–5. doi:10.1016/j.neucom.2019.11.114.

44. Lu Q, Jiang W, Xu X, Hu J, Shi Y. Quantization through search: a novel scheme to quantize convolutional neural
networks in finite weight space. In: 28th Asia and South Pacific Design Automation Conference (ASP-DAC); 2023;
Tokyo, Japan. p. 378–83.

45. Huang Z, Han X, Yu Z, Zhao Y, Hou M, Hu S. Hessian-based mixed-precision quantization with transition aware
training for neural networks. Neural Netw. 2024;182(1–4):106910. doi:10.1016/j.neunet.2024.106910.

46. Sharma S, Kang B, Kidambi NV, Mukhopadhyay S. HamQ: hamming weight-based energy aware quantization for
analog compute-in-memory accelerator in intelligent sensors. IEEE Sens J. 2024. doi:10.1109/JSEN.2024.3382479.

47. Jung S, Son C, Lee S, Son J, Han J-J, Kwak Y, et al. Learning to quantize deep networks by optimizing quanti-
zation intervals with task loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition; 2019; Long Beach, CA, USA. p. 4345–54.

48. Sun W, Chen S, Huang L, So HC, Xie M. Deep convolutional neural network compression via coupled tensor
decomposition. IEEE J Sel Top Signal Process. 2020;15(3):603–16. doi:10.1109/JSTSP.2020.3038227.

49. Swaminathan S, Garg D, Kannan R, Andres F. Sparse low rank factorization for deep neural network compression.
Neurocomputing. 2020;398(11):185–96. doi:10.1016/j.neucom.2020.02.035.

50. Nekooei A, Safari S. Compression of deep neural networks based on quantized tensor decomposition to implement
on reconfigurable hardware platforms. Neural Netw. 2022;150:350–63. doi:10.1016/j.neunet.2022.02.024.

51. Chen S, Zhou J, Sun W, Huang L. Joint matrix decomposition for deep convolutional neural networks compression.
Neurocomputing. 2023;516(3):11–26. doi:10.1016/j.neucom.2022.10.021.

52. Hsiao T-Y, Chang Y-C, Chou H-H, Chiu C-T. Filter-based deep-compression with global average pooling for
convolutional networks. J Syst Archit. 2019;95(3):9–18. doi:10.1016/j.sysarc.2019.02.008.

53. Hussain I, Tan S, Huang J. A knowledge distillation based deep learning framework for cropped images detection
in spatial domain. Signal Process Image Commun. 2024;124(24):117117. doi:10.1016/j.image.2024.117117.

54. Dai C, Lu S, Liu C, Guo B. A light-weight skeleton human action recognition model with knowledge distillation
for edge intelligent surveillance applications. Appl Soft Comput. 2024;151(10):111166. doi:10.1016/j.asoc.2023.111166.

https://doi.org/10.1145/3617688
https://doi.org/10.1016/j.patcog.2024.111061
https://doi.org/10.1016/j.media.2021.102200
https://doi.org/10.1109/LES.2022.3160281
https://doi.org/10.1016/j.bspc.2023.105325
https://doi.org/10.1109/TCSII.2023.3239044
https://doi.org/10.1109/ACCESS.2022.3190627
https://doi.org/10.1109/ACCESS.2022.3190627
https://doi.org/10.1016/j.media.2024.103277
https://doi.org/10.1016/j.neucom.2023.127210
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neucom.2019.11.114
https://doi.org/10.1016/j.neunet.2024.106910
https://doi.org/10.1109/JSEN.2024.3382479
https://doi.org/10.1109/JSTSP.2020.3038227
https://doi.org/10.1016/j.neucom.2020.02.035
https://doi.org/10.1016/j.neunet.2022.02.024
https://doi.org/10.1016/j.neucom.2022.10.021
https://doi.org/10.1016/j.sysarc.2019.02.008
https://doi.org/10.1016/j.image.2024.117117
https://doi.org/10.1016/j.asoc.2023.111166

Comput Mater Contin. 2025;83(1) 59

55. Amjad K, Asif S, Waheed Z, Guo Y. A novel lightweight deep learning framework with knowledge distillation for
efficient diabetic foot ulcer detection. Appl Soft Comput. 2024;167(1):112296. doi:10.1016/j.asoc.2024.112296.

56. Xu X, Tang S, Zhu M, He P, Li S, Cao Y. A novel model compression method based on joint distillation for deepfake
video detection. J King Saud Univ Comput Inf Sci. 2023;35(9):101792. doi:10.1016/j.jksuci.2023.101792.

57. Ham G, Cho Y, Lee J-H, Kang M, Choi G, Kim D. Difficulty level-based knowledge distillation. Neurocomputing.
2024;606:128375. doi:10.1016/j.neucom.2024.128375.

58. Xie J, Gong L, Shao S, Lin S, Luo L. Hybrid knowledge distillation from intermediate layers for efficient single
image super-resolution. Neurocomputing. 2023;554(7):126592. doi:10.1016/j.neucom.2023.126592.

59. Niyaz U, Sambyal AS, Bathula DR. Leveraging different learning styles for improved knowledge distillation in
biomedical imaging. Comput Biol Med. 2024;168(12):107764. doi:10.1016/j.compbiomed.2023.107764.

60. Fan X, Zhou W. Multidimensional knowledge distillation for multimodal scene classification of remote sensing
images. Digit Signal Process. 2024;157:104876. doi:10.1016/j.dsp.2024.104876.

61. Nooruddin S, Islam MM, Karray F, Muhammad G. A multi-resolution fusion approach for human activity
recognition from video data in tiny edge devices. Inf Fusion. 2023;100(3):101953. doi:10.1016/j.inffus.2023.101953.

62. Xu M, Qian F, Zhu M, Huang F, Pushp S, Liu X. DeepWear: adaptive local offloading for on-wearable deep learning.
IEEE Trans Mob Comput. 2019;19(2):314–30. doi:10.1109/TMC.2019.2893250.

63. Chen X, Li M, Zhong H, Ma Y, Hsu C-H. DNNOff: offloading DNN-based intelligent IoT applications in mobile
edge computing. IEEE Trans Ind Inform. 2021;18(4):2820–9. doi:10.1109/TII.2021.3075464.

64. Gauttam H, Pattanaik KK, Bhadauria S, Nain G, Prakash PB. An efficient DNN splitting scheme for edge-AI
enabled smart manufacturing. J Ind Inf Integr. 2023;34(14):100481. doi:10.1016/j.jii.2023.100481.

65. Xue M, Wu H, Peng G, Wolter K. DDPQN: an efficient DNN offloading strategy in local-edge-cloud collaborative
environments. IEEE Trans Serv Comput. 2021;15(2):640–55. doi:10.1109/TSC.2021.3116597.

66. Chen Y, Yu Z, Jin Y, Mwase C, Hu X, Da Xu L, et al. Self-aware collaborative edge inference with embedded devices
for IIoT. Future Gener Comput Syst. 2025;163:107535. doi:10.1016/j.future.2024.107535.

67. Palena M, Cerquitelli T, Chiasserini CF. Edge-device collaborative computing for multi-view classification.
Comput Netw. 2024;254(8):110823. doi:10.1016/j.comnet.2024.110823.

68. Guo X, Jiang Q, Pimentel AD, Stefanov T. Model and system robustness in distributed CNN inference at the edge.
Integration. 2025;100(1):102299. doi:10.1016/j.vlsi.2024.102299.

69. Khan MA, Hamila R, Erbad A, Gabbouj M. Distributed inference in resource-constrained iot for real-time video
surveillance. IEEE Syst J. 2022;17(1):1512–23. doi:10.1109/JSYST.2022.3198711.

70. Wang J, He D, Castiglione A, Gupta BB, Karuppiah M, Wu L. PCNN CEC: efficient and privacy-preserving
convolutional neural network inference based on cloud-edge-client collaboration. IEEE Trans Netw Sci Eng.
2022;10(5):2906–23. doi:10.1109/TNSE.2022.3177755.

71. Li C-H, Jha NK. DOCTOR: a multi-disease detection continual learning framework based on wearable medical
sensors. ACM Trans Embed Comput Syst. 2024;23(5):1–33. doi:10.1145/3679050.

72. Pellegrini L, Graffieti G, Lomonaco V, Maltoni D. Latent replay for real-time continual learning. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS); 2020; Las Vegas, NV, USA. p. 10203–9.

73. Ravaglia L, Rusci M, Nadalini D, Capotondi A, Conti F, Benini L. A tinyml platform for on-device continual
learning with quantized latent replays. IEEE J Emerg Sel Top Circuits Syst. 2021;11(4):789–802. doi:10.1109/JETCAS.
2021.3121554.

74. Deutel M, Hannig F, Mutschler C, Teich J. On-device training of fully quantized deep neural networks on Cortex-M
microcontrollers. IEEE Trans Comput Aided Des Integr Circuits Syst. 2024. doi:10.1109/TCAD.2024.3484354.

75. Xia Z, Kim J, Kang M. LEAF: an adaptation framework against noisy data on edge through ultra low-cost training.
In: Proceedings of the 61st ACM/IEEE Design Automation Conference; 2024; San Francisco, CA, USA. p. 1–6.

76. Novoa-Paradela D, Fontenla-Romero O, Guijarro-Berdiñas B. Fast deep autoencoder for federated learning.
Pattern Recognit. 2023;143(2):109805. doi:10.1016/j.patcog.2023.109805.

77. Zhang H, Bosch J, Olsson HH. Enabling efficient and low-effort decentralized federated learning with the EdgeFL
framework. Inf Softw Tech. 2025;178(3):107600. doi:10.1016/j.infsof.2024.107600.

https://doi.org/10.1016/j.asoc.2024.112296
https://doi.org/10.1016/j.jksuci.2023.101792
https://doi.org/10.1016/j.neucom.2024.128375
https://doi.org/10.1016/j.neucom.2023.126592
https://doi.org/10.1016/j.compbiomed.2023.107764
https://doi.org/10.1016/j.dsp.2024.104876
https://doi.org/10.1016/j.inffus.2023.101953
https://doi.org/10.1109/TMC.2019.2893250
https://doi.org/10.1109/TII.2021.3075464
https://doi.org/10.1016/j.jii.2023.100481
https://doi.org/10.1109/TSC.2021.3116597
https://doi.org/10.1016/j.future.2024.107535
https://doi.org/10.1016/j.comnet.2024.110823
https://doi.org/10.1016/j.vlsi.2024.102299
https://doi.org/10.1109/JSYST.2022.3198711
https://doi.org/10.1109/TNSE.2022.3177755
https://doi.org/10.1145/3679050
https://doi.org/10.1109/JETCAS.2021.3121554
https://doi.org/10.1109/JETCAS.2021.3121554
https://doi.org/10.1109/TCAD.2024.3484354
https://doi.org/10.1016/j.patcog.2023.109805
https://doi.org/10.1016/j.infsof.2024.107600

60 Comput Mater Contin. 2025;83(1)

78. Yang Z, Zhang S, Li C, Wang M, Wang H, Zhang M. Efficient knowledge management for heterogeneous federated
continual learning on resource-constrained edge devices. Future Gener Comput Syst. 2024;156:16–29. doi:10.1016/
j.future.2024.02.018.

79. Qiang X, Hu Y, Chang Z, Hamalainen T. Importance-aware data selection and resource allocation for hierarchical
federated edge learning. Future Gener Comput Syst. 2024;154(6):35–44. doi:10.1016/j.future.2023.12.014.

80. Cao S, Wu H, Wu X, Ma R, Wang D, Han Z, et al. FedDA: resource-adaptive federated learning with dual-alignment
aggregation optimization for heterogeneous edge devices. Future Gener Comput Syst. 2025;163(3):107551. doi:10.
1016/j.future.2024.107551.

81. Wang T, Zheng Z, Lin F. Federated learning framework based on trimmed mean aggregation rules. Expert Syst
Appl. 2025;270(11):126354. doi:10.1016/j.eswa.2024.126354.

82. Xu J, Wang S, Wang L, Yao AC-C. FedCM: federated learning with client-level momentum. arXiv:210610874. 2021.
83. Thorgeirsson AT, Gauterin F. Probabilistic predictions with federated learning. Entropy. 2020;23(1):41. doi:10.3390/

e23010041.
84. Chen S, Shen C, Zhang L, Tang Y. Dynamic aggregation for heterogeneous quantization in federated learning.

IEEE Trans Wirel Commun. 2021;20(10):6804–19. doi:10.1109/TWC.2021.3076613.
85. Akhtarshenas A, Vahedifar MA, Ayoobi N, Maham B, Alizadeh T, Ebrahimi S, et al. Federated learning: a

cutting-edge survey of the latest advancements and applications. Comput Commun. 2024;228:107964. doi:10.1016/
j.comcom.2024.107964.

86. Karunathilake E, Le AT, Heo S, Chung YS, Mansoor S. The path to smart farming: innovations and opportunities
in precision agriculture. Agriculture. 2023;13(8):1593. doi:10.3390/agriculture13081593.

87. Tsoukas V, Gkogkidis A, Kakarountas A. A tinyml-based system for smart agriculture. In: Proceedings of the 26th
Pan-Hellenic Conference on Informatics; 2022; Athens, Greece. p. 207–12.

88. Gookyi DAN, Wulnye FA, Arthur EAE, Ahiadormey RK, Agyemang JO, Agyekum KO-BO, et al. TinyML for
smart agriculture: comparative analysis of TinyML platforms and practical deployment for maize leaf disease
identification. Smart Agri Technol. 2024;8(2):100490. doi:10.1016/j.atech.2024.100490.

89. Bhattacharya S, Pandey M. Deploying an energy efficient, secure & high-speed sidechain-based TinyML model for
soil quality monitoring and management in agriculture. Expert Syst Appl. 2024;242(5):122735. doi:10.1016/j.eswa.
2023.122735.

90. Wulnye FA, Arthur EAE, Gookyi DAN, Asiedu DKP, Wilson M, Agyemang JO. TinyML implementation on micro-
controllers: the case of maize leaf disease identification. In: 2024 Conference on Information Communications
Technology and Society (ICTAS); 2024; Durban, South Africa. p. 180–5.

91. Dockendorf C, Mitra A, Mohanty SP, Kougianos E. Lite-Agro: exploring light-duty computing platforms for IoAT-
Edge AI in plant disease identification.In. In: IFIP International Internet of Things Conference; 2023; Denton, TX,
USA. p. 371–80.

92. Azevedo MB, de Medeiros TA, Medeiros MA, Silva I, Costa DG. Detecting face masks through embedded
machine learning algorithms: a transfer learning approach for affordable microcontrollers. Mach Learn Appl.
2023;14(10):100498. doi:10.1016/j.mlwa.2023.100498.

93. Saha B, Samanta R, Ghosh S, Roy RB. BandX: an intelligent IoT-band for human activity recognition based on
TinyML. In: Proceedings of the 24th International Conference on Distributed Computing and Networking; 2023;
Kharagpur, India. p. 284–5.

94. Arthi R, Krishnaveni S. Optimized tiny machine learning and explainable AI for trustable and energy-efficient
fog-enabled healthcare decision support system. Int J Comput Intell Syst. 2024;17(1):229. doi:10.1007/s44196-024-
00631-4.

95. Gaud N, Rathore M, Suman U. MHCNLS-HAR: multi-headed CNN-LSTM based human activity recognition
leveraging a novel wearable edge device for elderly health care. IEEE Sens J. 2024;24(21):35394–405. doi:10.1109/
JSEN.2024.3450499.

96. Sun B, Bayes S, Abotaleb AM, Hassan M. The case for TinyML in healthcare: CNNs for real-time on-edge blood
pressure estimation. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing; 2023; Tallinn,
Estonia. p. 629–38.

https://doi.org/10.1016/j.future.2024.02.018
https://doi.org/10.1016/j.future.2024.02.018
https://doi.org/10.1016/j.future.2023.12.014
https://doi.org/10.1016/j.future.2024.107551
https://doi.org/10.1016/j.future.2024.107551
https://doi.org/10.1016/j.eswa.2024.126354
https://doi.org/10.3390/e23010041
https://doi.org/10.3390/e23010041
https://doi.org/10.1109/TWC.2021.3076613
https://doi.org/10.1016/j.comcom.2024.107964
https://doi.org/10.1016/j.comcom.2024.107964
https://doi.org/10.3390/agriculture13081593
https://doi.org/10.1016/j.atech.2024.100490
https://doi.org/10.1016/j.eswa.2023.122735
https://doi.org/10.1016/j.eswa.2023.122735
https://doi.org/10.1016/j.mlwa.2023.100498
https://doi.org/10.1007/s44196-024-00631-4
https://doi.org/10.1007/s44196-024-00631-4
https://doi.org/10.1109/JSEN.2024.3450499
https://doi.org/10.1109/JSEN.2024.3450499

Comput Mater Contin. 2025;83(1) 61

97. Andrade P, Silva I, Diniz M, Flores T, Costa DG, Soares E. Online processing of vehicular data on the edge through
an unsupervised TinyML regression technique. ACM Trans Embed Comput Syst. 2024;23(3):1–28. doi:10.1145/
3591356.

98. Andrade P, Silva M, Medeiros M, Costa DG, Silva I. TEDA-RLS: a TinyML incremental learning approach for
outlier detection and correction. IEEE Sens J. 2024;24(22):38165–73. doi:10.1109/JSEN.2024.3458917.

99. Im H, Lee S. TinyML-based intrusion detection system for in-vehicle network using convolutional neural network
on embedded devices. IEEE Embedd Syst Lett. 2024. doi:10.1109/LES.2024.3475470.

100. Saini M, Adebayo SO, Arora V. IoT-Fog-based framework to prevent vehicle-road accidents caused by self-visual
distracted drivers. Multimed Tools Appl. 2024;83(42):90133–51. doi:10.1007/s11042-024-19050-w.

101. Medeiros M, Flores T, Silva M, Silva I. A multi-layered methodology for driver behavior analysis using TinyML and
edge computing. In: 2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS);
2024; Madrid, Spain. p. 1–8.

102. Ren H, Anicic D, Runkler TA. Tinyol: TinyML with online-learning on microcontrollers. In: 2021 International
Joint Conference on Neural Networks (IJCNN); 2021; Shenzhen, China. p. 1–8.

103. Ren H, Anicic D, Runkler TA. Towards semantic management of on-device applications in industrial IoT. ACM
Trans Internet Technol. 2022;22(4):1–30. doi:10.1145/3510820.

104. Nguyen K, Schoedel S, Alavilli A, Plancher B, Manchester Z. TinyMPC: model-predictive control on resource-
constrained microcontrollers. In: 2024 IEEE International Conference on Robotics and Automation (ICRA); 2024;
Yokohama, Japan. p. 1–7.

105. Asutkar S, Chalke C, Shivgan K, Tallur S. TinyML-enabled edge implementation of transfer learning framework
for domain generalization in machine fault diagnosis. Expert Syst Appl. 2023;213(1):119016. doi:10.1016/j.eswa.2022.
119016.

106. Lin T-H, Chang C-T, Putranto A. Tiny machine learning empowers climbing inspection robots for real-time
multiobject bolt-defect detection. Eng Appl Artif Intell. 2024;133(12):108618. doi:10.1016/j.engappai.2024.108618.

107. Ksira Z, Mellit A, Blasuttigh N, Pavan AM. A novel embedded system for real-time fault diagnosis of photovoltaic
modules. IEEE J Photovolt. 2024;14(12):354–62. doi:10.1109/JPHOTOV.2024.3359462.

108. Mellit A. An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic
images and deep convolutional neural networks. Eng Appl Artif Intell. 2022;116(5668):105459. doi:10.1016/j.
engappai.2022.105459.

109. Hayajneh AM, Alasali F, Salama A, Holderbaum W. Intelligent solar forecasts: modern machine learning models
& TinyML role for improved solar energy yield predictions. IEEE Access. 2024;12:10846–64. doi:10.1109/ACCESS.
2024.3354703.

110. Boiko O, Komin A, Shendryk V, Malekian R, Davidsson P. TinyML on mobile devices for hybrid energy
management systems. In: 2024 IEEE International Conferences on Internet of Things (iThings) and IEEE Green
Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE
Smart Data (SmartData) and IEEE Congress on Cybermatics; 2024; Copenhagen, Denmark. p. 200–7.

111. Fernandes R, Costa C, Gomes R, Vilaça N. SmartLVEnergy: an AIoT framework for energy management
through distributed processing and sensor-actuator integration in legacy low-voltage systems. IEEE Sens J.
2024;24(13):20726–41. doi:10.1109/JSEN.2024.3403484.

112. Hussain A, Abughanam N, Qadir J, Mohamed A. Jamming detection in IoT wireless networks: an edge-AI based
approach. In: Proceedings of the 12th International Conference on the Internet of Things; 2023; Delft, Netherlands.
p. 57–64.

113. Giordano M, Baumann N, Crabolu M, Fischer R, Bellusci G, Magno M. Design and performance evaluation of
an ultralow-power smart IoT device with embedded TinyML for asset activity monitoring. IEEE Trans Instrum
Meas. 2022;71:2510711. doi:10.1109/TIM.2022.3165816.

114. Agrawal A, Maiti RR. TinyAP: an intelligent access point to combat Wi-Fi Attacks using TinyML. IEEE Internet
Things J. 2024;12(2):2135–45. doi:10.1109/JIOT.2024.3467328.

https://doi.org/10.1145/3591356
https://doi.org/10.1145/3591356
https://doi.org/10.1109/JSEN.2024.3458917
https://doi.org/10.1109/LES.2024.3475470
https://doi.org/10.1007/s11042-024-19050-w
https://doi.org/10.1145/3510820
https://doi.org/10.1016/j.eswa.2022.119016
https://doi.org/10.1016/j.eswa.2022.119016
https://doi.org/10.1016/j.engappai.2024.108618
https://doi.org/10.1109/JPHOTOV.2024.3359462
https://doi.org/10.1016/j.engappai.2022.105459
https://doi.org/10.1016/j.engappai.2022.105459
https://doi.org/10.1109/ACCESS.2024.3354703
https://doi.org/10.1109/ACCESS.2024.3354703
https://doi.org/10.1109/JSEN.2024.3403484
https://doi.org/10.1109/TIM.2022.3165816
https://doi.org/10.1109/JIOT.2024.3467328

62 Comput Mater Contin. 2025;83(1)

115. Saranya T, Jeyamala D, Sellamuthu S. A secure framework for MIoT: TinyML-powered emergency alerts and
intrusion detection for secure real-time monitoring. In: 2024 8th International Conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud) (I-SMAC); 2024; Kirtipur, Nepal. p. 13–21.

116. Huang J, Yu T, Chakraborty C, Yang F, Lai X, Alharbi A, et al. An energy harvesting algorithm for UAV-assisted
TinyML consumer electronic in low-power IoT networks. IEEE Trans Consum Electron. 2024;70(4):7346–56.
doi:10.1109/TCE.2024.3419784.

117. Ahmad U, Han M, Jolfaei A, Jabbar S, Ibrar M, Erbad A, et al. A comprehensive survey and tutorial on smart
vehicles: emerging technologies, security issues, and solutions using machine learning. IEEE Trans Intell Transp
Syst. 2024;25(11):15314–41. doi:10.1109/TITS.2024.3419988.

118. Huda NU, Ahmed I, Adnan M, Ali M, Naeem F. Experts and intelligent systems for smart homes’ transformation
to sustainable smart cities: a comprehensive review. Expert Syst Appl. 2024;238(9):122380. doi:10.1016/j.eswa.2023.
122380.

119. Hernandez C, Taslimi B, Lee HY, Liu H, Pardalos PM. Training generalizable quantized deep neural nets. Expert
Syst Appl. 2023;213(2):118736. doi:10.1016/j.eswa.2022.118736.

120. Yang H, Gui S, Zhu Y, Liu J. Automatic neural network compression by sparsity-quantization joint learning: a
constrained optimization-based approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition; 2020; Seattle, WA, USA. p. 2175–85.

121. Wang K, Liu Z, Lin Y, Lin J, Han SHAQ. Hardware-aware automated quantization with mixed precision. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019; Long Beach, CA,
USA. p. 8612–20.

122. Jayasimhan A, Pabitha P. ResPrune: an energy-efficient restorative filter pruning method using stochastic
optimization for accelerating CNN. Pattern Recognit. 2024;155:110671. doi:10.1016/j.patcog.2024.110671.

123. Poyatos J, Molina D, Martinez AD, Del Ser J, Herrera F. EvoPruneDeepTL: an evolutionary pruning model for
transfer learning based deep neural networks. Neural Netw. 2023;158(3):59–82. doi:10.1016/j.neunet.2022.10.011.

124. Chen W, Wang P, Cheng J. Towards automatic model compression via a unified two-stage framework. Pattern
Recognit. 2023;140(1):109527. doi:10.1016/j.patcog.2023.109527.

125. Guo B, Chang X, Chao F, Zheng X, Lin C-M, Chen Y, et al. ARLP: automatic multi-agent transformer rein-
forcement learning pruner for one-shot neural network pruning. Knowl Based Syst. 2024;300:112122. doi:10.1016/
j.knosys.2024.112122.

126. Albanese A, Nardello M, Fiacco G, Brunelli D. Tiny machine learning for high accuracy product quality inspection.
IEEE Sens J. 2022;23(2):1575–83. doi:10.1109/JSEN.2022.3225227.

127. Chen X, Xu G, Xu X, Jiang H, Tian Z, Ma T. Multicenter hierarchical federated learning with fault-tolerance
mechanisms for resilient edge computing networks. IEEE Trans Neural Netw Learn Syst. 2024;36(1):47–61. doi:10.
1109/TNNLS.2024.3362974.

128. Brandic I. Sustainable and trustworthy edge machine learning. IEEE Internet Comput. 2021;25(5):5–9. doi:10.1109/
MIC.2021.3104383.

129. Tiwari RG, Haroon M, Tripathi MM, Kumar P, Agarwal AK, Jain V. A system model of fault tolerance technique
in distributed system and scalable system using machine learning. In: Software-defined network frameworks. New
York, NY, USA: CRC Press; 2024. p. 1–16.

130. Zhang J, Chen B, Cheng X, Binh HTT, PoisonGAN YS. Generative poisoning attacks against federated learning in
edge computing systems. IEEE Internet Things J. 2020;8(5):3310–22. doi:10.1109/JIOT.2020.3023126.

131. Bolchini C, Cassano L, Miele A. Resilience of deep learning applications: a systematic literature review of analysis
and hardening techniques. Comput Sci Rev. 2024;54(521):100682. doi:10.1016/j.cosrev.2024.100682.

132. Narayanan N, Chen Z, Fang B, Li G, Pattabiraman K, Debardeleben N. Fault injection for TensorFlow applications.
IEEE Trans Dependable Secure Comput. 2022;20(4):2677–95. doi:10.1109/TDSC.2022.3175930.

133. Laskar S, Rahman MH, Zhang B, Li G. Characterizing deep learning neural network failures between algorithmic
inaccuracy and transient hardware faults. In: 2022 IEEE 27th Pacific Rim International Symposium on Dependable
Computing (PRDC); 2022; Beijing, China. p. 54–67.

https://doi.org/10.1109/TCE.2024.3419784
https://doi.org/10.1109/TITS.2024.3419988
https://doi.org/10.1016/j.eswa.2023.122380
https://doi.org/10.1016/j.eswa.2023.122380
https://doi.org/10.1016/j.eswa.2022.118736
https://doi.org/10.1016/j.patcog.2024.110671
https://doi.org/10.1016/j.neunet.2022.10.011
https://doi.org/10.1016/j.patcog.2023.109527
https://doi.org/10.1016/j.knosys.2024.112122
https://doi.org/10.1016/j.knosys.2024.112122
https://doi.org/10.1109/JSEN.2022.3225227
https://doi.org/10.1109/TNNLS.2024.3362974
https://doi.org/10.1109/TNNLS.2024.3362974
https://doi.org/10.1109/MIC.2021.3104383
https://doi.org/10.1109/MIC.2021.3104383
https://doi.org/10.1109/JIOT.2020.3023126
https://doi.org/10.1016/j.cosrev.2024.100682
https://doi.org/10.1109/TDSC.2022.3175930

Comput Mater Contin. 2025;83(1) 63

134. Syed RT, Ulbricht M, Piotrowski K, Krstic M. Fault resilience analysis of quantized deep neural networks. In: 2021
IEEE 32nd International Conference on Microelectronics (MIEL); 2021; Nis, Serbia. p. 275–9.

135. Ruospo A, Sanchez E, Traiola M, O’connor I, Bosio A. Investigating data representation for efficient and reliable
convolutional neural networks. Microprocess Microsyst. 2021;86(7):104318. doi:10.1016/j.micpro.2021.104318.

136. Liu Z, Yang X. An efficient structure to improve the reliability of deep neural networks on ARMs. Microelectron
Reliab. 2022;136(2):114729. doi:10.1016/j.microrel.2022.114729.

137. Gao Z, Yao Y, Wei X, Yan T, Zeng S, Ge G, et al. Reliability evaluation of FPGA based pruned neural networks.
Microelectron Reliab. 2022;130(8):114498. doi:10.1016/j.microrel.2022.114498.

138. Ficco M, Guerriero A, Milite E, Palmieri F, Pietrantuono R, Russo S. Federated learning for IoT devices: enhancing
TinyML with on-board training. Inf Fusion. 2024;104(3):102189. doi:10.1016/j.inffus.2023.102189.

139. Gupta BB, Quamara M. An overview of Internet of Things (IoT): architectural aspects, challenges, and protocols.
Concurr Comput. 2020;32(21):e4946. doi:10.1002/cpe.4946.

140. Nguyen MT, Truong HL. On optimizing resources for real-time end-to-end machine learning in heterogeneous
edges. Softw Pract Exp. 2025;55(3):541–58. doi:10.1002/spe.3383.

141. Liu Q, Mo R, Xu X, Ma X. Multi-objective resource allocation in mobile edge computing using PAES for Internet
of Things. Wirel Netw. 2024;30(5):3533–45. doi:10.1007/s11276-020-02409-w.

142. Asghari A, Azgomi H, Darvishmofarahi Z. Multi-objective edge server placement using the whale optimization
algorithm and game theory. Soft Comput. 2023;27(21):16143–57. doi:10.1007/s00500-023-07995-3.

143. Moustakas T, Tziouvaras A, Kolomvatsos K. Data and resource aware incremental ML training in support of
pervasive applications. Computing. 2024;106(11):3727–53. doi:10.1007/s00607-024-01338-2.

144. Yoosefi A, Kargahi M. Resource-aware in-edge distributed real-time deep learning. Internet of Things.
2024;27(8):101263. doi:10.1016/j.iot.2024.101263.

145. Yu S, Muñoz JP, Jannesari A. Resource-aware heterogeneous federated learning with specialized local models. In:
European Conference on Parallel Processing; 2024; Madrid, Spain. p. 389–403.

146. Ge Y, Zhou Y, Jia L. Adaptive personalized federated learning with one-shot screening. IEEE Internet Things J.
2024;11(9):15375–85. doi:10.1109/JIOT.2023.3346900.

147. Nimmagadda Y. Model optimization techniques for edge devices. In: Model optimization methods for efficient and
edge AI: federated learning architectures, frameworks and applications. Piscataway, NJ, USA: Wiley-IEEE Press;
2025. p. 57–85.

148. Rajapakse V, Karunanayake I, Ahmed N. Intelligence at the extreme edge: a survey on reformable tinyml. ACM
Comput Surv. 2023;55(13s):1–30. doi:10.1145/3583683.

149. Liu F, Li H, Hu W, He Y. Review of neural network model acceleration techniques based on FPGA platforms.
Neurocomputing. 2024;610(7):128511. doi:10.1016/j.neucom.2024.128511.

150. Subramaniam EVD, Srinivasan K, Qaisar SM, Pławiak P. Interoperable IoMT approach for remote diagnosis with
privacy-preservation perspective in edge systems. Sensors. 2023;23(17):7474. doi:10.3390/s23177474.

151. Pliatsios A, Kotis K, Goumopoulos C. A systematic review on semantic interoperability in the IoE-enabled smart
cities. Internet Things. 2023;22(1):100754. doi:10.1016/j.iot.2023.100754.

152. Nilsson J, Javed S, Albertsson K, Delsing J, Liwicki M, Sandin F. AI concepts for system of systems dynamic
interoperability. Sensors. 2024;24(9):2921. doi:10.3390/s24092921.

153. Chang C-Y, Chuang Y-C, Huang C-T, Wu A-Y. Recent progress and development of hyperdimensional computing
(HDC) for edge intelligence. IEEE J Emerg Sel Top Circuits Syst. 2023;13(1):119–36. doi:10.1109/JETCAS.2023.
3242767.

154. Hassan E, Bettayeb M, Mohammad B. Advancing hardware implementation of hyperdimensional computing for
edge intelligence. In: 2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS); 2024; Abu
Dhabi, United Arab Emirates. p. 169–73.

155. Wang Y, Shang F, Lei J. Multi-granularity fusion resource allocation algorithm based on dual-attention deep
reinforcement learning and lifelong learning architecture in heterogeneous IIoT. Inf Fusion. 2023;99:101871. doi:10.
1016/j.inffus.2023.101871.

https://doi.org/10.1016/j.micpro.2021.104318
https://doi.org/10.1016/j.microrel.2022.114729
https://doi.org/10.1016/j.microrel.2022.114498
https://doi.org/10.1016/j.inffus.2023.102189
https://doi.org/10.1002/cpe.4946
https://doi.org/10.1002/spe.3383
https://doi.org/10.1007/s11276-020-02409-w
https://doi.org/10.1007/s00500-023-07995-3
https://doi.org/10.1007/s00607-024-01338-2
https://doi.org/10.1016/j.iot.2024.101263
https://doi.org/10.1109/JIOT.2023.3346900
https://doi.org/10.1145/3583683
https://doi.org/10.1016/j.neucom.2024.128511
https://doi.org/10.3390/s23177474
https://doi.org/10.1016/j.iot.2023.100754
https://doi.org/10.3390/s24092921
https://doi.org/10.1109/JETCAS.2023.3242767
https://doi.org/10.1109/JETCAS.2023.3242767
https://doi.org/10.1016/j.inffus.2023.101871
https://doi.org/10.1016/j.inffus.2023.101871

64 Comput Mater Contin. 2025;83(1)

156. Mir NF. AI-assisted edge computing for multi-tenant management of edge devices in 6G networks. In: 2023 2nd
International Conference on 6G Networking (6GNet); 2023; Paris, France. p. 1–3.

157. Jedidi A. Dynamic trust security approach for edge computing-based mobile IoT devices using artificial intelli-
gence. Eng Res Express. 2024;6(2):25211. doi:10.1088/2631-8695/ad43b5.

158. Khan MA, Puri D. Challenges and opportunities in implementing quantum-safe key distribution in IoT devices.
In: 2024 3rd International Conference for Innovation in Technology (INOCON); 2024; Bangalore, India. p. 1–7.

159. Dharani D, Anitha Kumari K. A smart surveillance system utilizing modified federated machine learning: gossip-
verifiable and quantum-safe approach. Concurr Comput. 2024;36(24):e8238. doi:10.1002/cpe.8238.

160. Ansere JA, Gyamfi E, Sharma V, Shin H, Dobre OA, Duong TQ. Quantum deep reinforcement learning for dynamic
resource allocation in mobile edge computing-based IoT systems. IEEE Trans Wirel Commun. 2023;23(6):6221–33.
doi:10.1109/TWC.2023.3330868.

161. Karakaya A, Ulu A. A survey on post-quantum based approaches for edge computing security. Wiley Interdiscip
Rev Comput Stat. 2024;16(1):e1644. doi:10.1002/wics.1644.

162. Khonina SN, Kazanskiy NL, Skidanov RV, Butt MA. Exploring types of photonic neural networks for imaging and
computing—a review. Nanomaterials. 2024;14(8):697. doi:10.3390/nano14080697.

163. Bandyopadhyay S, Sludds A, Krastanov S, Hamerly R, Harris N, Bunandar D, et al. Single-chip photonic deep
neural network with forward-only training. Nat Photonics. 2024;18(12):1335–43. doi:10.1038/s41566-024-01567-z.

164. Rani F, Chollet N, Vogt L, Urbas L. Industrial edge MLOps: overview and challenges. Comput Aided Chem Eng.
2024;53(11):3019–24. doi:10.1016/B978-0-443-28824-1.50504-4.

165. Shabir MY, Torta G, Basso A, Damiani F. Toward secure TinyML on a standardized AI architecture. In: Device-
edge-cloud continuum: paradigms, architectures and applications. Cham, Switzerland: Springer; 2023. p. 121–39.

https://doi.org/10.1088/2631-8695/ad43b5
https://doi.org/10.1002/cpe.8238
https://doi.org/10.1109/TWC.2023.3330868
https://doi.org/10.1002/wics.1644
https://doi.org/10.3390/nano14080697
https://doi.org/10.1038/s41566-024-01567-z
https://doi.org/10.1016/B978-0-443-28824-1.50504-4

	A Literature Review on Model Conversion, Inference, and Learning Strategies in EdgeML with TinyML Deployment
	1 Introduction
	2 Methodology of the Literature Review
	3 Results on Model Conversion, Inference and Learning
	4 Results on Model Deployment on Resource-Constrained Devices Using TinyML
	5 Responses to Formulated Research Question
	6 Discussion and Limitations of the Literature Review
	7 Challenges and Future Directions
	8 Conclusion
	References

