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ABSTRACT: Image processing plays a vital role in various fields such as autonomous systems, healthcare, and
cataloging, especially when integrated with deep learning (DL). It is crucial in medical diagnostics, including the early
detection of diseases like chronic obstructive pulmonary disease (COPD), which claimed 3.2 million lives in 2015.
COPD, a life-threatening condition often caused by prolonged exposure to lung irritants and smoking, progresses
through stages. Early diagnosis through image processing can significantly improve survival rates. COPD encompasses
chronic bronchitis (CB) and emphysema; CB particularly increases in smokers and generally affects individuals between
50 and 70 years old. It damages the lungs’ air sacs, reducing oxygen transport and causing symptoms like coughing
and shortness of breath. Treatments such as beta-agonists and inhaled steroids are used to manage symptoms and
prolong lung function. Moreover, COVID-19 poses an additional risk to individuals with CB due to its impact on the
respiratory system. The proposed system utilizes convolutional neural networks (CNN) to diagnose CB. In this system,
CNN extracts essential and significant features from X-ray modalities, which are then fed into the neural network.
The network undergoes training to recognize patterns and make accurate predictions based on the learned features.
By leveraging DL techniques, the system aims to enhance the precision and reliability of CB detection. Our research
specifically focuses on a subset of 189 lung disease images, carefully selected for model evaluation. To further refine
the training process, various data augmentation and noise removal techniques are implemented. These techniques
significantly enhance the quality of the training data, improving the model’s robustness and generalizability. As a result,
the diagnostic accuracy has improved from 98.6% to 99.2%. This advancement not only validates the efficacy of our
proposed model but also represents a significant improvement over existing literature. It highlights the potential of
CNN-based approaches in transforming medical diagnostics through refined image analysis, learning capabilities, and
automated feature extraction.
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1 Introduction
The human respiratory system is critically anchored by the lungs, situated just below the rib cage and

above the diaphragm. These essential organs are responsible for the vital exchange of gases, absorbing oxygen
into the bloodstream and expelling carbon dioxide. This exchange is integral not only for respiratory function
but also for maintaining the body’s pH balance [1].

The lungs are equipped with various defence mechanisms to protect against infections. The respiratory
tract is lined with cilia, hair-like projections that rhythmically transport mucus, trapping and removing dust
and bacteria from inhaled air towards the pharynx. Additionally, the lung linings secrete immunoglobulins
that bolster defence against respiratory pathogens [2]. Mucus produced by goblet cells contains antimicrobial
agents such as defensins, antiproteases, and antioxidants, which safeguard internal organs from severe
diseases [3].

Despite these defences, various factors, including genetic predispositions and environmental exposures,
can precipitate lung disorders. Diseases affecting the cardiothoracic and respiratory tract regions, such as
asthma, disrupt normal lung function by inflaming and narrowing airways. Lung cancer, another serious
condition, manifests with symptoms like coughing up blood, chest pain, and unexplained weight loss. Often,
these symptoms are nonspecific, leading to delayed detection and advanced disease stages [4].

Chronic obstructive pulmonary disease (COPD), encompassing chronic bronchitis (CB) and emphy-
sema, is particularly debilitating. It is characterized by excessive mucus production and breathing difficulties.
Lung infections, including pneumonia and bronchitis, are frequently triggered by viruses but can also be
caused by bacteria and fungi. Pulmonary arterial hypertension (PAH) further complicates lung health by
constricting blood vessels and increasing arterial pressure, forcing the heart to work harder and potentially
leading to heart failure [5].

Environmental factors, such as allergens like pollens, mold, and air pollution, are known triggers
for asthma. Smoking remains the leading risk factor for lung cancer, accounting for approximately 80%
of related deaths. Early detection of these conditions is challenging as their symptoms often mimic less
severe illnesses [6]. COPD, primarily induced by prolonged exposure to irritants like cigarette smoke and
combustion fumes, is another major concern. Additionally, diseases like cirrhosis and autoimmune disorders
can precipitate PAH [7–9].

COPD represents a significant public health challenge. Ranked as the fourth leading cause of death
in the U.S., it affects approximately 11 million individuals annually. This condition combines diseases like
CB, leading to persistent inflammation and deterioration of lung function. Often undiagnosed until severe
symptoms emerge, COPD complicates treatment and management efforts. Common symptoms include
breathlessness, recurring chest infections, and persistent wheezing. Prolonged exposure to noxious fumes,
especially from smoking, increases the risk of COPD and its complications, such as respiratory infections,
cardiovascular diseases, lung cancer, and mental health issues [10].

CB and emphysema, the primary forms of COPD, result from the inflammation of bronchial tubes
and damage to lung air sacs, respectively. Inflamed cilia—tiny hair-like structures responsible for expelling
mucus—impair mucus clearance, allowing harmful pathogens easier access to the lungs. This condition
progresses as bronchial tubes swell and accumulate mucus, further disrupting the lungs’ gas exchange
capabilities, thus reducing oxygen intake and carbon dioxide expulsion [11,12].

CB significantly impacts the quality of life through symptoms like excessive mucus production and
persistent coughing. In the U.S., CB affects around 9 million adults, with smokers being 40% more susceptible
than non-smokers. Other risk factors include prolonged exposure to air pollutants, occupational hazards,
and genetic predispositions [13]. The interconnected damage caused by CB can often lead to emphysema,
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where alveoli walls are destroyed, creating larger air spaces and reducing oxygen transfer to the blood. This
leads to oxygen deprivation in the bloodstream, particularly during physical activity.

Moreover, CB poses heightened risks during pandemics such as COVID-19. The overlapping symp-
toms of these conditions complicate diagnoses and exacerbate the vulnerability of already compromised
lung function. Identifying the stages of CB—mild, moderate, severe, and very severe—is essential for
effective management. Although not curative, treatment aims to alleviate symptoms and prevent further
complications. Long-term medications, including beta-agonists, inhaled steroids, and anticholinergics, are
recommended to ease symptoms and improve lung health [14].

Technological advancements in medical imaging have significantly improved the diagnosis and man-
agement of lung diseases like CB. High-resolution computed tomography (CT) scans provide detailed views
of the lungs, aiding early detection and accurate assessment of disease progression. Pulmonary function tests
further evaluate the impact on lung capacity and functionality [15].

In parallel, deep learning (DL) technologies have emerged as transformative tools in medical diagnos-
tics, particularly through image analysis. DL models, especially convolutional neural networks (CNN), are
increasingly used to classify and detect CB from lung images [16]. These models leverage multiple processing
layers to enhance pattern recognition in complex image data, outperforming traditional diagnostic models.
The integration of CNN into medical diagnostics highlights DL’s potential to differentiate between healthy
and affected lung tissues, offering a critical tool in combating CB and related pulmonary conditions [17]. The
seamless integration of DL into medical imaging enriches clinical assessments while ensuring a connected,
data-driven approach to healthcare. By automating the detection and classification of lung conditions
from images, DL facilitates quicker, more accurate diagnoses, ultimately improving patient outcomes and
streamlining healthcare processes.

In response to the identified need for improved diagnostic methods for CB, our study introduces a CNN
based approach that overcomes the limitations of traditional diagnostic techniques. Existing methods often
lack the precision and efficiency required for early and accurate detection of CB, primarily due to inadequate
feature extraction and image analysis capabilities. To address the scarcity of available datasets, our approach
incorporates data augmentation to enhance the dataset size, alongside advanced pre-processing techniques
for more effective feature extraction. These improvements allow CNN to achieve better diagnostic results by
identifying subtle pathological features often overlooked by conventional methods.

1.1 Problem Statement
This research initiative is cantered on utilizing DL to enhance the precision of CB identification in X-ray

modalities. The study aims to develop and refine a CNN based methodology for diagnosing CB, employing
augmented X-ray datasets to overcome challenges related to limited data availability. The core challenge
involves leveraging data augmentation techniques to expand dataset size effectively, enabling the DL model
to perform accurate and reliable CB diagnosis.

1.2 Aims and Objectives
The primary aim of this study is to expand the dataset size using augmentation techniques, thereby

enhancing the realism and precision of CB identification through advanced DL in X-ray modalities. We strive
to improve upon existing classification systems in terms of efficacy. The objective extends beyond simply
refining the analytical methods; it also aims to equip medical practitioners with a more accurate diagnostic
tool. This enhancement will support better-informed decision-making in CB treatment, which is particularly
useful when existing datasets are limited.
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1.3 Contribution of Study
The key contribution of this study lies in its systematic approach to enlarging the dataset through various

augmentation techniques and assessing the efficacy of the CNN algorithm in classifying CB. By enhancing
the dataset and fine-tuning the CNN model, the study provides significant insights into the capabilities of DL
technologies in medical diagnostics. This advancement not only demonstrates the potential of augmented
datasets in improving diagnostic accuracy but also highlights the role of innovative DL techniques in
advancing medical research and practice.

The evolving landscape of medical technology, particularly through the application of DL in image-
based diagnostics, offers promising avenues for addressing the complexities of chronic lung diseases. As these
technologies advance, they bring hope for more effective management and better prognostic capabilities for
conditions like CB, fundamentally changing the approach to respiratory healthcare.

The rest of the paper is arranged as below. Section 2 presents the literature review, Section 3 explains
the used methodology, Section 4 elaborates on the proposed approach & experimental results, Section 5
elucidates the discussion, and Section 6 concludes the paper.

2 Literature Review
This section reviews related works on DL oriented lung disease classification, emphasizing advance-

ments in methodologies to enhance detection accuracy. Various DL techniques have been proposed to
address challenges in lung disease identification and improve diagnostic outcomes.

The adaptive crisp active contour approach (ACACA) has shown effectiveness in segmenting lung
structures, using co-occurrence statistic model-based features for lung disease identification. This method
integrates spatial association frameworks to improve image data analysis, enabling precise differentiation
between healthy and diseased lungs [18]. A contrasting study targeting the Chinese population employed
machine learning (ML) algorithms, including XGBoost (Extreme Gradient Boosting), logistic regres-
sion, and K-nearest neighbours (KNN), to classify COPD, with KNN achieving the highest accuracy of
82% [19,20].

Further exploration of DL techniques led to a neural network ensemble (NNE) approach, which
differentiated benign from malignant lung nodules, achieving an accuracy of 78.7%—a significant improve-
ment over individual classifiers [21]. Similarly, the LUNA-16 challenge, initiated in 2011, leveraged raw CT
scans to predict lung nodules by localizing their occurrence and assessing their likelihood within specified
regions [22,23]. Building on this, a multiscale two-layer CNN applied to the Lung Image Database Consor-
tium (LIDC) database achieved a remarkable diagnostic accuracy of 86.84% for lung cancer, highlighting
the potential of hierarchical learning frameworks in medical imaging [24,25].

In cancer treatment, a study explored chemoradiotherapy combined with radiation for locally advanced
non-small cell lung cancer, using neural networks to identify cancer cells [26]. Another study introduced
a hybrid framework combining CNNs, deep belief networks (DBNs), and stacked denoising autoencoders
(SDAEs) for cancer diagnosis, leveraging multiple image features [27,28]. Innovative research presented
the first end-to-end DL-based model for CB diagnosis, utilizing CT images to identify five distinct lung
tissue patterns indicative of obstructive and restrictive lung diseases, validated using two publicly available
datasets [29].

An algorithm based on DL was developed to classify CB according to Fleischner Society criteria, validat-
ing its outcomes across different cohorts and correlating classifications with impaired pulmonary function
tests [30]. Another study utilized X-ray imaging to develop a regression convolutional network capable
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of predicting CB percentages. Initial accuracy of 85.39% increased to 90.73% after model adjustments,
demonstrating robust predictive capabilities for CB [31].

Additionally, a novel diagnostic system for COPD was introduced, utilizing parametric resonance map
image analysis to differentiate distinct COPD types via CT scans, showcasing the utility of image-based
disease characterization [32]. Another study addressed COPD classification using a multiple instance learn-
ing approach, effectively classifying CT image patches and integrating them for comprehensive diagnostic
assessments, even in weakly labelled datasets [33]. A five-step methodology for diagnosing COPD through
3D CT images was proposed, segmenting lung regions, assessing parenchymal variations, and classifying
disease severity through combined classification and statistical evaluation techniques [34].

Transfer learning (TL) has also been explored for chest CT image classification, demonstrating high
accuracy in detecting conditions such as tuberculosis, pneumonia, and COVID-19. Using a hybrid model
with angular rotations during training, this approach underscored TL’s potential for improving detection
rates [35]. Diverse DL methodologies, including capsule networks, visual geometry group-oriented neural
networks (VGGNNs), vanilla neural networks (VNNs), and CNNs, have been employed to address chal-
lenges in detecting lung diseases. These methods address the limitations of traditional CNNs, particularly for
abnormally oriented or rotated images. For instance, a hybrid model combining CNNs, spatial transformer
networks (STNs), VGGNNs, and data augmentation achieved 73% accuracy [36]. Another study used CNNs
to predict lung infection severity by correlating radiological findings with ML predictions, demonstrating
TL’s effectiveness in enhancing accuracy for COVID-19 severity classification [37,38].

DL techniques have consistently shown promise in detecting lung diseases from chest X-rays.
Approaches such as CNNs, VGG-based networks, and hybrid models have demonstrated superior accuracy
compared to traditional ML techniques [35,39]. Multi-modal strategies combining X-ray images with
electronic health records have further advanced COPD detection [40]. While DL models have achieved
high performance in detecting abnormalities such as lung nodules, pneumonia, and tuberculosis, challenges
persist in ensuring model fairness across demographic groups and integrating these technologies into
clinical practice. Despite these challenges, DL-based methods hold significant potential as screening tools
for lung diseases, particularly in resource-limited settings where access to specialized diagnostic equipment
is restricted [41].

Below is a comparative Table 1 summarizing the different studies and their key findings:

Table 1: Summary of studies

Study Methodology Dataset used Accuracy
[17] ACACA Lung images -

[18,19] Machine learning (KNN) Chinese population 82%
[20] NNE Lung nodules 78.7%

[21,22] LUNA-16 CT scans -
[23,24] Multiscale CNN LIDC database 86.84%

[25] Chemoradiotherapy Cancer cells -
[26,27] CNN, DBNs, SDAEs CAD systems -

DL CT images -
[29] DL (Fleischner criteria) CT images -
[30] Regression CNN X-ray images 90.73%
[31] Parametric response map image

analysis
CT scans -

(Continued)
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Table 1 (continued)

Study Methodology Dataset used Accuracy
[32] Multiple instance learning CT images -

3D CT image analysis CT scans -
[34] TL Chest CT images -
[35] CNN+STN+VGGNN+data

augmentation
Not specified 73%

[36–38] CNN with transfer learning COVID-19 CT
images

-

This table encapsulates the diverse approaches and their effectiveness, providing a clear overview of how
different models and methodologies compare in the field of lung disease diagnosis through imaging. The
literature comprises seven general keywords in the studied papers: sorts of lung sicknesses, DL approach,
augmentation of raw data, parameters, and image types. Different specialists could utilize this literature
to design their research activities and contributions. The proposed work could additionally enhance the
effectiveness, efficiency and increment the DL-oriented detection schemes.

3 Materials and Methods
DL models acquire the ability to perform a variety of tasks, including image classification, text

analysis, and sound analysis [39]. DL models can rapidly achieve high accuracy, frequently outperforming
human performance. To achieve high accuracy and superior results, training a DL neural network is a
time-consuming process. DL is capable of performing pattern recognition tasks efficiently; however, the
performance of deep networks is difficult to explain.

The model depicted in Fig. 1 is used to detect CB. This method classifies lungs in four distinct steps. The
first step is to acquire images; following that, the augmentation technique is used to increase the number of
data samples available to feed a neural network. By generating new data samples, data augmentation assists
the network in overcoming overfitting. The image is processed by neural networks that learn the features of
the image and store them for prediction. Following image processing, classification of the acquired features
is performed, and at the conclusion of classification, diagnoses are made.

The dataset is required in large quantities and is extremely difficult to collect, primarily for medical
diagnosis tasks. To address this issue, we used the data augmentation technique to increase the quantity of
data by adding slightly modified copies of existing data and newly generated synthetic data from the given
data [40]. The data augmentation technique aids the model in reducing the rate of overfitting and also helps
with model regularization during training. The technique of data augmentation is analogous to oversampling.

3.1 Convolutional Neural Network
Neural network-based learning has piqued researchers’ interest in recent years due to its impressive

performance in image/video and speech recognition applications. DL’s success is due to powerful computing
hardware and a massive amount of labeled training data. Performance can be improved by adding additional
layers. Deep networks are used to describe the features extracted from neural networks.

Recent advancements in computing power and modern DL techniques have resulted in the devel-
opment of a new generation of DL techniques known as CNNs, which have been successfully applied to
image recognition, image segmentation, image classification, object detection, and medical diagnosis [41].
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CNN is represented in a variety of ways, including by AlexNet, Visual Geometry Group (VGG), GoogleNet,
Inception, and ResNet [42]. It is a more refined version of the feed-forward neural network, which is
also known as the multi-layer perceptron. CNN has a learning architecture that may be used for imaging
diagnostics [43]. To solve these types of problems, a specialized set of knowledge is required, and the stages
vary according to the problem. Automated feature detection and extraction can be carried out with high
execution results. A few effective formulas for feature extraction are provided below:

Figure 1: Proposed model for detection of chronic bronchitis

CNN contains a layered structure; the input layer is the first layer that takes an image as input and passes
it to the next convolution layer. As the image passes through the convolutional layer, it becomes abstracted to
the feature map. The convolutional layer contains pooling layers to pick up the essential features from input
and reduce the dimensionality of data by merging the outputs at one layer to the next layer’s neurons. The
pooling layer uses filters called convolutions filters. Convolutions filters are used in every dataset to extract
feature maps n, also called channels. Extracted features are stacked in the matrix.

The hidden layer of CNN is composed of multiple pooling and convolutional layers. Rectified linear
unit (ReLU) runs on neuron which is non-linear activation function also known as ramp function [25]
(see Eqs. (1) and (2)). The convolution layer is composed of filters that capture input images’ features, and
d is the dimension of n feature vectors. Features are extracted, and a vector is generated which contains the
features. Eq. (3) demonstrates the feature vector.
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Xd ata
An
= ReLU (data, An) (1)

f (x) =max (0, x) (2)
C = f (conv (Xd ata

An
∗Wc) + b) (3)

where, b is a bigoted vector; it helps the function to classify linearly accurately. The pooling layer’s function
is to extract only those features that have maximum intensity in the image. It picks only high-intensity data
to feed the network (see Eq. (4)).

Xma p
An
=max {C} (4)

Max-pooling operation eliminates nonmaximal values and reduces the computation of the next layers.
Features obtained from the max-pooling operation are fed to a fully connected layer.

The fully connected layer is the last layer of CNN; fully connected is prone to overfitting due to
occupying most parameters. To reduce the overfitting, dropout is used in the convolution layer. At every
individual training step, most particular nodes are further dropped out of the net with the probability of 1-p
or only retained with probability p; after dropping out, a depressed net is left, fed further to the next layer.
Dropping out reduces the overfitting risk, reduces the number of features, and keeps just only those needed
for the task. ReLU is non-saturating activation function. The function of this activation function is to map
the negative values to zero. Nonlinear properties of decision functions can be increased using ReLU. The
ReLU activation function formula is as follows (see Eq. (5)):

y = { x i f x ≥ 0
0 i f x ≤ 0 (5)

Here x is defined as a result of weighted priority multiplication and paranoid addition, and y is an output
of the activation function. The derivative of the ReLU is 0 if x is less than zero; otherwise, it is 1. ReLU can
quickly eliminate the problem of Gradient sigmoid activation.

The fully connected layer comes after several convolutional and max-pooling layers. Neurons in a fully
connected layer have a connection to previous activation functions. To learn features from convolutions fully
connected layer is responsible for learning features. The last layer in the CNN is the classification layer [43].
The SoftMax activation function is used at the classification layer, which brings the values between 0 and 1;
loss is calculated after the SoftMax activation function. The architecture of CNN is given in Fig. 2.

Figure 2: Overview of convolutional neural network architecture for classification
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The input of the CNN is composed of four canonical views of X-ray images. X-ray images are analyzed
with CNN composed of three neural networks followed by max-pooling functions; every phase size of
the image is reduced. At the last of convolutional layers, two fully connected networks, the first network
is composed of 1024 neurons and the size of the second variable size depends on the defined problem:
classification, multiclass classification, or regression. The loss function can be seen below (see Eq. (6)).

3.1.1 Loss Function of Neural Network

C (w , b) = 1
2n∑x ∥y (x) − a∥2 +

1
2n

λ∑w w2 (6)

C is the cost function in the above equation, w is the weight, and b is biased, n is the number of samples
in the dataset, x is the pixels of images taken as the input parameter, and a is the output value. To update
the weights of the neural network backpropagation is applied, backpropagation minimizes the difference
between the predicted and real value of the model and tries to increase the accuracy of the model. To prevent
the models from overfitting sum of all weights is divided by 2n. Dropping out is also used to prevent a model
from overfitting, which randomly shields neurons before the backpropagation.

Cross entropy is used with the SoftMax activation function; backpropagation is applied to reduce neural
network loss. Backpropagation goes forward and calculates the loss, then again iterates backward to reduce
the loss and it keeps going to minimize the loss and maximize the results. Eq. (7) of backpropagation is below:

θ∶ = θ − σ 1
m∑

m
i=1 (hθ (x(i)) − y(i)) x(i) (7)

In above equation, σ is the learning rate used for tuning parameters in the optimization of neural
network. If σ is picked too small, gradient descent will take many iterations to cover towards global minima.
If σ is picked too large, gradient descent can go out of range from global minima. Gradient descent will not
converge or diverge. θ is the parameter of a neural network, which keeps updating using backpropagation,
where m is the number of training samples in the dataset.

3.2 Proposed Approach
Detection of CB in patients relies mostly on CT scans, but the proposed solution uses X-ray images for

detection. To solve the proposed problem, CNN needs to be trained by using input X-ray images with their
respective labels. As shown in Fig. 3, CNN is trained by using their labels with yes CB and no CB.

Figure 3: Pre-processing for chronic bronchitis classification
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The Algorithm 1 for the proposed work is given below. The first step involves the data preprocessing of
input X-ray images. In the second step, features are extracted from input images, and the last step involves
the classification of images.

Algorithm 1: Model training and testing for chronic bronchitis identification
Input:
LS = Labeled Samples
ULS = Unlabeled Samples
TI = Iterations for Training
Model = Algorithm for Learning
TV =Threshold Value
Process:

Preprocessing ← Cropping, Removing Background, Hole Filling, Contouring the Image for
Better Results

Train/Test Split
DataAugmentation ← Applying Data Augmentation on the Training Images.
TrainingImageData← TIDtrain
PretrainedModel←M

To obtain Mtuned use TIDtrain
TIDsynthetic← {}

For Each {ai, bi} ε TIDtrain do
Synthesize sm samples {ai, bi} P1

Mtuned
TIDsynthetic ← TIDsynthetic u {ai, bi}P1

End
TM←Training (LS, Model, Parameters)

For i = 1: TI
Predict = Classification: (label, error)← TM(ULS)
For Each Sample of ULS

If Label == Predict
//True Positive, True Negative

End If
Else

//False Positive, False Negative
End For each

End ∣For
Output:
Trained Model: TM
End

In the proposed approach, features are extracted from X-ray images, and these features are feed to the
neural network for the classification of CB.
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3.3 System Configuration
The experimental analyses were conducted on a specified dataset utilizing a Lenovo Mobile Workstation.

This workstation is equipped with a 12th Generation Intel Core i9 processor, operates on Windows 11, and
includes 128 GB DDR4 memory, a 2 TB SSD for storage, and an NVIDIA RTX A4000 graphics card. For the
computational tasks, the experiments leveraged the Python library TensorFlow, a widely used library in ML
to take advantage of its robust capabilities in handling DL models, which are essential for the processing and
analysing of the complex datasets used in this research.

3.4 Dataset
The National Institutes of Health (NIH) Chest X-ray Dataset is a significant resource for medical

research, featuring 112,120 X-ray images sourced from 30,805 unique patients. Chest X-ray images are
among the most common and cost-effective diagnostic tools but pose challenges in clinical diagnosis, often
requiring more advanced imaging techniques like CT scans for clarity. The dataset addresses a critical gap
in the availability of large, annotated X-ray images’ datasets, which hinders the development of effective
computer-aided detection and diagnosis (CAD) systems in real-world medical settings [26].

Due to the extensive number of images, manual labelling is impractical; hence, the dataset utilizes
natural language processing (NLP) to derive disease labels from radiological reports, achieving an accuracy
of over 90%. The full dataset encompasses 15 class labels for this study, our analysis is focused on a subset,
specifically collecting lungs related diseases dataset using classes: pneumonia and emphysema utilized 62 and
127 images respectively, totalling 189 images used in our research. This selective approach allows for a targeted
investigation of adducted conditions, contributing to refined diagnostic and prognostic models. The dataset
is available at Kaggle. NIH chest X-ray dataset that is publicly available on website is used, and all procedures
were conducted in accordance with guidelines that ensure patients’ anonymity and data confidentiality.

3.4.1 X-ray Images
X-ray images draw pictures of the inside of the body. White and black shades show different parts of the

body. X-ray imaging examination is considered a valuable medical tool for examinations. The most common
use of X-ray images is checking the fracture. However, X-ray images can also be used in other diagnoses to
detect different lung diseases [44].

3.4.2 Training and Testing Split
The X-ray images dataset is divided into two no overlapping samples to be used for training and

validation, and then testing of the model. The training set is fed to the neural network for training; it took
time to learn from training data. Validation data is used for fine-tuning the hyperparameters of the model.
To prevent a model from overfitting validation set is used. Also, it is used to compare the performances and
decide which parameters should be taken further. Testing data is used to evaluate the model after the training
and validation phases; testing data are picked, which are not used to optimize the model. Testing data is used
to measure the performance of the model. In the training phase, 80% of the data is utilized for training and
validation and then 20% of the data is used in the testing phase.

3.4.3 Data Augmentation
The NIH dataset available on Kaggle only includes 189 X-ray images, which were not sufficient to

detect the adduced disease. To overcome this limitation, we employed a data augmentation technique.
The proposed approach applies data augmentation to the training dataset after the training/testing split
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to achieve two primary goals: balancing the classes in the dataset and enhancing the dataset for better
modeling. The data augmentation process is explained in Algorithm 1. Ensuring an abundance of data is vital
for high-quality results, enabling the productive deployment of most DL models. Data augmentation is a
method to artificially enhance data from existing data. Fig. 4 shows the original image vs. images generated
using the data augmentation technique. An augmented image retains the same features and intensity as the
original image.

Figure 4: Original image vs. augmented image

Data augmentation is a critical technique used to enhance the volume and diversity of training data for
DL models, particularly when original datasets are insufficient to train these models effectively. In our study,
data augmentation serves two essential purposes:

• Balancing the Dataset: Addressing class imbalance by generating additional samples for the minority
class, ensuring both classes are equally represented in the training phase.

• Enhancing the Dataset: Creating a more diverse dataset to enable the model to generalize better across
unseen data, thus improving its robustness and accuracy.

To address these purposes, we employed a variety of augmentation techniques designed to simulate
different scenarios that a model might encounter in real-world applications. In this study, a variety of
augmentation techniques were employed to enhance the dataset and improve model performance. These
geometric transformations include noise injection, which introduces Gaussian noise at varying intensities
(low, medium, high, and very high) to simulate real-world variations; contrast adjustment, modifying image
contrast by decreasing or increasing it by 20%, 40%, and 60%; and brightness adjustment, which alters
image brightness similarly to improve robustness. Scaling and zooming were applied to scale images by
factors such as 0.8×, 1.2×, 1.5×, and 2.0×, while elastic deformation was used to mimic non-rigid distortions
with varying intensity levels. Additional techniques include Gaussian blur, sharpening, edge detection,
embossing, and geometric transformations like skewing (left, right, forward, backward) and shearing
along the X- and Y-axes by 15 degrees. These techniques collectively expand the diversity of the dataset,
ensuring better generalization and improved model robustness. Fig. 5 illustrates the images created using
data augmentation techniques.

Table 2 provides a comprehensive overview of each data augmentation technique, including the specific
parameters used and the distribution of labels across the augmented images.
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Figure 5: Images created by data augmentation techniques

Table 2: Data augmentation techniques with their respective parameters

Technique Parameter Description Total images Labels
Noise injection Low (σ = 0.1) Adds low-intensity noise

to images
800 400 images = 1,

400 images = 0
Medium (σ = 0.25) Adds medium-intensity

noise to images
High (σ = 0.5) Adds high-intensity noise

to images
Very high (σ = 1.0) Adds very high-intensity

noise to images
Contrast

adjustment
−20% Decreases image contrast

by 20%
800 400 images = 1,

400 images = 0
+20% Increases image contrast

by 20%
+40% Increases image contrast

by 40%
+60% Increases image contrast

by 60%
Brightness
adjustment

−20% Decreases image
brightness by 20%

800 400 images = 1,
400 images = 0

+20% Increases image
brightness by 20%

+40% Increases image
brightness by 40%

+60% Increases image
brightness by 60%

(Continued)
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Table 2 (continued)

Technique Parameter Description Total images Labels
Scaling and

zooming
0.8× Scales the image by 0.8× 800 400 images = 1,

400 images = 0
1.2× Scales the image by 1.2×
1.5× Scales the image by 1.5×
2.0× Scales the image by 2.0×

Elastic
deformation

Low (α = 10, σ = 1.0) Applies low-intensity
elastic deformation

800 400 images = 1,
400 images = 0

Medium (α = 20, σ =
2.0)

Applies
medium-intensity elastic

deformation
High (α = 30, σ = 3.0) Applies high-intensity

elastic deformation
Very high (α = 40, σ =

4.0)
Applies very

high-intensity elastic
deformation

Gaussian blur 0.25 Applies a Gaussian blur
with sigma = 0.25

800 400 images = 1,
400 images = 0

0.50 Applies a Gaussian blur
with sigma = 0.50

1.0 Applies a Gaussian blur
with sigma = 1.0

2.0 Applies a Gaussian blur
with sigma = 2.0

Sharpen 0.50 Applies image sharpening
with intensity = 0.50

800 400 images = 1,
400 images = 0

1.0 Applies image sharpening
with intensity = 1.0

1.5 Applies image sharpening
with intensity = 1.5

2.0 Applies image sharpening
with intensity = 2.0

Edges detection 0.25 Detects edges with
threshold = 0.25

800 400 images = 1,
400 images = 0

0.50 Detects edges with
threshold = 0.50

0.75 Detects edges with
threshold = 0.75

1.0 Detects edges with
threshold = 1.0

Emboss 0.50 Applies embossing with
strength = 0.50

800 400 images = 1,
400 images = 0

(Continued)
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Table 2 (continued)

Technique Parameter Description Total images Labels
1.0 Applies embossing with

strength = 1.0
1.5 Applies embossing with

strength = 1.5
2.0 Applies embossing with

strength = 2.0
Skew Left Skews the image to the

left
800 300 images = 1,

500 images = 0
Right Skews the image to the

right
Forward Skews the image forward

Backward Skews the image
backward

Shear X-axis 15 degrees Shears the image 15
degrees along X-axis

800 200 images = 1,
600 images = 0

Y-axis 15 degrees Shears the image 15
degrees along Y-axis

3.4.4 Segmentation and Feature Extraction
The noise removal process is also very crucial for improving the clarity and quality of the images. This

study pre-processes images by filtering out random noise and enhancing image features. This pre-processing
step helps reduce the likelihood of overfitting and improves the model’s performance by focusing on relevant
features within the images. Techniques such as Gaussian blur and image sharpening are particularly effective
in smoothing out noise while preserving essential details, making the images more suitable for accurate
analysis by the DL models. Additionally, image segmentation techniques are employed to isolate and analyze
specific regions of interest within the images, further enhancing the effectiveness of feature extraction. This
step is vital as it allows for the precise extraction of key features from segmented areas, improving the
accuracy of the subsequent analysis by the DL models. Fig. 6 depicts the proposed work’s flowchart.

3.4.5 Construction of Convolutional Neural Network
To optimize the feature extraction from the input image, we have carefully set the batch size of the neural

network to 16 to balance computational load and training efficiency. The kernel size is configured at 3 × 3 to
effectively capture fine details and spatial hierarchies in the image data. Each convolution layer is enhanced
with 32 filters and followed by a 2 × 2 pooling layer to reduce dimensionality while retaining essential
information, allowing the network to delve deeper without significant information loss. Post convolution, a
flattened layer compresses the multi-dimensional input into a single dimension, preparing it for dense layer
processing. Feature scaling in the fully connected layer is managed through the ReLU activation function to
introduce non-linearity and aid in complex pattern learning. Given the binary nature of our classification
task, the sigmoid activation function is employed to output probabilities, which are crucial for the final
decision-making process. The entire model is refined using the Adam optimizer for its efficient adaptive
learning rate adjustments, and loss is computed via binary cross-entropy to address the challenges of binary
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classification. This architecture and parameter selection are justified by their proven efficacy in enhancing
model performance and preventing underfitting, especially when limited data is available. Fig. 7 provides
the view of CB classification.

Figure 6: Flowchart for proposed work

4 Results and Evaluation
The proposed model’s performance can be quantified in terms of accuracy, validation accuracy, loss,

and validation loss. The accuracy of the model can be defined as the percentage of correctly predicted images
over the test dataset (see Eq. (8)). The accuracy of validation is used to determine the skill of a trained model
in order to fine-tune model parameters. Loss specifies the model’s penalties. Loss quantifies how well a model
predicts a single sample. Although validation loss is identical to training loss, it is not used to update the
model’s parameters.

Accuracy = TP + TN
Total Number o f Sampl es

(8)

TP and TN are the True Positive and True Negative. TP is the number of true samples identified by the
model. TN is the number of correctly classified samples.

Loss = ∑
n
i=1(yi − ŷi)2

n
(9)

Using the above loss function (see Eq. (9)) inputs xi and comparing the outputs of your model ŷi with
the ground truth values yi using this loss function. This section explains the results obtained from the
proposed system.
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Figure 7: Phases of chronic bronchitis classification

Our proposed DL model, employing CNNs, achieves an exceptional model accuracy and validation
accuracy of 99.2% after training over 25 epochs shown in Fig. 8. The training process reveals a rapid ascent
in accuracy within the initial 5 epochs due to the substantial number of samples per epoch, quickly reaching
near-perfect levels. Following this initial rise, both the training and validation accuracies stabilize, indicating
that the model has effectively learned from the training data without significant overfitting. This plateau
in performance demonstrates the model’s robust generalization capabilities, maintaining a high validation
accuracy across the span of training, thereby underscoring its effectiveness in handling unseen data. The
detailed statistics are shown in Table 3 below.

This table outlines the model’s accuracy performance across different stages of the training, highlighting
the quick adaptation to the training data and stable generalization to new data.
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Figure 8: Accuracy curve

Table 3: Epoch-wise performance summary

Epoch interval Training accuracy Validation accuracy Description
1–5 0.75 to ~1.00 0.85 to ~0.95 Rapid improvement and quick

stabilization.
6–20 Consistently ~1.00 Consistently ~0.95 Performance stabilizes with

minimal overfitting.

In the analysis of a DL model’s performance, as shown in the Fig. 9 graph over 25 epochs, both the
training loss and the validation loss decrease significantly at the outset, indicating effective error reduction on
the dataset. The training loss stabilizes close to zero within the initial epochs, demonstrating that the model
has thoroughly learned the training data. However, the validation loss, despite its overall downward trend,
exhibits slight fluctuations, particularly around the 10th and 15th epochs, reflecting some inconsistency in
the model’s performance on new data. This pattern suggests that the model generalizes well overall, balance
between low loss for accuracy and avoiding too little loss to prevent overfitting is crucial for optimizing model
performance. The detail statistics are shown in Table 4 below.

Figure 9: Loss curve
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Table 4: Epoch-wise loss performance summary

Epoch interval Training loss Validation loss Description
1–5 0.50 to ~0.05 0.40 to ~0.05 Rapid reduction in

both training and
validation loss.

6–20 ~0.05 to ~0.00 ~0.05 to ~0.00 Stabilization of training
loss, minor validation

loss fluctuations.

This table summarizes the loss performance, highlighting the initial rapid learning phase and subse-
quent stabilization, indicating effective model training and generalization.

The accuracy and loss curves over 20 epochs reveal key insights into model performance. Training
accuracy quickly stabilizes near 1.00, while validation accuracy initially dips, suggesting slight overfitting,
but recovers and aligns closely with training accuracy, indicating effective generalization adjustments.
Loss metrics decrease sharply, with training loss nearing zero quickly. However, validation loss shows
fluctuations, notably a significant spike around the 15th epoch, hinting at potential overfitting issues which
are subsequently addressed as the loss decreases again. These patterns suggest that while the model learns
effectively, there is room for improvement in managing overfitting, possibly through techniques like learning
rate adjustments or regularization.

The augmentation techniques played a critical role in mitigating these challenges by increasing dataset
diversity and reducing the risk of overfitting. Noise injection, contrast and brightness adjustments, and
elastic deformation helped the model become more robust to variations, enhancing its ability to generalize
across unseen data. Techniques like scaling and zooming ensured the model could handle different image
resolutions while skewing and shearing improved its adaptability to geometric distortions. As a result, these
augmentations contributed to the eventual stabilization of validation accuracy and the decline in validation
loss, showcasing their effectiveness in improving the model’s performance and robustness. Nevertheless, the
observed fluctuations highlight opportunities for further refinements, such as fine-tuning learning rates or
introducing additional regularization techniques.

Table 5 summarizes the other performance metrices, highlighting the effective model training and
validation. The progression of the model is assessed using performance metrices including precision, recall,
and F1-score, by using the following formulas (Eqs. (10) to (12)).

Precision = TP
TP + FP

(10)

Recall = TP
TP + FN

(11)

F1 − score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(12)
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Table 5: Performance summary

Training Validation

Precision Recall F1-score Precision Recall F1-score
0.991 0.992 0.991 0.992 0.989 0.990

5 Discussion
This research provides insights into the CNN model, which we used to detect CB in healthy individuals

and those with a functional state of CB by analyzing the lung’s X-ray images. It is self-evident that data is
critical in any DL framework; if the data is more precise and specific about CB indications, it will generate
the highest precision with the best results. The experimental results demonstrate that the proposed work is
extremely precise. As a result, if it is used in real-time situations, it will be extremely helpful in diagnosing
CB. The results indicate that the proposed approach is capable of assisting in the timely and accurate
detection of CB in addition to recognizing its precise position. Following that, the proposed method is more
appropriate for CB detection from X-ray images. The test results achieved a precision of 99.2%, demonstrating
the proposed work’s suitability for discriminating between functional and non-functional states of CB.
As a result, the proposed strategy for incorporating a clinical expert system (for primary diagnosis and
screening) by radiologists or clinical specialists is reasonable. Table 6 compares the proposed approach to
existing approaches.

• The p-values obtained from paired t-tests compare the accuracy of each previous method with the
proposed CNN model.

• A p-value less than 0.05 indicates a statistically significant improvement in the performance of the
proposed model over the respective previous method.
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6 Conclusion, Limitations and Future Work
Lungs are essential organs responsible for transporting oxygen throughout the body and eliminating

harmful substances. Various factors can damage the lungs, leading to severe diseases that cause numerous
deaths annually. Early detection and treatment are crucial in preventing fatalities. This article presents
a method for detecting CB using X-ray images. A CNN achieved a 99.2% accuracy in identifying CB
through these images. The technique leverages data augmentation to enrich the dataset, enhancing the CNN’s
predictive accuracy with each training epoch. This study not only aids physicians in diagnosing CB at early
stages, potentially saving lives, but also sets the groundwork for future improvements. Enhancements could
include refining the classifier’s methodology, integrating multiple classifiers, and implementing more efficient
feature extraction techniques.

The model was initially trained and validated on a restricted set of image variations, which limits its
application to a broader range of clinical scenarios. Specifically, this study utilized only a small subset of
the NIH dataset, which may not fully represent the variability encountered in clinical practice. To enhance
the model’s generalizability and reliability in real-world conditions, future research should encompass a
more extensive collection of both pathological and non-pathological images from diverse demographics and
clinical environments. Additionally, integrating multimodal data such as combining radiographic imaging
with electronic health records and genomic data could significantly enrich the diagnostic capabilities of the
tool. Plans to test the enhanced model on independent datasets will also be crucial for validating its efficacy
across different clinical settings. Exploring the use of Quantum Machine Learning (QML) for synthesizing
datasets could also be transformative. QML offers the potential to process data in higher dimensions and at
greater speeds, thereby improving the efficiency and depth of data analysis for healthcare applications.
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