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ABSTRACT: NJmat is a user-friendly, data-driven machine learning interface designed for materials design and
analysis. The platform integrates advanced computational techniques, including natural language processing (NLP),
large language models (LLM), machine learning potentials (MLP), and graph neural networks (GNN), to facili-
tate materials discovery. The platform has been applied in diverse materials research areas, including perovskite
surface design, catalyst discovery, battery materials screening, structural alloy design, and molecular informatics.
By automating feature selection, predictive modeling, and result interpretation, NJmat accelerates the development
of high-performance materials across energy storage, conversion, and structural applications. Additionally, NJmat
serves as an educational tool, allowing students and researchers to apply machine learning techniques in materials
science with minimal coding expertise. Through automated feature extraction, genetic algorithms, and interpretable
machine learning models, NJmat simplifies the workflow for materials informatics, bridging the gap between Al
and experimental materials research. The latest version (available at https://figshare.com/articles/software/NJmatML/
24607893 (accessed on 01 January 2025)) enhances its functionality by incorporating NJmatNLP, a module leveraging
language models like MatBERT and those based on Word2Vec to support materials prediction tasks. By utilizing
clustering and cosine similarity analysis with UMAP visualization, NJmat enables intuitive exploration of materials
datasets. While NJmat primarily focuses on structure-property relationships and the discovery of novel chemistries,
it can also assist in optimizing processing conditions when relevant parameters are included in the training data. By
providing an accessible, integrated environment for machine learning-driven materials discovery, NJmat aligns with
the objectives of the Materials Genome Initiative and promotes broader adoption of Al techniques in materials science.

KEYWORDS: Data-driven; machine learning; natural language processing; machine learning potential; large language
model

1 Introduction

Materials science has traditionally relied on empirical methods and domain-specific expertise to study
and design new materials [1-3]. However, the increasing complexity and vastness of the research space
in modern materials science—characterized by high-dimensional and multi-modal data—have rendered
conventional approaches insufficient for addressing many of the field’s intricate challenges. Data-driven
methods, which leverage large-scale data analysis and advanced algorithms, have revolutionized the way
materials science is conducted [4,5]. Unlike traditional methods, which often depend on manual data
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analysis, data-driven approaches provide more efficient, accurate, and scalable solutions for discovering new
materials and understanding their properties. This paradigm shift has laid the foundation for the Materials
Genome, which aims to accelerate the development of new materials by fostering collaboration across
experimental, computational, and database domains [6,7]. The materials genome initiative emphasizes the
importance of open data sharing and collaboration to optimize the design, synthesis, and processing of
materials. To achieve the objectives of materials genome engineering, there is an urgent need for advanced
computational tools that can facilitate the discovery and innovation of materials.

In recent years, natural language processing (NLP) and large language models (LLMs) have gained
significant traction in materials science [8,9]. These technologies enable the efficient extraction and analysis
of information from vast amounts of unstructured data, such as scientific literature, patents, and research
articles. LLMs, such as GPT-based models, possess the capability to understand and generate text, making
them particularly valuable for extracting meaningful insights from materials-related documents. By embed-
ding domain-specific knowledge, these models can identify relationships between materials properties and
their corresponding terminologies. For instance, NLP techniques can be utilized to automatically extract key
features, relationships, and patterns from scientific texts, which can subsequently inform material design and
discovery related to the processing-structure-property-performance (PSPP) framework. As these models
continue to evolve, their integration into materials science workflows will accelerate the discovery of novel
materials and significantly enhance the overall efficiency of research in the field. Machine learning potentials
(MLP) represent another essential aspect of modern materials science research [10,11]. MLP refers to machine
learning models that predict material properties based on atomic structures. These models, trained on large
datasets of known materials, offer a powerful tool for simulating and predicting material behavior without
the need for costly and time-consuming experiments. MLP can be particularly effective in predicting key
material properties, such as stability, conductivity, and reactivity, which are critical for the design of new
materials with targeted characteristics. By leveraging MLP, researchers can explore a much broader space
of materials, including those that have yet to be synthesized, thus enabling the rapid discovery of materials
with tailored properties.

In addition, large language models, such as LLaMA3, further enhance this process by providing inter-
active data analysis, literature summarization, and hypothesis generation. Beyond textual data, structured
numerical datasets require specialized machine learning approaches [12,13]. Crystal graph convolutional
neural networks (CGCNNSs) capture the intricate atomic and bonding relationships within crystalline
materials, enabling accurate predictions of formation energy, electronic properties, and other key charac-
teristics [14-16]. MLPs that are trained on high-precision quantum mechanical datasets offer an efficient
alternative to traditional interatomic potentials, allowing for large-scale atomistic simulations with near
first-principles accuracy [16,17].

While several powerful software packages for materials science have emerged in recent years, many
require specialized knowledge of Linux and programming, making them challenging for experimentalists to
use effectively. Although influential, the present material informatics tools often lack user-friendly interfaces,
which limits their accessibility. To address this gap, NJmat 2.0 is developed as a data-driven software package
designed with an intuitive interface that allows researchers to easily access advanced machine learning and
natural language algorithms. NJmat enables experimentalists to analyze their data without the need for
coding or complex programming expertise.

In this manuscript, we present the user instructions for NJmat, the machine learning interface designed
specifically for materials science (Fig. 1). Featuring multiple user-friendly, click-to-use interactive buttons,
NJmat integrates machine learning, deep learning, language models, natural language processing, large
language model, machine learning potential and graph neural network to offer a robust solution for materials
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property prediction and analysis. It is a versatile tool that is particularly beneficial for materials, chemical,
and physical scientists in the field of materials genomics and informatics. With no coding expertise required,
it is accessible to a broad user base.
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Figure 1: (a) Release of windows version of NJmat. The windows version is the principal version of NJmat, which is
tailored for user-friendliness, providing a graphical user interface (GUI) that eliminates the need for extensive coding
knowledge. (b) Representative buttons of NJmat, which encompasses a wide array of functionalities designed to address
key challenges in materials science research
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2 Methods

NJmat is a comprehensive button-based user-friendly software package developed to streamline mate-
rials science research through data-driven approaches. To accommodate diverse user needs and expertise
levels, NJmat is available in three versions: Python, Windows, and Webpage. (1) The Python version
NJmatML is designed for researchers who prefer programmatic access and the flexibility to integrate the
software into custom workflows. It can be installed using the command: pip install NJmatML. This version
is suitable for users with coding expertise and the need for advanced customization. (2) Windows Version.
The Windows version is the principal version of NJmat, which is tailored for user-friendliness, providing
a graphical user interface (GUI) that eliminates the need for extensive coding knowledge. This version is
developed with the goal of reducing the learning curve and enabling efficient use of NJmat’s core func-
tionalities. (3) Webpage-Based Version. To provide an alternative option for users without local installation
requirements, a web-based demo of NJmat is available at this address https://patrick007.shinyapps.io/zllab_
ofi_ml/ (accessed on 01 January 2025), with limited capabilities provided at the moment compared with the
windows version. This webpage allows users to explore the software’s conventional capabilities such as feature
selection and machine learning model construction interactively and serves as a convenient platform for
preliminary evaluations with a varieties of machine learning algorithms.

NJmat encompasses a wide array of functionalities designed to address key challenges in materials sci-
ence research [18]. These include featurization (automated extraction of material descriptors from datasets),
feature selection (identification of critical features for improving predictive model performance), machine
learning and deep learning (tools for developing predictive models and optimizing material properties),
natural language processing (NLP) (capabilities for extracting insights from unstructured text data, such
as scientific literature), SHAP analysis (tools for interpretable machine learning, enabling the explanation
of model predictions), genetic algorithms (optimization strategies for designing materials with desired
properties) and crystal structure generation (methods for randomly generating and visualizing material
structures).

The NJmat platform (https://figshare.com/articles/software/NJmatML/24607893 (accessed on 01 Jan-
uary 2025)) provides a comprehensive suite of tools for materials science data analysis, encompassing
both regression and classification tasks (Fig. 2a). The main menu includes several key components that
facilitate various stages of the analysis pipeline, including file directory management, feature generation,
machine learning model construction, and more. By supporting publicly available datasets in CSV format,
NJmat further facilitates streamlined workflows for data-driven materials research. The “Directory” button
allows users to define file paths for data import and export. The “Descriptors” button automatically
generates molecular and material features based on chemical formulas and SMILES representations from
the dataset. “Dataset” enables direct visualization of the data distribution, while “Preprocessing” provides
feature selection, heatmap visualizations, and feature importance rankings. The “Machine Learning” section
incorporates a wide range of algorithms for both regression and classification tasks. Regression algorithms
include XGBoost, Random Forest, Bagging, AdaBoost, Gradient Boosting, Extra Tree, SVM, Decision
Tree, Linear Regression, Ridge, MLP, Grid Search, and Deep Learning models (DNN, CNN, and RNN).
Classification algorithms encompass Random Forest, Extra Tree, Gaussian Process, Decision Tree, SVM,
AdaBoost, XGBoost, CatBoost, and Deep Learning (DNN, CNN, and RNN). The “Prediction” feature
allows for the generation of virtual data outputs, which can then be used for further validation. The
“Shapley” tool provides Shapley plots for the interpretation of model results, while the “Genetic” module
offers genetic algorithms for both classification and regression tasks (Fig. 2c). These algorithms enable
more interpretable machine learning models, which are represented using tree structures derived from
mathematical operators (e.g., addition, subtraction, multiplication, division, and square roots) and terminals,
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such as NJmat descriptors. The “NLP” module represents the natural language processing component of
NJmat, used for extracting chemical information from textual data. The “Visualizer” module enables the
visualization of crystal structures and CIF file downloads. “CSP” facilitates random crystal generation based
on material formulas, and “Help” provides access to useful documentation and resources.
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Figure 2: (a) Main menu buttons of NJmat. (b) Flowchart illustrating the use of NJmat for materials science:
data import, feature generation (for both organic and inorganic materials), feature selection, feature importance
ranking, and machine learning model construction, symbolic regression/classification model construction, accuracy
evaluation, prediction dataset generation, materials screening, and post-hoc analysis. (c) Genetic algorithm operations,
including hoist mutation, crossover, point mutation, and subtree mutation, are presented. Unlike traditional machine
learning techniques (e.g., Random Forest, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP)), the
genetic algorithm provides more interpretable models by using mathematical operators (such as addition, subtraction,
multiplication, division, square roots, etc.) and terminals (which are different NJmat descriptors) to form tree-like
representations
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The current version of NJmat includes MatBERT [19], Word2Vec [20,21], and Crystal Hamiltonian
Graph Neural Network (CHGNet) [22] as preliminary examples to represent NLP, MLP and GNN func-
tionalities proposed in recent years. MatBERT is a deep learning model based on transformer architectures,
fine-tuned with over 200 million materials science articles, enabling it to predict material properties
by understanding contextual relationships. Word2Vec, a popular natural language processing method,
transforms material-related terms into continuous vector representations, capturing semantic relationships
between terms. For example, it can identify strong associations such as “lithium” and “battery”, while
distinguishing terms like “carbon” and “steel” in different contexts. The Word2Vec models in NJmat are
trained on over 1 million or 50,000 materials science articles, and users can also create custom language
models using an NJmat submodule. CHGNet employs graph-based neural networks, representing atoms as
nodes and bonds as edges. Through graph neural networks (GNNs), CHGNet learns atomic interactions
and can efficiently predict material structures and properties. By integrating these models, NJmat leverages
a hybrid approach that combines language processing, machine learning, and graph analysis to accelerate
material discovery and property prediction.

A case study on machine learning model construction, specifically focusing on perovskite adsorption
energy, is provided in https://github.com/cxxhub/expert-potato (accessed on 01 January 2025).

3 Results and Discussion

NJmat automatically facilitates the construction of machine learning models, supporting both regres-
sion and classification tasks based on various algorithms. The adsorption energy (in eV) fitting results for
ionic adsorption on 2D Ruddlesden-Popper (RP) halide perovskites are analyzed using NJmat. The dataset,
available at https://github.com/cxxhub/expert-potato (accessed on 01 January 2025), is used for training and
evaluation. NJmat automatically generates heat maps and feature rankings based on Pearson correlation
coeflicients to assess feature importance (Fig. 3). The fitting results for various machine learning algorithms
on both training and test datasets exhibit high accuracy, evaluated using metrics such as mean absolute error
(MAE), mean squared error (MSE), and the coefficient of determination (R*). Algorithms tested include
XGBoost, Random Forest, Bagging, AdaBoost, Gradient Boosting, Linear Regression, Decision Tree, Extra
Tree, MLP, SVM, and Ridge Regression. For instance, the XGBoost model achieves an MAE of 0.386, an
MSE of 0.783, and an R? of 0.994, indicating decent predictive performance over a wide range of adsorption
energies. Among the models, AdaBoost demonstrated the best MAE of 0.371, the smallest error among all
tested algorithms for this particular case. Based on these results, the AdaBoost model is recommended for
further predictions on virtual datasets, which can be directly executed using the prediction functionality
available in NJmat. However, the choice of machine learning algorithm depends on the specific task and
may vary across different use cases. This workflow enables efficient and accurate predictions of material
properties, simplifying the analysis of large and complex datasets.

The NJmat platform includes a natural language processing (NLP) module, NJmatNLP (Fig. 4a),
designed to harness advanced language models for materials science applications. This module utilizes
MatBERT (Fig. 4b) and Word2Vec models, trained on extensive datasets comprising millions of material
science abstracts or subsets of 50,000 papers. NJmatNLP supports materials prediction tasks through cosine
similarity and clustering techniques, with results visualized via UMAP for enhanced interpretability. The
module includes NJmatNLPSetup, an installation file facilitating the materials prediction using the MatBERT
language model integrated with UMAP visualization, and NJmatCDE, which enables the extraction of proper
chemical formulas and material names from tabulated datasets, streamlining data preparation for down-
stream analysis. NJmatVIS, a dedicated visualizer submodule, provides an intuitive platform for visualizing
and editing crystal structures from CIF files. The module allows users to add or delete atoms, view structures
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in detail, and download CIF files. By integrating directly with the Materials Project database, NJmatVIS
facilitates access to structural crystallographic data, enhancing the efficiency of materials research workflows.
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Figure 3: Fitting results using NJmat for a perovskite adsorption energy case. (a) Heat maps and Pearson coeflicient-
based rankings analyze feature importance. (b-1) Performance of machine learning algorithms, including XGBoost,
Random Forest, Bagging, AdaBoost, Gradient Boosting, Linear Regression, Decision Tree, Extra Tree, MLP, SVM,
and Ridge, for both training and test datasets. Results are evaluated based on MAE, MSE, and R?, demonstrating the

effectiveness of NJmat for predicting material properties
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Figure 4: NJmatNLP: a submodule of NJmat for materials prediction using advanced language models. (a) Overview
of the NLP modules in NJmat, including language models and the NJmatNLP framework. (b) Implementation
of MatBERT within NJmatNLP, featuring model selection, UMAP visualization, plotting, and cosine similarity
calculations

The NJmat platform incorporates CHGNet, a graph neural network designed for accurate simulations
of material properties based on a crystal structure. It leverages a machine learning potential framework
that encodes atomic interactions within crystal structures, allowing for precise predictions of energy, forces,
and magnetic moments. Using the NJmatCHG submodule, users can import a CIF file and perform
key computational tasks, including energy prediction, geometry optimization, and molecular dynamics
simulations, with minimal user intervention (Fig. 5). The energy, forces, and magnetic moments of the
input structure are automatically computed and displayed in the interface. For energy predictions, the
module achieves a high level of accuracy due to its extensive training on diverse datasets, capturing
the complex interatomic potentials of various materials. Geometrical optimization using the submodule
rapidly converges to stable structures within seconds in the case of a perovskite structure while maintaining
a balance between computational efficiency and accuracy. The optimization results align closely with DFT
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benchmarks, with structural parameters such as lattice constants deviating by less than 1%. This capabil-
ity ensures that NJmat can provide robust predictions suitable for high-throughput materials screening.
Furthermore, molecular dynamics simulations performed through NJmat capture dynamic behavior with a
time resolution comparable to ab-initio methods. These features highlight NJmat’s utility as an interface to
accelerate materials discovery with minimal coding requirement.
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Figure 5: NJmat offers a user-friendly submodule for performing machine learning potential (MLP) and graph neural
network (GNN) calculations, integrated with CHGNet. The interface supports three key tasks: (1) direct energy
inference, (2) molecular dynamics simulations, and (3) structural optimization

The current machine learning interface does not comprehensively account for processing and
microstructural factors. However, its primary focus is on structure-property relationships and the discovery
of novel chemistries, rather than the optimization of existing materials. That said, the tool can assist in
optimizing processing conditions, such as temperature and fabrication time, provided these parameters are
included in the initial training and testing dataset. Several applications of the tool across different fields of
materials research are summarized. (1) NJmat can be applied in perovskite surface design to predict stability
and optoelectronic properties, aiding the development of next-generation solar cells and optoelectronic
devices. (2) In catalyst discovery, it enables rapid screening by selecting and designing meaningful features
(via the genetic algorithm module) and predicting catalytic activity, accelerating the search for efficient
energy conversion and storage materials. (3) For battery materials, NJmat facilitates virtual screening of
electrodes and electrolytes by predicting key electrochemical properties once the starting train-test dataset
involving chemical formulas and their outputs is prepared, contributing to high-performance energy storage
systems. (4) In structural alloy design, it assists in predicting mechanical properties and phase stability,
supporting the development of advanced structural materials. (5) Additionally, in molecular informatics, the
tool enables automatic featurization from SMILES strings, streamlining the exploration of novel molecules
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with tailored mechanical, thermal, or electronic properties. By integrating automated feature generation,
Shapley plots, and interpretable machine learning models, NJmat enhances usability across diverse materials
domains, promoting broader adoption of machine learning in materials science and aligning with the goals
of the Materials Genome Initiative.

NJmat provides an educational capability that integrates machine learning techniques specifically
designed for materials science and molecular science. The platform enables students to automatically
apply machine learning models to predict material properties, optimize structures, and simulate molecular
interactions. Features like automated feature extraction, feature selection, and the integration of genetic
algorithms streamline the process, allowing students to focus on understanding the core principles behind
these techniques. NJmat’s machine learning potentials help students explore the predictive capabilities of
data-driven approaches, providing a hands-on learning experience in computational material science. By
offering interpretable results, NJmat allows students to gain insights into how machine learning can be used
to drive innovations in materials and molecular research.

4 Conclusions

In conclusion, NJmat is a user-friendly machine learning interface developed to support materials
design and analysis, enabling integration of advanced data-driven methodologies. The platform combines
a variety of functionalities, including data visualization, feature selection, feature analysis, automatic
machine learning model construction, and virtual property prediction. Additionally, NJmat highlights
recent computational techniques such as natural language processing (NLP), large language models (LLM),
machine learning potentials (MLP), and graph neural networks (GNN), making it a comprehensive tool
for materials property prediction and analysis. Tailored to meet the needs of real-world applications, NJmat
is specifically crafted to support physical scientists, particularly experimentalists, by providing an intuitive,
no-code interface that simplifies the application of machine learning techniques in materials research. By
providing a robust and accessible platform for data-driven materials science, NJmat aims to bridge the gap
between experimentalists and advanced computational methods, empowering researchers to make informed
decisions and drive innovation in materials design.
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