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ABSTRACT: The correction of Light Detection and Ranging (LiDAR) intensity data is of great significance for
enhancing its application value. However, traditional intensity correction methods based on Terrestrial Laser Scanning
(TLS) technology rely on manual site setup to collect intensity training data at different distances and incidence
angles, which is noisy and limited in sample quantity, restricting the improvement of model accuracy. To overcome
this limitation, this study proposes a fine-grained intensity correction modeling method based on Mobile Laser
Scanning (MLS) technology. The method utilizes the continuous scanning characteristics of MLS technology to obtain
dense point cloud intensity data at various distances and incidence angles. Then, a fine-grained screening strategy is
employed to accurately select distance-intensity and incidence angle-intensity modeling samples. Finally, based on these
samples, a high-precision intensity correction model is established through polynomial fitting functions. To verify the
effectiveness of the proposed method, comparative experiments were designed, and the MLS modeling method was
validated against the traditional TLS modeling method on the same test set. The results show that on Test Set 1, where
the distance values vary widely (i.e., 0.1–3 m), the intensity consistency after correction using the MLS modeling method
reached 7.692 times the original intensity, while the traditional TLS modeling method only increased to 4.630 times the
original intensity. On Test Set 2, where the incidence angle values vary widely (i.e., 0○–80○), the MLS modeling method,
although with a relatively smaller advantage, still improved the intensity consistency to 3.937 times the original intensity,
slightly better than the TLS modeling method’s 3.413 times. These results demonstrate the significant advantage of the
modeling method proposed in this study in enhancing the accuracy of intensity correction models.
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1 Introduction
Over the past three decades, Light Detection and Ranging (LiDAR) technology has demonstrated broad

application prospects across diverse domains, including remote sensing science [1], autonomous driving [2],
environmental monitoring [3], forestry [4,5], engineering surveying [6], and the Internet of Things [7,8],
due to its high precision and non-contact measurement characteristics. This technology reconstructs the
three-dimensional morphology of target objects by emitting laser pulses and receiving reflected signals, while
simultaneously recording the laser reflection intensity information. As a critical complement to point cloud
three-dimensional geometric data, intensity reflects the reflective spectral characteristics of the scanning
object at specific locations, serving as a pivotal parameter for object recognition and detection [9–13].
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However, the intensity data acquired by LiDAR systems are subject to systematic distortions caused by
a complex interplay of multiple influencing factors. These include sensor inherent properties, target surface
physical characteristics, environmental conditions, and data acquisition geometry. These distortions result in
significant deviations from the true reflectance properties of scanned surfaces. Among these factors, distance
and incidence angle, exert particularly pronounced impacts on intensity information [14,15]. To reduce the
impact of these two factors on intensity, researchers have proposed various correction strategies, mainly
divided into model-driven methods [16–18] and data-driven methods [19–21].

Model-driven methods build physical mathematical models based on the laser ranging equation
and theoretically have the capability for high-precision correction. However, in practical applications,
these methods encounter several limitations, including intricate parameter optimization requirements,
computationally intensive processing procedures, and constrained model generalizability. These challenges
significantly hinder their effectiveness and adaptability in complex real-world applications. Data-driven
methods in LiDAR intensity estimation, like other artificial intelligence (AI) models [22–25], depend on
extensive training data. They utilize polynomial regression models to correct intensity deviations. These
methods provide enhanced applicability and practicality. They are particularly effective in complex scenarios
with partially unknown LiDAR parameter information.

While data-driven methods offer substantial advantages, the prevailing modeling methodologies pre-
dominantly rely on Terrestrial Laser Scanning (TLS) technology [26,27]. These techniques have partially
addressed the challenges related to the efficiency and accuracy of data acquisition required for constructing
intensity correction models. The TLS methodology necessitates the establishment of discrete sampling
stations for data collection. Each individual sampling station is constrained to generating a restricted dataset
of distance-intensity or incidence angle-intensity measurements. Furthermore, this approach requires
recurrent manual repositioning of the LiDAR instrument relative to the target object to satisfy the uni-
formity criteria essential for effective model construction. This process is not only time-consuming and
labor-intensive but also prone to manual error to degrade the accuracy of modeling.

In the acquisition of distance-intensity data with identical incidence angle values, researchers commonly
need to manually ensure that the angle between the LiDAR scanning centerline and the diffuse reflector
remains constant in order to meet the experimental condition of incidence angle consistency. For example,
Xu et al. [28] and Tan et al. [29] placed the LiDAR directly facing the diffuse reflector to set the incidence
angle at 0○, thereby minimizing the impact of the incidence angle on intensity measurements. However, in
practical scenarios, slight tilting of the diffuse reflector’s surface can disrupt the consistency of the incidence
angle, adversely influencing the model’s accuracy. To tackle this problem, Li et al. [21] proposed an incidence
angle calculation method based on plane fitting. Although this method theoretically enhances the precision
of incidence angle measurement, it still necessitates manual configuration to ensure that the incidence angle
values at each distance station are maintained within a small error range when acquiring intensity data solely
related to distance factors. This process requires multiple station adjustments in practice, thereby increasing
the complexity and time cost of the experiments.

Similarly, when exploring the impact of the incidence angle on intensity values, researchers typically
employ manual operations to maintain a constant distance between the LiDAR scanning centerline and the
central axis of the diffuse reflector, thereby satisfying the experimental condition of distance consistency. For
example, Tan et al. [29] fixed the distance between the LiDAR and the central axis of the diffuse reflector and
rotated the reflector at 10○ intervals to obtain different incidence angle-intensity data at the same distance
value. However, in practice, minor deviations in the distance value can significantly impact modeling
accuracy. To address this issue, Bolkas [30] proposed a method involving a fan-shaped arrangement of
diffuse reflectors. Within the incidence angle range of 0○ to 80○, they manually set up stations to ensure
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that the reflectors were distributed at a fixed distance from the LiDAR emitter. Although this method
enhances experimental controllability to some extent, it imposes extremely high requirements for precise
positioning of the diffuse reflectors, necessitating great caution during practical implementation. In light of
the limitations of existing TLS modeling methods, exploring a more precise and automated data acquisition
method that reduces human intervention has become a key direction for improving model accuracy.

The development of Mobile Laser Scanning (MLS) technology provides a new approach to solving this
problem [31–34]. In comparison to TLS, MLS technology does not only maintain measurement precision
but also significantly enhances the efficiency of data acquisition. It captures a vast array of point cloud data
across diverse distances and incidence angles through continuous scanning for modeling purposes. A pivotal
advantage of MLS lies in its ability to automatically retrieve and compute the distance, incidence angle,
and intensity information for each measurement point utilizing a grid index structure [35]. This process
facilitates the selection of high-precision modeling samples that adhere to consistency conditions without
the necessity for manual intervention. Consequently, the utilization of the MLS method for data acquisition
effectively circumvents errors associated with manual operations, thereby ensuring the procurement of
modeling samples with superior accuracy.

Therefore, this study proposes a fine-grained point cloud intensity correction modeling method based
on MLS technology. The method leverages the continuous scanning advantage of MLS to collect point cloud
intensity of standard diffuse reflector plates at various distances and incidence angles, obtaining a rich dataset.
Then, a fine-grained screening strategy is used to accurately screen a large number of distance-intensity
and incidence angle-intensity samples for modeling. Finally, a high-precision intensity correction model
is established based on the screened sample data. The experimental results demonstrate that the proposed
modeling method in this study is characterized by a high degree of automation and the accuracy of the
modeling data. It does not only address the issue of low modeling efficiency associated with existing TLS
methods but also significantly enhances the precision of the modeling data, thereby effectively improving
the consistency of the corrected intensity.

The structure of this paper is organized as follows: Section 2 elaborates on the theoretical foundation for
establishing the intensity correction model, detailing the methodological processes including the acquisition
and organization of MLS point cloud data, the construction of the training dataset, and the testing of
the correction model, in conjunction with the experimental materials. Section 3 validates the efficacy and
precision of the MLS modeling approach through the analysis of experimental results, providing a compar-
ative assessment against the conventional TLS modeling method. Conclusively, Section 4 summarizes the
principal contributions of this research and outlines prospective directions for future investigation.

2 Materials and Methods
The proposed methodology is delineated into three sequential steps: dataset construction, intensity

correction model establishment, and model testing. The overarching workflow of the research methodology
is illustrated in Fig. 1.

This study employs a systematic methodology to construct and validate an intensity correction model
based on MLS technology. During the dataset construction phase, a UTM-30LX 2D LiDAR was utilized, with
a standard diffuse reflector exhibiting 50% reflectivity serving as the target for point cloud data acquisition.
To ensure the quality of the training data, a rigorous fine-grained filtering strategy was implemented to
extract representative distance-intensity and incidence angle-intensity training samples from the raw point
cloud data. In the correction model construction phase, the study first conducted a systematic analysis of
the key factors influencing MLS point cloud intensity measurements, thereby establishing a multiplicative
model-based intensity correction framework. Subsequently, polynomial regression was applied to fit the



578 Comput Mater Contin. 2025;83(1)

training dataset, with model parameters estimated using the least squares method, culminating in the
development of a comprehensive intensity correction model. To validate the effectiveness and robustness
of the proposed method, an independent test dataset was constructed for model evaluation. By applying
the intensity correction model to this test dataset and quantitatively comparing the results with intensity
information corrected using traditional TLS modeling methods, the performance of the proposed modeling
approach was systematically evaluated.

Figure 1: Flowchart of research method

2.1 Intensity Correction Model
2.1.1 Intensity Correction Principle

In the LiDAR system, the received laser power Pr is related to multiple parameters, including the
transmitted laser power Pt , the atmospheric transmission coefficient ηatm , the receiving aperture size Dr
of the LiDAR, the transmission coefficient ηs ys of the LiDAR optical system, the scanning distance r, the
incidence angle θ, and the target reflectivity ρ. Based on the laser ranging equation [20], when the target
surface follows Lambertian reflection characteristics, the relationship between Pr and these parameters can
be simplified as:

Pr =
Pt Dr

2ηatmηs ys

4
⋅ ρ cos θ

r2 (1)

For a specific LiDAR system, Pt , Dr , ηatm , ηs ys and ηs ys are relatively stable and can be regarded as
constants. Therefore, Pr is mainly affected by r, θ, and ρ. Since Pr is linearly related to the intensity data, the
main influencing factors of the intensity are also these three parameters. Research has shown that, assuming
the independence of factors influencing intensity, a multiplicative model can be applied to quantify the
relationships between variables [14,26]. The relationship is described as follows:

I(ρ, r, θ) = fρ (ρ) fr (r) fθ (θ) (2)
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where I(ρ, r, θ) represents the original intensity value obtained for an object target with reflectivity ρ at
r and θ. fρ (ρ), fr (r), and fθ (θ) respectively represent the functional relationships between the original
intensity value and ρ, r, and θ.

For a scanned object with a fixed reflectivity ρ, the theoretical intensity value I (ρ, rre f , θre f ) at the
reference distance rre f and the reference incidence angle θre f can be expressed as:

I(ρ, rre f , θre f ) = fρ (ρ) fr (rre f ) fθ (θre f ) (3)

By combining Eqs. (2) and (3) to eliminate fρ (ρ), the transformation relationship between the original
intensity value I(ρ, r, θ) and the theoretical intensity value I(ρ, rre f , θre f ) under the reference condition
can be obtained, that is:

I (ρ, rre f , θre f ) =
fr (rre f ) fθ (θre f )

fr (r) fθ (θ)
⋅ I(ρ, r, θ) (4)

This relationship constitutes the basic framework of the correction model. After determining the specific
functional forms of fr (r) and fθ (θ), the original intensity data can be corrected accordingly to obtain the
theoretical intensity value I (ρ, rre f , θre f ) that is only related to the target reflectivity ρ.

2.1.2 Model Parameter Estimation
To obtain a function fr (r) that reflects the relationship between distance and intensity as a single

variable, for scanning objects with a fixed reflectance value, the incidence angle is kept constant to obtain
intensity data at different distances. Since the obtained distance-intensity data pairs are distributed within a
definite closed interval, according to the Weierstrass Approximation Theorem [36], a polynomial function
can be used to fit their relationship. Additionally, considering that LiDAR intensity data exhibits a trend of
increasing and then decreasing with distance within a certain range, this study ultimately chooses a piecewise
polynomial function for fitting, with the specific expression as follows:

fr (r) =
⎧⎪⎪⎨⎪⎪⎩

∑K
k=0 ak rk , r ≤ rt

∑L
l=0 bl ( 1

r )
l , r > rt

(5)

where fr (r) represents the function fitted from distance-intensity modeling samples, K and L are the degrees
of the fitting polynomials for the closer and farther distance segments, respectively, and ak and bl are the
corresponding polynomial coefficients.

The values of K and L can be determined by comparing the fitting accuracy of polynomials of different
degrees. The specific parameters ak and bl can be calculated using the method of least squares. The
boundary point rt is typically set at the intensity peak [21]. This boundary point serves as a critical threshold
for segmenting the distance into closer and farther regions, ensuring that each divided distance interval
maintains a consistent intensity variation trend within its respective range. To obtain a function fθ (θ) that
reflects the relationship between distance and intensity as a single variable, for scanning objects with a fixed
reflectance value, the distance value is kept constant to obtain intensity data at different incidence angles.
Similarly, for the obtained incidence angle-intensity data pairs, the Weierstrass Approximation Theorem
allows the use of a cosine polynomial model for fitting, with the specific expression as follows:

fθ (θ) = ∑
M
m=0 cm (cos θ)m (6)
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where fθ (θ) represents the function fitted from incidence angle-intensity modeling samples, M is the degree
of the cosine polynomial, and cm are the corresponding polynomial coefficients. The value of M is also
determined by comparing the fitting accuracy of polynomials of different degrees. The specific parameters
cm are calculated using the method of least squares.

2.2 MLS Measurement System
2.2.1 Hardware Components

In this paper, an MLS measurement system based on 2D LiDAR is independently designed to collect
point cloud data of the standard diffuse reflector plate at different distances and incidence angles. The detailed
configuration of this system is shown in Fig. 2.

Figure 2: Configuration of MLS measurement system. 1. Linear guide slide module 2. UTM-30LX-EW 2D LiDAR 3.
LiDAR power supply 4. Microcontroller 5. Hybrid stepper motor driver 6. 12 V switching power supply 7. Scanned
object 8. Portable computer

The core components of the MLS measurement system include: a 2D LiDAR sensor (UTM-30LX-EW,
Hokuyo, Japan), a linear guide slide module (FLS40L100010C7, FUYU, China), a hybrid stepper motor driver
(57HBP112AL4, EASTOUR, China), a microcontroller (STC89C52, STC, China), and a portable computer
(S14UA8250, ASUS, China). Among them, the 2D LiDAR sensor of the model UTM-30LX-EW has a laser
wavelength of 905 nm, a maximum ranging capability of 30 m, and a wide field of view of 270○, which can
meet the measurement requirements in different scenarios. In terms of ranging accuracy, the LiDAR sensor
achieves an accuracy of ±30 mm within the range of 0.1 to 10 m, and ±50 mm within the range of 10 to 30 m.
In addition, its angular resolution is 0.25○, and the scanning period is only 25 ms. A single scan can capture
up to 1081 data points, with high acquisition efficiency and sampling density. Its main technical parameters
are shown in Table 1.

During data acquisition, the 2D LiDAR sensor is laterally installed on the guide slide to ensure that
the scanning area completely covers the target object. A standard diffuse reflector plate with a size of
50 cm × 50 cm and a reflectivity of 50% is selected as the reference target. The diffuse reflector plate is placed
directly opposite the fan-shaped scanning area of the LiDAR to obtain the best measurement effect. After the
system is started, the microcontroller runs and drives the slide to move smoothly at a preset constant speed of
0.01 m/s by precisely controlling the stepper motor driver. During this process, the 2D LiDAR sensor
transmits the real-time scanning data to the portable computer through the integrated network interface and
stores it in the. DAT format for subsequent data processing and analysis.
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Table 1: UTM-30LX-EW main technical parameters

Parameter Value
Laser wavelength 905 nm

Power consumption <8 W
Power supply 12 V DC ± 10%

Effective ranging range and accuracy 0.1–10 m; ±30 mm; 10~30 m; ±50 mm
Scanning range 270○

Angular resolution 0.25○
Scanning period 25 ms

Compared to the conventional TLS modeling approach, the experimental apparatus designed in this
study demonstrates significant advantages. Firstly, the lateral installation of the 2D LiDAR sensor enables
continuous scanning, effectively eliminating artificial errors associated with frequent device adjustments in
traditional discrete sampling methods. Secondly, the integration of a high-precision linear guide rail with
a stepper motor drive system ensures both smooth sensor movement and precise speed control, thereby
substantially reducing data errors caused by motion instability. The developed MLS measurement system
exhibits superior data acquisition speed and measurement accuracy, providing a more reliable and efficient
experimental methodology for LiDAR intensity calibration research.

2.2.2 Point Cloud Coordinate Calculation
In this study, a two-dimensional grid index structure is adopted to organize and manage the point cloud

data acquired by the MLS measurement system. Each measurement point P (i , j) is uniquely identified
according to its frame number i and in-frame number j for easy subsequent data retrieval. To visually display
the point cloud data collected in the distance and incidence angle experiments, a global coordinate system is
established with the initial position of the 2D LiDAR on the moving slide as the reference, and its structure
is shown in Fig. 3.

Figure 3: Coordinate system of point cloud

Among them, the x-axis is along the moving forward direction of the slide, the y-axis points in the
horizontal scanning direction of the 2D LiDAR, and the z-axis extends vertically upward. Based on this
coordinate system, the three-dimensional coordinates of the measurement point P (i , j) can be accurately
calculated by the following formulas:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x (i , j) = vΔt ⋅ j
y (i , j) = −r ⋅ cosα
z (i , j) = r ⋅ sinα

(7)
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where v is the moving speed of the slide, Δt is the LiDAR scanning period, α is the LiDAR scanning angle,
and r is the actual distance from the LiDAR laser transmitter to the scanning point.

2.3 Data Set Construction
2.3.1 Site Layout

In this study, distance and incidence angle experiments are designed under strictly controlled indoor
environmental variables. In the distance experiment, the diffuse reflector plate at each site is placed
perpendicular to the horizontal plane and directly facing the 2D LiDAR scanning center line to minimize the
fluctuation range of the incidence angle, approaching 0○. According to the characteristics of the UTM-30LX-
EW sensor, the intensity data fluctuates greatly at a short distance and tends to be stable at a long distance.
To avoid data uncertainty and accuracy loss at extremely close or relatively long distances, the experiment
selects to set sites within the short-distance range where the intensity data fluctuates most significantly to
evaluate the distance correction performance of the proposed modeling method. Specifically, the distance
experiment uniformly arranges 30 sites within the range of 0.1 to 3.0 m at an interval of 0.1 m.

In the incidence angle experiment, the diffuse reflector plate is fixed at a distance of 1.0 m from the
2D LiDAR scanning center line, and the incidence angle sites are set by adjusting the angle between it and
the LiDAR scanning plane. Considering that the intensity data of the UTM-30LX-EW sensor decreases
significantly with the increase of the incidence angle within the range of 0○ to 80○ and the measurement
accuracy is relatively high, while the error is relatively large when the incidence angle value exceeds 80○.
Therefore, 9 sites are uniformly set at an interval of 10○ within the range of 0○ to 80○ to evaluate the incidence
angle correction performance of the proposed modeling method.

Fig. 4a,b visually shows the relative position relationship between the diffuse reflector plate and the MLS
measurement system at different sites in the distance and incidence angle experiments.

Figure 4: Relative position relationship between diffuse reflectors and MLS measurement system at different stations
in distance and incidence angle experiments. (a) The position relationship between diffuse reflectors and MLS
measurement system in distance experiments; (b) The position relationship between diffuse reflectors and MLS
measurement system in the incidence angle experiment

To ensure the effectiveness of the data set, this study performs Region of Interest (ROI) region screening
and preprocessing operations on the point cloud data collected at all sites. First, the coordinate range of
the diffuse reflector plate is determined according to the preset position information. Then, based on these
coordinate ranges, the point cloud points near the edge of the diffuse reflector plate within 5 cm are removed
to effectively reduce the interference of noise data. After the above preprocessing steps, the ROI region of the
diffuse reflector plate is successfully screened.
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2.3.2 Point Cloud Incidence Angle Calculation
In this study, a method based on a spherical neighborhood fitting plane [29] is adopted to calculate the

incidence angle of each measurement point P (i , j) in the ROI region point cloud. The core of this method
is to determine the angle between the LiDAR emission beam and the normal of the scanned target surface
at the point P (i , j). Fig. 5 shows in detail the geometric principle of the incidence angle calculation.

Figure 5: Geometric principle of incidence angle calculation

Specifically, the vector l(i , j) represents the incidence laser direction from the LiDAR transmitter to
the measurement point P (i , j) on the object surface, and its direction and magnitude are jointly determined
by the three-dimensional coordinates of the LiDAR transmitter and the point P (i , j), with a value of
(0, y (i , j) , z (i , j)). n (i , j) represents the normal direction of the fitting plane of all neighboring points
within the local spherical neighborhood of the measurement point P (i , j).The value of n (i , j) can be
determined through least squares fitting, which provides an optimal solution by minimizing the sum of
squared residuals between the observed points and the fitted plane [29,37]. On this basis, the cosine value of
the incidence angle θ can be accurately calculated by the following formula:

cos θ = ∣ l(i , j) ⋅ n (i , j)
∣∣l(i , j)∣∣ ⋅ ∣∣n (i , j) ∣∣ ∣ (8)

where “⋅” represents the dot product operation of two vectors, and ∣∣⋅∣∣ represents the vector norm
operation.

In terms of the selection of the neighborhood radius size, considering that the short-distance ranging
accuracy of the UTM-30LX-EW sensor is ±30 mm, this accuracy characteristic significantly affects the point
cloud distribution. If the neighborhood radius is less than the accuracy threshold, the fitting plane may
deviate from the expected XOZ plane direction and tend to the YOZ plane direction, which will cause a
large error in the incidence angle calculation. To avoid this situation, the neighborhood radius is set to
30 mm. Based on the setting of this neighborhood radius, this study conducted a comprehensive analysis
of the resolution in both the mobile slider’s forward direction and the LiDAR scanning direction. This
analysis aims to evaluate whether sufficient neighboring points are contained within the neighborhood of
measurement point P (i , j) for effective plane fitting. The resolution calculations for both the mobile slider’s
forward direction and the LiDAR scanning direction are expressed through the following formulas:

⎧⎪⎪⎨⎪⎪⎩

Δx = vΔt
Δs = r ⋅ sin Δα

(9)

where Δx represents the resolution in the mobile slider’s forward direction, and Δs denotes the resolution in
the LiDAR scanning direction.



584 Comput Mater Contin. 2025;83(1)

In the forward direction of the mobile slider, since the slide speed v is 0.01 m/s and the scanning period
Δt is 25 ms, the calculated resolution Δx is 2.5 mm. Consequently, with a neighborhood radius of 30 mm, the
forward direction contains a minimum of 24 points. Regarding the LiDAR scanning direction, the scanning
angle resolution Δα is 0.25○, yields a spatial resolution Δs that remains below 13 mm within a distance value r
of 3.0 m. Therefore, with the same 30 mm neighborhood radius, the scanning direction encompasses at least
4 points. In conclusion, the neighborhood radius of 30 mm ensures a sufficient number of points within the
neighborhood of measurement point P (i , j) to satisfy the requirements for robust plane fitting.

2.3.3 Training Data Screening
To select the modeling samples that reflect the single-variable relationships between distance and

intensity and between incidence angle and intensity from the acquired point cloud, a fine-grained screening
strategy is adopted in this study.

When selecting the distance-intensity modeling samples, first, the screening condition for the incidence
angle is set to be between 0○ and 0.1○ to ensure the consistency of the incidence angle. Then, according to
the established index structure, all the measurement points that meet the screening conditions are accurately
extracted from the point cloud obtained in the distance experiment. On this basis, the distance and intensity
values of these measurement points are statistically analyzed to generate representative distance-intensity
modeling samples.

The selection process of the incidence angle-intensity modeling samples is similar to the above, but
the screening conditions are different. First, the distance screening condition is set to 1.000 m to ensure
the consistency of the distance value. Then, by using the two-dimensional grid index, all the measurement
points that meet the screening conditions are extracted from the point cloud obtained in the incidence angle
experiment. Finally, the incidence angle and intensity values of these measurement points are statistically
analyzed to produce valid incidence angle-intensity modeling samples.

2.4 Model Testing
2.4.1 Test Set Construction

To evaluate the performance of the proposed MLS modeling method in distance and incidence angle
correction, this study constructs two independent test sets. Specifically, by using the established two-
dimensional grid index, the ROI area obtained in Section 2.3.1 is filtered, retaining only the data that did not
participate in the model training as the test set, ensuring the complete independence of the test set from the
training data. The construction of the test set is divided into two parts: Test Set 1 is derived from the data
selection of the distance experiment, characterized by a wide range of distance variations and a relatively
narrow range of incidence angle variations. Test Set 2 is derived from the data selection of the incidence
angle experiment, featuring a broad range of incidence angle variations and a relatively limited range of
distance variations.

2.4.2 Intensity Correction
For the test set data, the established model is applied for intensity correction processing. The correction

steps are as follows: First, set the reference distance rre f = 1.0 m and the reference incidence angle
θre f = 0○ as the correction benchmark. Then, according to the method described in Section 2.3.2, accurately
calculate the cosine value of the incidence angle cos θ for each measurement point P (i , j), and directly
obtain the distance value r and the original intensity value I(ρ, r, θ) at that measurement point through
the two-dimensional grid index. Next, substitute the cos θ, r, and I(ρ, r, θ) at each measurement point
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into the Eq. (4) in Section 2.1.1, and combine the specific expressions of the distance piecewise polynomial
fr (r) and the incidence angle cosine polynomial fθ (θ) determined in Section 2.1.2 to calculate the corrected
intensity I(ρ, rre f , θre f ). Finally, replace the original intensity value I(ρ, r, θ) with the corrected intensity
I(ρ, rre f , θre f ), completing the correction of the intensity data for all measurement points in the test set.

2.5 Evaluation Metrics
To effectively assess the performance of the modeling method proposed in this paper in terms of

intensity data correction, this study employs three core evaluation metrics: Root Mean Square Error (RMSE),
Coefficient of Variation (CV), and the variance mean ratio ε. The specific definitions of each metric are as
follows:

1. Root Mean Square Error (RMSE)

Root Mean Square Error is used to measure the fitting accuracy of the polynomial function for intensity
data at different degrees. Its calculation formula is:

RMSE =

�
���∑N

n=1 (I(ρ, r, θ) − fx (x))2

N
(10)

where fx (x) represents fr (r) in the distance-intensity relationship or fθ (θ) in the incidence angle-intensity
relationship, and N is the number of samples. The smaller the RMSE value, the higher the degree of matching
between the fitting function and the actual data, indicating that the model can more accurately capture the
dependency between intensity and distance or intensity and incidence angle.

2. Coefficient of Variation (CV)

The Coefficient of Variation is used to quantify the degree of dispersion of the intensity data before and
after correction, i.e., intensity consistency. Its calculation formula is defined as:

CV = STD
Mean

× 100% (11)

where STD denotes the standard deviation of the intensity data, and Mean denotes the mean value of the
intensity data. The smaller the CV value, the less variability in the intensity data, indicating higher intensity
consistency.

3. Variance Mean Ratio ε

The variance mean ratio ε is the ratio of the variability of the intensity data before and after correction,
used to quantify the performance of the intensity correction model. Its calculation formula is:

ε = CVcor

CVor i
(12)

where CVor i represents the coefficient of variation of the original intensity data, and CVcor represents the
coefficient of variation of the corrected intensity data. When the ε value is less than 1, it indicates that the
variability of the corrected intensity data is lower than that of the original intensity data, suggesting that
the correction model can effectively reduce the dispersion of the intensity data. The closer the ε value is to 0,
the better the performance of the correction model in improving the consistency of the intensity data.



586 Comput Mater Contin. 2025;83(1)

3 Results and Discussion

3.1 Benchmark Method
To evaluate the performance of the MLS modeling method in intensity correction, an experiment

comparing it with the traditional TLS modeling method was designed. The experiment also used the UTM-
30LX-EW 2D LiDAR sensor and a standard diffuse reflector plate with a reflectivity of 50% to collect training
data, and the sampling site settings referred to the research of Tan et al. [26]. The experimental steps are
as follows:

First, to establish the relationship model between distance and intensity, 30 groups of distance sites were
uniformly set at intervals of 0.1 m within the distance range of 0.1 to 3 m. During this process, the LiDAR
sensor was fixed on a tripod and precisely adjusted to ensure that the scanning center beam was directly
facing the diffuse reflector plate, and the incidence angle was constant at 0○ to eliminate the influence of the
incidence angle factor on the results. At each site, 10 groups of intensity data were continuously recorded and
averaged to obtain the distance-intensity modeling samples.

Second, to establish the relationship model between the incidence angle and intensity, 9 groups of
incidence angle sites were uniformly set at intervals of 10○ within the incidence angle range of 0○ to 80○. The
distance between the LiDAR center beam and the diffuse reflector plate at all sites was set to 1.0 m. At each
site, 10 groups of intensity data were also continuously recorded and averaged to obtain the incidence angle-
intensity modeling samples. Fig. 6a,b shows the relative position relationship between the diffuse reflector
plate and the LiDAR sensor at different sites under the TLS modeling method, where Fig. 6a shows the
position relationship in the distance experiment, and Fig. 6b shows the position relationship in the incidence
angle experiment.

Figure 6: The relative position relationship between the diffuse reflectors and LiDAR at different stations under TLS
modeling method. (a) The position relationship between the distance experiment diffuse reflectors and LiDAR; (b) The
position relationship between diffuse reflector and LiDAR in incidence angle experiment

3.2 Training Results
3.2.1 Training Set

According to the training data screening method in Section 2.3.3, 13,671 groups of distance-intensity
data pairs and 11,733 groups of incidence angle-intensity data pairs were collected. According to the TLS
modeling comparison method in Section 3.1, only 30 groups of distance-intensity data pairs and 9 groups
of incidence angle-intensity data pairs were obtained. Fig. 7a–d intuitively shows the distribution of the
training data of distance and intensity and incidence angle and intensity obtained by the MLS and TLS
modeling methods. Among them, Fig. 7a shows the distance and intensity training data of the MLS modeling
method, Fig. 7b shows the incidence angle and intensity training data of the MLS modeling method, Fig. 7c
shows the distance and intensity training data of the TLS modeling method, and Fig. 7d shows the incidence
angle and intensity training data of the TLS modeling method.
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Figure 7: Distribution of modeling samples obtained by MLS and TLS modeling methods. (a) MLS modeling method
distance and intensity modeling samples; (b) MLS modeling method incidence angle and intensity modeling sample;
(c) TLS modeling method distance and intensity modeling samples; (d) TLS modeling method incidence angle and
intensity modeling sample

By comparing Fig. 7a with Fig. 7c and Fig. 7b with Fig. 7d, it can be seen that the training data change
trends of the MLS and TLS modeling methods are consistent, but the former has a significant advantage
in the number of modeling data. More importantly, the distance, incidence angle, and intensity data of the
MLS modeling method are derived from actual measurements rather than relying on statistical estimation.
This unique data acquisition method enables the intensity correction model constructed based on the MLS
modeling method to more accurately reveal the relationships between intensity and distance and between
intensity and incidence angle, improving the reliability of the model.

3.2.2 Modeling Results
Table 2 shows the RMSE values of the distance piecewise polynomial fr (r) and the incidence angle

cosine polynomial fθ (θ) calculated from the training data of the MLS and TLS modeling methods at
different polynomial orders. Among them, KMLS, LMLS, and MMLS respectively represent the orders of the
short-distance segment polynomial fr1 (r), the long-distance segment polynomial fr2 (r), and the incidence
angle cosine polynomial fθ (θ) in the MLS modeling method. Similarly, KTLS, LTLS, and MTLS represent the
corresponding orders in the TLS modeling method.
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Table 2: RMSE values of MLS and TLS modeling data under different polynomial orders

Order RMSE

KMLS LMLS MMLS KMLS LMLS MMLS

1 134.4 52.2 36.7 162.6 49.4 32.8
2 123.1 28.5 30.6 114.4 26.2 12.0
3 69.2 28.3 29.4 74.7 26.2 11.7
4 35.4 23.5 29.2 49.0 13.9 11.5
5 35.3 23.2 29.1 46.9 10.9 11.5
6 34.2 23.2 28.9 45.2 10.9 11.4

It can be seen from Table 2 that as the polynomial order value increases, the RMSE values of both
modeling methods show a decreasing trend and tend to stabilize after a certain order value. According to the
elbow rule, when the polynomial order values are set to K = 4, L = 4, and M = 2, the RMSE values of both
modeling methods reach a stable state, indicating that the polynomial fitting effect is optimal. Based on this
optimal fitting result, the specific expressions of fr (r) and fθ (θ) in the MLS and TLS modeling methods
are determined, as shown in Table 3. By substituting fr (r) and fθ (θ) with specific parameters into Eq. (4)
in Section 2.1.1, the final intensity correction model is established.

Table 3: Expression of the distance piecewise polynomial and incidence angle cosine polynomial in MLS and TLS
modeling methods

MLS fr1 (r) = 7.24 × 104r4 − 1.34 × 105r3 + 8.29 × 104r2−1.62×104r + 3.66 × 103, r ≤ 0.7 m.
fr2 (r) = −4.15 × 103 ( 1

r )
4 + 1.30 × 104 ( 1

r )
3 − 1.51 × 104 ( 1

r )
2 + 9.25 × 103 ( 1

r ) + 9.96 × 102,
r > 0.7 m.

fθ (θ) = 5.73 × 102 (cos θ)2 + 1.90 × 102 cos θ + 3.26 × 103, 0○ ≤θ≤ 80○.
TLS fr1 (r) = 2.96 × 104r4 − 6.57 × 104r3 + 4.71 × 104r2−9.60×103r + 3.30 × 103, r ≤ 0.7 m.

fr2 (r) = −6.05 × 103 ( 1
r )

4 + 1.83 × 104 ( 1
r )

3 − 2.03 × 104 ( 1
r )

2 + 1.15 × 103 ( 1
r ) + 6.72 × 102,

r > 0.7 m.
fθ (θ) = 5.06 × 102 (cos θ)2 + 2.88 × 102 cos θ + 3.23 × 103, 0○ ≤θ≤ 80○.

3.3 Results and Discussion
Table 4 shows the statistical analysis results of the intensity correction of the test set by the MLS and

TLS modeling methods. In this table, for Test Set 1 and Test Set 2, the original intensity variation coefficient
CVori, the corrected intensity variation coefficient CVcor, and the ε value are listed, respectively.

Based on the data in Table 4, it can be seen that in both test sets, the MLS modeling method is superior to
the TLS modeling method in reducing the variability of the intensity data. For Test Set 1 with a large variation
range of distance values, the correction effect of the MLS modeling method is significantly better than that
of the TLS modeling method; for Test Set 2 with a large variation range of incidence angle values, the MLS
modeling method still has an advantage but is relatively small, which may be attributed to the fact that the
influence of the incidence angle on the intensity is not as significant as that of the distance.
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Table 4: Statistical analysis results of intensity correction of validation set by MLS and TLS modeling methods

ITestSet1 ITestSet2

CVori CVcor ε CVori CVcor ε
MLS modeling method (Ours) 0.160 0.020 0.130 0.050 0.013 0.254

TLS modeling method (Tan et al. [26]) 0.160 0.035 0.216 0.050 0.015 0.293

For Test Set 1, the MLS modeling method reduces the original intensity variation coefficient CVori from
0.160 to 0.020, and the calculated ε value is 0.130. This result indicates that the variability of the corrected
intensity data is reduced to 0.130 times that of the original intensity, that is, the intensity consistency is
improved to 7.692 times the original. In contrast, in the correction result of the TLS modeling method, CVcor
is 0.035 and the ε value is 0.216, that is, the variability of the corrected intensity data is reduced to 0.216 times
that of the original intensity, and the intensity consistency is improved to 4.630 times the original.

For Test Set 2, the MLS modeling method reduces CVori from 0.050 to CVcor of 0.013, and the ε value is
0.254, meaning that the variability of the corrected intensity data is reduced to 0.254 times that of the original
intensity, and the intensity consistency is improved to 3.937 times the original. In the TLS modeling method
after correction, CVcor is 0.015 and the ε value is 0.293, that is, the variability of the corrected intensity data
is reduced to 0.293 times that of the original intensity, that is, the intensity consistency is improved to 3.413
times the original.

Fig. 8a,b intuitively shows the distribution of the original intensity of the point cloud in the two test sets.
It can be seen that the original intensity data shows a large fluctuation characteristic due to the changes in
distance and incidence angle. In Test Set 1, the intensity value increases with the increase of distance at sites
from 0.1 to 0.7 m and gradually decreases at sites from 0.7 to 3 m. In Test Set 2, the intensity value gradually
decreases at sites with incidence angles from 0○ to 80○.

Figure 8: Original intensity distribution of verification point cloud obtained from distance and incidence angle
experiment. (a) Original intensity distribution of verification point cloud obtained from distance experiment; (b)
Original intensity distribution of verification point cloud obtained from incidence angle experiment

Fig. 9a–d shows the point cloud intensity distribution results after intensity correction of the test set by
the MLS and TLS modeling methods.
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Figure 9: The point cloud intensity distribution results after intensity correction of the test set by the MLS and TLS
modeling methods. (a) The intensity distribution of Test Set 1 after correction by the MLS modeling method; (b) The
intensity distribution of Test Set 2 after correction by the MLS modeling method; (c) The intensity distribution of Test
Set 1 after correction by the TLS modeling method; (d) The intensity distribution of Test Set 2 after correction by the
TLS modeling method

By comparing Fig. 9a with Fig. 9c, for Test Set 1, the correction effect of the MLS modeling method
is significantly better than that of the TLS modeling method, especially in the short-distance range of less
than 0.7 m. However, in the distance range from 0.1 to 0.3 m, due to the combined influence of distance and
incidence angle, the intensity data changes drastically, resulting in fitting errors in the intensity correction
models of both modeling methods, and the correction effect is not good. This phenomenon is likely attributed
to the inherent distance measurement errors and incidence angle calculation inaccuracies of the LiDAR
system. According to existing research, the UTM-30LX-EW LiDAR employed in this study exhibits intensity
fluctuation errors ranging from 200 to 300 even under constant distance and incidence angle conditions
with specific reflectance targets. These fluctuations are further amplified when both distance and incidence
angle values increase dramatically. Therefore, the observed anomalies primarily stem from the intrinsic high
variability of the intensity data itself.

By comparing Fig. 9b with Fig. 9d, for Test Set 2, it can be observed that the correction effect of the MLS
modeling method is also better than that of the TLS modeling method, especially in the intensity data with a
large incidence angle range. However, in the edge area of the diffuse reflector plate at some sites with a large
incidence angle range, the intensity correction effects of both the MLS and TLS modeling methods show
slight defects. This phenomenon is presumably caused by the compounded effect of intensity fluctuation
errors resulting from significant variations in both incidence angle and distance values near the edge regions,
thereby increasing the fitting errors of the correction models.

In conclusion, the intensity correction anomalies observed in both Test Sets 1 and 2 highlight the
limitations of current models in handling high-intensity fluctuations and complex conditions. Future
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research should focus on developing more sophisticated models to better characterize and correct intensity
data, thereby enhancing the accuracy and robustness of LiDAR intensity correction.

4 Conclusions
1. This study proposes a fine-grained point cloud intensity correction modeling method based on MLS

technology to address the problem of limited model accuracy in the traditional TLS intensity correction
modeling method.

2. In the implementation of the method, first, the MLS technology is used to continuously scan the
standard diffuse reflector plate with a reflectivity of 50% to collect point cloud data at different
distances and incidence angles. Then, a fine-grained screening strategy is adopted to accurately screen
out the training data that can reflect the single-variable relationships between intensity and distance
and between intensity and incidence angle from the collected point cloud. Finally, based on these
training data, a high-precision intensity correction model suitable for the UTM-30-LX-EW 2D LiDAR
is successfully constructed through a polynomial fitting function.

3. To verify the effectiveness of the proposed method, the root mean square error RMSE, the coefficient
of variation CV, and the variance-to-mean ratio ε are used as evaluation metrics to compare the MLS
modeling method with the traditional TLS modeling method on the same test set. The experimental
results show that in Test Set 1 with a large variation range of distance values, the intensity consistency
after correction by the MLS modeling method is significantly improved, reaching 7.692 times that of
the original intensity, while the TLS modeling method only improves to 4.630 times that of the original
intensity. In Test Set 2 with a large variation range of incidence angle values, although the advantage
of the MLS modeling method is relatively small, it still improves the intensity consistency to 3.937
times that of the original intensity, slightly better than 3.413 times that of the TLS modeling method.
These experimental results fully prove that the method proposed in this study has a significant effect in
improving the accuracy of intensity correction modeling.

Future research will focus on fine-grained screening of training data to explore advanced modeling
techniques, such as the lookup table method, aiming to further enhance the accuracy and practicality of
intensity correction modeling.
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