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ABSTRACT: In today’s fast-paced world, many elderly individuals struggle to adhere to their medication schedules,
especially those with memory-related conditions like Alzheimer’s disease, leading to serious health risks, hospital-
izations, and increased healthcare costs. Traditional reminder systems often fail due to a lack of personalization and
real-time intervention. To address this critical challenge, we introduce MediServe, an advanced IoT-enabled medication
management system that seamlessly integrates deep learning techniques to provide a personalized, secure, and adaptive
solution. MediServe features a smart medication box equipped with biometric authentication, such as fingerprint
recognition, ensuring authorized access to prescribed medication while preventing misuse. A user-friendly mobile
application complements the system, offering real-time notifications, adherence tracking, and emergency alerts for
caregivers and healthcare providers. The system employs predictive deep learning models, achieving an impressive
classification accuracy of 98%, to analyze user behavior, detect anomalies in medication adherence, and optimize
scheduling based on an individual’s habits and health conditions. Furthermore, MediServe enhances accessibility by
employing natural language processing (NLP) models for voice-activated interactions and text-to-speech capabilities,
making it especially beneficial for visually impaired users and those with cognitive impairments. Cloud-based data
analytics and wireless connectivity facilitate remote monitoring, ensuring that caregivers receive instant alerts in case of
missed doses or medication mismanagement. Additionally, machine learning-based clustering and anomaly detection
refine medication reminders by adapting to users’ changing health patterns. By combining IoT, deep learning, and
advanced security protocols, MediServe delivers a comprehensive, intelligent, and inclusive solution for medication
adherence. This innovative approach not only improves the quality of life for elderly individuals but also reduces the
burden on caregivers and healthcare systems, ultimately fostering independent and efficient health management.
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1 Introduction
As it is widely acknowledged that as individuals age, their health gradually declines, along with their

cognitive abilities. During this period, it becomes essential for them to adhere to a regular medication
regimen. However, due to the decline in cognitive function, this task becomes increasingly challenging
and burdensome.
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Medication non-adherence is a significant issue among elderly individuals, with nearly 50% failing to
take their prescribed medications. Factors like cognitive decline, memory-related conditions like Alzheimer’s
disease, and managing multiple medications complicate the problem. Non-adherence can lead to severe
health consequences, including worsening chronic conditions, increased hospitalization rates, and higher
mortality risks. For instance, hypertension patients face increased cardiovascular complications, while
diabetes patients face critical health episodes. The lack of personalized systems to address individual
needs and behaviours further complicates the problem. Existing solutions often rely on generic reminders,
which fail to address underlying causes like forgetfulness or confusion. Innovative, accessible, and secure
approaches are needed, especially for elderly populations.

Moreover, individuals grappling with conditions like Alzheimer’s disease and memory deficiency are
particularly reliant on external assistance to facilitate their medication regimen, ensuring the correct dosage
is taken at regular intervals as prescribed by healthcare professionals. In light of these pressing concerns, the
development of an IoT-enabled Smart Medicine Dispenser emerges as a vital solution. The Internet of Things
(IoT) has further elevated the capabilities of such indispensable systems, enabling seamless interaction
between human users and interconnected computing devices. These devices intricately weave together
digital computing systems and mechanical apparatuses, often interfacing with user-friendly applications or
web interfaces.

The smart medicine box helps to provide dedicated support to individuals facing the challenges of
declining cognitive abilities. With a focus on addressing the unique needs of this demographic, the Smart
Medicine Box endeavors to streamline medication management processes, enhancing medication adherence
rates among those experiencing cognitive decline. By leveraging innovative technology and user-centered
design principles, the MediServe aims to simplify the often-burdensome task of medication management,
offering a reliable and intuitive system that reduces the complexities associated with maintaining a medica-
tion regimen. Through its tailored approach and commitment to improving the quality of life for individuals
with cognitive decline, the MediServe stands as a beacon of support, empowering users to navigate their
healthcare journey with greater confidence and ease.

The following are some of the issues in the smart medicine dispenser:

• Dedicated mobile applications for smart medicine dispensers can facilitate communication between
patients, their relatives, and healthcare providers, enabling efficient monitoring of medication doses and
enhancing overall medication management, which is not used in previous system.

• Mixing medications can lead to confusion and errors during medication administration, potentially
resulting in incorrect dosages or missed medications. Compartmentalization plays a crucial role in
organizing medications, allowing for the storage of different medicines in separate compartments.

• Implementation of robust authentication mechanisms is essential to prevent unauthorized access to
medications, thereby mitigating potential risks of misuse or harm.

• Efforts should be focused on reducing the time gap between scheduled medication times and their actual
administration. This will help ensure that medications are given out promptly and accurately.

To overcome this problem, we develop Smart Medicine Box based on IoT consisting of hardware
with fingerprint authentication and integrated software which helps to schedule the system and analyze the
stored data.
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1.1 Motivation
The goal of this research is to create an effective and user-friendly smart medicine dispenser for manag-

ing medications, especially for elderly individuals and those with memory-related conditions. The aim is to
enhance medication adherence and safety while ensuring accessibility for people from diverse backgrounds.

1.2 Contribution of Work
The Smart Medicine Box offers a comprehensive solution to help elderly individuals and others manage

their medication schedules effectively. The architecture of the smart medicine dispenser is ingeniously
designed to cater to the multifaceted needs of the user. Comprising distinct compartments for storing various
medications, the dispenser’s LCD screen provides a clear visualization of the box’s contents, enhancing
usability and efficiency. A pivotal security feature, the integration of a fingerprint biometric, guarantees the
authenticity of access, ensuring that only authorized users can retrieve the medications. This inclusion serves
a dual purpose, as it not only safeguards the system from unauthorized use but also introduces a child lock
mechanism, effectively preventing unintended access by young children.

Furthermore, the smart medicine dispenser seamlessly integrates with mobile applications. Fig. 1 shows
the communication between the hardware module, software module and user. This strategic fusion of tech-
nologies results in a user-friendly experience, allowing individuals to effortlessly manage their medication
schedules through intuitive interfaces. As a testament to its comprehensive functionality, the system is also
equipped to generate audible alarms, alerting users to the impending medication intake time.

Figure 1: Overview of smart medicine box

The IoT-enabled Smart Medicine Dispenser addresses a spectrum of challenges associated with
medication management, catering to the unique needs of elderly individuals and patients with cognitive
impairments. Its innovative design, characterized by intricate connectivity, intuitive interfaces, and enhanced
security measures, marks a significant stride towards enhancing healthcare adherence and quality of life. The
major contributions of the system include:
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• To integrate IoT and deep learning in MediServe to provide a seamless solution for tracking and
optimizing medication schedules through a smart medication box and mobile application.

• To employ predictive models like Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks to analyze user behavior and ensure timely medication reminders.

• To enhance system security using Convolutional Neural Networks (CNNs) for fingerprint biometric
authentication and behavioral biometric analysis, preventing unauthorized access, and enabling child
lock features.

• To offer clustering and anomaly detection algorithms for personalized insights into medication adher-
ence, providing users with tailored reports and health trends.

• To improve accessibility, MediServe incorporates Natural Language Processing (NLP) models for voice
commands and text-to-speech, making it user-friendly for individuals with cognitive impairments.

The following is how the rest of the paper is organized:
The manuscript is structured as follows:
Section 2: In-depth literature review of existing Smart Medicine Dispensers
Section 3: Detailed methodology of the smart medicine box and comprehensive information about

its components
Section 4: Thorough explanation of the working of MediServe
Section 5: Comprehensive coverage of the hardware and software integration of MediServe
Section 6: In-depth comparison of the proposed approach to the existing approach along with a detailed

analysis of the results
Section 7: Conclusive discussion in the article.

2 Related Work
The objective of this part is to present a comprehensive analysis of the Internet of Things (IoT) and its

uses in the healthcare industry. Before exploring the technological underpinnings and potential applications
of IoT, we will begin with a thorough review of the fundamental ideas and principles that form their basis.
Next, we will explain IoT’s complex function in healthcare, including how it affects patient care, remote
monitoring, predictive analytics, and operational effectiveness. After that, we’ll look more closely at the IoT’s
unique integration with healthcare systems, including how networks are connected, data exchange methods,
and security issues. Additionally, we will carry out a thorough analysis of IoT’s use in medicine management,
which includes customized treatment plans, adherence tracking, and intelligent drug delivery. The last part
of our evaluation will be a thorough examination of academic literature, including studies, research papers,
and talk about the novel idea of the smart medicine box inside the Internet of Things.

2.1 The Role of IoT in Personalized Medication Management and Elderly Care
The Internet of Things (IoT) refers to the interconnected network of devices incorporated into elec-

tronics, software, sensors, actuators and connectivity that allow these objects to connect and exchange data.
During our research, we reviewed various research works to identify the most suitable IoT devices for
our Mediserve platform. One study introduced an IoT-based medicine distribution system using sensors
and actuators, emphasizing the automation and convenience that IoT offers in drug management [1]. The
researchers developed an IoT-based tablet distribution system to serve the elderly, using Arduino Mega,
ESP8266, and a touch screen demonstrating the role of IoT in drug management and accessibility [2,3].
Another study described an IoT-based tablet management system developed for elderly care, employing
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Arduino and ESP8266 for wireless communication. This system demonstrated the role of IoT in improving
accessibility. In addition, the concept of general distribution was used to create a smart tablet cash system,
integrating the Arduino and ESP8266 for patient adherence. These initiatives collectively illustrate the
fundamental role of IoT in personalized drug management solutions, particularly in meeting the needs of
the elderly and improving adherence to medicines [4,5].

The authors used infrared and arduino sensors for tablet distribution, integrating with Raspberry PI for
smartphone notifications, highlighting the role of IoT in remote drug monitoring [6]. In addition, a Rasp-
berry PI-based system for programmed alarms and environmental monitoring was proposed, demonstrating
IoT’s ability to adhere to medication and environmental detection [7]. In addition, an IoT-based medical
box [8] was introduced, using Raspberry PI and biosensors for drug management and cure.

2.2 IoT Applications in Personalized Healthcare
The versatility and potential of IoT in the transformation of health services are evident in various

applications, from the promotion of independent life among the elderly to the personalization of drug
distribution and facilitating the monitoring and comprehensive care of patients. For example, intelligent
medicine dispensers have been designed to help patients adherence to medication, employing Android
and Arduino applications for communication of patients with faces, thus highlighting the role of IoT in
personalized medicine management [9]. In addition, IoT-based intelligent medicine dispensers were created
to improve drug adherence, demonstrating IoT’s ability to face drug management challenges for chronic
conditions [10,11].

An automatic reminder medicine box described in [12] uses the atmega328p microcontroller for
medicines reminders, illustrating the role of IoT in promoting adhesion and drug management. The authors
in [13] developed an intelligent medical box with adapted voice interaction for the blind, highlighting the
impact of IoT on personalized health care. Similarly, reference [14] developed an intelligent distribution
system for remote regions, highlighting the potential of IoT in increasing access to health via telemedicine.
In addition, reference [15] introduced an intelligent health platform by leveraging IoT for adherence to
medication and medical patient, highlighting the fundamental role of IoT in increasing health care.

An intelligent medicine dispenser that integrates Bluetooth authentication and emergency alerts,
emphasizing patient safety for elderly and Alzheimer’s patients, was described in [16]. In [17], the authors
introduced an intelligent medicine box system using NodeMCU and sensors for communication between
patients and caregivers, while reference [18] had a smart pill box with matrix barcode codes for drug
verification, ensuring safety and quality of the service. The convergence of IoT and Health is evident in
various innovations. An intelligent tablet cash system [19] reaches the care of the elderly, employing Arduino
and ESP8266 for drug management, promoting independent life. The authors in [20] explored electro-
magnetism to manage adverse drug reactions, illustrating IoT’s potential in the personalized distribution
of medicines. In addition, pill care [21] proposed a comprehensive health management solution, mixing
hardware components with mobile applications for patient monitoring and medication adherence, further
highlighting the fundamental role of IoT.

2.3 Innovative IoT Solutions in Medicine Management
IoT exploration in medical management has led to various and innovative solutions. For individuals

with visually impaired, researchers have developed a system with voice interaction features using Google’s
voice kit and Bluetooth communication, ensuring accessibility and ease of use [22]. Another noteworthy
advance, discussed in [23], uses real-time electromagnetism resources and clock (RTC) with an arduino
uno microcontroller to control drug dispensing and programming for adverse medications, promoting
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precision and effectiveness in treatment. Reference [24] has a smart tablet box adapted for elderly patients,
integrating the nano arduino, ESP8266 Nodemcu and a mobile interface for reminders and medicine
management. The IoT-enabled health system [25] has a comprehensive solution using ARDUINO UNO and
NODEMCU modules, focusing on the timely intake of medicines and safe communication between patients
and health professionals.

Taking advantage of an innovative solution, an automatic reminding medical box equipped with a real-
time clock and LED indicators is designed to face the challenges associated with drug adherence [26]. The
evolution of IoT in drug management extends to [27], where barcodes and tablets of pills matrices improve
the verification and administration of medicines, ensuring the safety and accuracy of the patient.

Other advances include [28], which introduces an intelligent medicine dispenser (SMD) with the
keyboard and LCD exhibit features, meeting various medicines and increasing safety through automatic
locking mechanisms. In addition, reference [29] presents an IoT-based system, facilitating communication
with a NFC technology pill dispenser, simplifying drug adhesion and monitoring [30]. It offers an innovative
IoT-based tablet management system, while detailed information on an intelligent medicine dispenser
designed to improve adherence to chronic conditions are provided in [31].

2.4 Revolutionizing Patient Care: The Impact of IoT and Mobile Applications on Medicine Management
The integration of mobile applications and IoT technologies in drug management represents a transfor-

mative approach to improve patient care, adherence to medication and general health results. By leveraging
IoT devices such as sensors, actuators and communication modules, along with mobile applications, health
service providers can remotely monitor the patient’s health parameters in real time [32]. This continuous
monitoring allows proactive intervention and personalized treatment plans, leading to better disease
management and hospitalization reduction.

The referenced works provide a strong foundation for the MediServe framework, highlighting advance-
ments in IoT, artificial intelligence, and healthcare. Rahim [33] presents UNBUS, a framework that
emphasizes cybersecurity robustness, aligning with MediServe’s focus on secure IoT systems. Ganesh
et al. [34] explored IoT characteristics and challenges relevant to healthcare implementations. Nilesh
et al. [35] discussed the integration of advanced CRM tools for service management, while Ganesh et al. [36]
analyzed machine learning algorithms, showcasing the effectiveness of deep learning models. Real-time
diagnosis, treatment, and monitoring systems pertinent to Mediserve’s smart medicine box are highlighted
in Jagadish et al.’s [37] and Yenurkar et al.’s [38] explorations of AI applications and the significance of
IoT in managing chronic diseases, respectively. Personalized medication management aims are in line
with the research of Ganesh et al. [39] and Priti et al. [40], who study AI-oriented decision making and
health applications. The influence of a robot-assisted treadmill on stroke patients’ cardiovascular abilities
is highlighted by Vishakha et al. [41], while Thakur et al. [42] look at the combination of medical images,
demonstrating the incorporation of intelligent systems in healthcare solutions.

The integration of technology in elderly care has garnered significant attention in recent years. UC
Davis Health [43] introduced the Interactive Care Platform (I-Care), which supports elderly individuals
with cognitive impairments by assisting in daily activities, including medication management. However, this
system lacks advanced predictive analytics and deep learning integration for personalized care. Similarly, a
study by Frontiers in Digital Health [44] explored the application of artificial intelligence (AI) in enhancing
medication adherence among elderly patients. While it highlighted the potential of AI in predicting non-
adherence, the study did not focus on real-time monitoring using IoT devices. Bertolazzi et al. [45] identified
barriers and facilitators to health technology adoption in their integrative review. They emphasized the
need for user-friendly designs and personalized features but noted a significant gap in combining these
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aspects with robust security measures. Meanwhile, Chen et al. [46] discussed the design and implementation
of digital health technologies tailored for aging populations. Their study underscored the importance of
high adherence to wearable devices but highlighted the absence of natural language processing (NLP) for
improved accessibility. Fasoli et al. [47] mapped emerging technologies in aged care, focusing on the role of
IoT and AI in remote monitoring. Although they identified the potential of these technologies, their review
pointed out the lack of comprehensive solutions that integrate deep learning algorithms to optimize medica-
tion schedules and improve adherence. Collectively, these studies underline the existing gaps in elderly care
technologies, which MediServe aims to address through its IoT-enhanced deep learning framework.

Table 1 presents the most current developments in deep learning and Internet of Things (IoT) integration
in medication management systems. Important details including the authors and the year of publication, the
datasets used, performance metrics, techniques used (including different deep learning models), significant
contributions to the field, and any limits found are highlighted in each entry. With the use of more
sophisticated security features, individualized solutions, and increased accessibility, the systems hope to
improve prescription adherence, especially for senior users. Limitations frequently relate to difficulties in
representing datasets, the applicability of results generally, and implementation’s technological complexity.
In general, these investigations offer significant perspectives on how IoT and deep learning may be used to
successfully tackle medicine administration issues.

Table 1: Summary of recent advances in medication management systems

Authors, Year,
[Ref. No.]

Techniques used Dataset % Performance
parameters

Major contributions Limitations

Mathew et al. [1] IoT, Smart
medication

management

Elderly patients N/A Developed a smart medication
management system for elderly

care

Limited testing in
real-world

environments
Othman et al. [2] Deep learning Various studies N/A Provided a systematic review on

medication adherence
Lack of

experimental
validation

Jabeena [3] LSTM networks Patient adherence
data

Improved
adherence by

30%

Introduced predictive analytics
for medication adherence

Dependency on
historical data

Al-Haider et al. [4] IoT, Deep learning Elderly healthcare
scenarios

N/A Enhanced elderly care integration
with IoT

Not tested across
diverse

demographics
Pandey et al. [5] Biometric

authentication
Health applications N/A Reviewed biometric methods in

health systems
Limited focus on
usability testing

Minaam et al. [6] Natural language
processing

User interactions N/A Analysed NLP for medication
management

Requires
extensive

language support
Rajendra et al. [7] Clustering,

Anomaly
detection

Medication
adherence logs

85% detection
accuracy

Developed a model for
identifying adherence issues

May misclassify
adherence due to
user behaviour

Najeeb et al. [8] Voice activation Elderly user
feedback

90% user
satisfaction

Evaluated usability of
voice-activated interfaces

May not cater to
all dialects

Al-Mahmud et al.
[48]

Smart medication
box

Elderly patient
studies

75% adherence
improvement

Designed a smart box to improve
medication adherence

High reliance on
user compliance

Antoun et al. [49] Deep learning Health monitoring
datasets

N/A Focused on personalized health
monitoring using deep learning

Needs broader
application

across conditions
Kader et al. [50] IoT, Medication

management
Elderly populations N/A Assessed IoT’s impact on

medication management
Limited

geographical
coverage

Vardhini et al. [9] Deep learning Various healthcare
datasets

N/A Addressed challenges in health
monitoring with deep learning

High complexity
in model training

(Continued)
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Table 1 (continued)

Authors, Year,
[Ref. No.]

Techniques used Dataset % Performance
parameters

Major contributions Limitations

Zeidan et al. [10] CNNs for
Biometric security

Biometric data N/A Evaluated biometric security
methods in health applications

Concerns over
data privacy

Wu et al. [11] Behavioural
biometrics

User engagement
data

N/A Analysed the role of behavioural
biometrics in monitoring systems

Limited user
diversity in

studies
Kanhasinwattana

et al. [12]
Deep learning Chronic disease

management data
80% prediction

accuracy
Proposed a model for predicting
medication adherence in chronic

diseases

Needs real-world
validation

Different smart medicine dispensers utilize a range of technologies to improve medication management,
targeting issues like reducing errors, enhancing adherence, and aiding special user groups. While these sys-
tems show positive outcomes, they also encounter challenges such as connectivity issues, manual processes,
and technical limitations. Overall, they underscore the ongoing need for tailored solutions and advancements
in medication dispensing technology to meet diverse healthcare needs effectively.

3 Methodology

3.1 System Overview
The research conducted by the authors predominantly revolved around devising effective methods to

maintain pills securely. While certain pill dispensers were compact in design, others exhibited deficiencies
in fundamental functionalities like the absence of a child lock facility, lack of capabilities for analyzing
medication intake patterns, and a deficiency in compartment-based specifications. In response to these
identified shortcomings, the proposed methodology was meticulously crafted to bridge these gaps in
ensuring the timely and accurate intake of medication. Moreover, it sought to provide personalized assistance
to individuals during the medication intake process, thereby mitigating potential hazards associated with
medication mismanagement. Through this comprehensive approach, the methodology aimed to enhance
medication adherence and promote safer practices in medication administration.

The proposed methodology serves as a structured framework designed to guide and streamline the
research process. It delineates the specific methods, approaches, and techniques that will be employed to
address the research objectives or problem at hand. This progression encompasses three modules: hardware
module, an application, and the assistance modules.

A high-level overview of the MediServe system architecture is given in this Fig. 2. It combines deep
learning, natural language processing (NLP), and IoT technologies to offer a clever and safe medication
administration solution. The IoT Module is where the system starts, collecting real-time data on medicine
consumption and user behavior via sensors and mobile applications. The Data Analysis Module processes
this data, utilizing CNN-based fingerprint identification for further security and predictive algorithms
(RNN/LSTM) to improve prescription regimens and guarantee adherence.

Through biometric locks, the system’s Security Module further restricts access and notifies users or
caregivers of any unwanted attempts. For older or cognitively disabled users, the NLP Module improves
accessibility by enabling text-to-speech and voice interaction options. A complete, user-friendly medication
adherence solution is ensured by the system’s real-time output and feedback, which includes caregiver
warnings, health insights, and notifications. The MediServe system architecture, which combines several
components to create a clever, safe, and effective medicine management system, is shown in this figure. The
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system is split up into many important modules: IoT Module (Data Collection), Data Analysis Module, NLP
Module, Security Module and Output and Feedback module.

Figure 2: MediServe: IoT-driven smart medication system

3.2 Data Collection and Preprocessing
The MediServe system uses an IoT Module to collect real-time data on medication dispensing, user

interactions, and environmental conditions. The data is processed in the Data Analysis Module using
RNN/LSTM models and fingerprint-based authentication. The system generates actionable insights for
accurate medication adherence.

3.2.1 Data Collection Process in MediServe
The IoT Module in MediServe serves as the foundation for data collection, incorporating the following

components:

• Sensors and Actuators: Collect environmental data (optional) and detect medication dispensing events.
Proximity sensors are used to ensure that doses are dispensed accurately.

• Mobile App: Gathers user interaction data, such as dose confirmations, schedule adjustments, and
voice commands.

• Data Transmission to Cloud: All collected data is transmitted securely to a cloud server for further
processing and predictive analysis.

3.2.2 Data Preprocessing Steps in MediServe
The data undergoes the following preprocessing steps before being used in the Data Analysis Module:

• Data Cleaning: Eliminates redundant or erroneous data, such as duplicate logs or incomplete sen-
sor readings.

• Normalization: Ensures that sensor outputs are scaled uniformly for compatibility with deep learning
models, such as RNN/LSTM and CNN.



944 Comput Mater Contin. 2025;83(1)

• Timestamp Alignment: Synchronizes time-series data, including user behaviour and medication events,
to maintain accuracy in sequence predictions.

• Feature Extraction: Derives meaningful insights such as adherence patterns, unauthorized access
attempts, and user compliance trends.

• Categorical Encoding: Encodes data categories (e.g., medication types) into numerical formats for
compatibility with predictive models.

This preprocessing ensures data readiness for predictive tasks like medication adherence prediction (via
RNN/LSTM) and fingerprint-based authentication (via CNN).

3.3 IoT Module (Data Collection)
The module collects real-time data on medication adherence and behavior, transmitting it to the cloud

for storage.

3.3.1 Hardware Module
The hardware module is comprised of three compartments, ingeniously fashioned from repurposed CD

drives. Driving the motion within this system is a two-channel motor driver, strategically situated atop the
hardware assembly. This motor driver seamlessly interfaces with the NodeMCU, which assumes the pivotal
role of microprocessor within the setup. Acting as the orchestrator, the NodeMCU not only governs the
precise movement orchestrated by the motor drivers but also acts as the conduit for establishing the network
infrastructure crucial for accessing the system via the accompanying application. Moreover, the NodeMCU
serves as the gateway to accessing the database hosted on Firebase, ensuring seamless integration and data
accessibility exclusively through the designated application interface.

The system consists of the following components:
a. Control Unit (NodeMCU):

– This is the central processing unit of the system, controlled by NodeMCU, which is a microcontroller
with Wi-Fi capability.

– It receives input from both the User Interface and Fingerprint Sensor and sends commands to the other
components, i.e., Pill Dispenser Module and Assistance Module.

b. Pill Dispenser Module:

– Motor: Operates the mechanical function of dispensing pills from the container.
– Pill Container: Stores the medication to be dispensed when triggered by the control unit.

3.3.2 Software Module
The second module consists of an application built on Flutter. This application serves as the central

hub for managing all information related to medication, including dosage schedules and intake times.
All necessary data for the hardware system is inputted and managed exclusively within the application.
Additionally, the system is intricately linked to a database, which can only be accessed when the application
is connected to the hardware network. The application boasts a fingerprint authentication feature, enhancing
security and access control. Users can gain entry to the compartments containing their medication solely
through fingerprint authentication, thereby ensuring secure and authorized access. Furthermore, based on
the predefined intake times set within the application, users can unlock the corresponding compartments
using fingerprint authentication. Moreover, leveraging the database connectivity, the application provides
comprehensive insights into medication intake patterns. Users can visualize their medication adherence over
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time through detailed graphs. This functionality offers users valuable insights into their medication regimen,
facilitating better adherence and overall health management. The various modules are given below:
a. Patient:

– The user of the system, who primarily interacts with the User Interface and the Fingerprint Sensor.

b. User Interface:

– Serves as the platform through which the patient interacts with the system.
– Likely to allow the patient to input or view relevant information about their medication schedule.

c. Fingerprint Sensor:

– Ensures secure and personalized access for the patient by verifying their identity.
– Once the fingerprint is authenticated, it triggers the control unit to execute further actions, such as

dispensing medication.

d. Server:

– The server communicates with the User Interface, storing and processing the patient’s data, such as
medication schedules and dispensing history.

– It may help maintain a lot of interactions and synchronize data for future reference or remote monitoring
by healthcare providers.

3.3.3 Software-Hardware Integration Workflow
This pseudo-code in Table 2 illustrates how the system ensures precise and dependable drug adminis-

tration by fusing hardware control with Internet of Things capabilities.

Table 2: Pseudo-code for hardware-software interaction

Initialize NodeMCU and establish Wi-Fi connection.
Monitor medication schedule via IoT server.
If medication time is reached:

Activate CD drive motor to release one dose.
Confirm dose release using a proximity sensor.
Send notification to the mobile application.

If error is detected:
Log error and alert user via the application.

An IoT-based automated drug delivery system is described in this pseudocode. Initializing the
NodeMCU (a microcontroller with Wi-Fi capabilities) and connecting to a Wi-Fi network are the first steps
in the procedure. Then, using an Internet of Things server, the system continually checks the prescription
regimen. The technology triggers a CD drive motor to deliver a single dose of medicine at the appointed time.
To verify that the dosage has been administered effectively, a proximity sensor is employed. When the release
is successful, the system notifies the user via the mobile application. In order to guarantee that any problems
are quickly resolved, the system logs any errors found throughout the process and notifies the user through
the mobile application. This method combines remote monitoring and automation to guarantee precise and
on-time drug delivery.
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Fig. 3 depicts an integration of the NodeMCU microcontroller with essential hardware elements such
the stepper motor (CD drive), proximity sensor, and power supply is highlighted in this picture, which
depicts the MediServe system architecture. The diagram also demonstrates how the system uses a Wi-Fi
router to connect to a mobile application in order to provide real-time medication management monitoring
and control.

Figure 3: System architecture and hardware integration of MediServe

3.3.4 Assistance Module
The third module encompasses assistance features present in both the hardware and software, aimed

at providing notifications and alerts regarding the user’s medication intake. A buzzer integrated into the
hardware, along with voice notifications within the software, serves to diligently remind the user of their
medication schedule. These notification systems ensure that the user is adequately alerted about their dosage
regimen, fostering meticulous adherence to their medication schedule.
Assistance Module:

– LCD: This provides visual feedback, which could include displaying instructions or status information
such as “Medication Dispensed” or dosage details.

– Buzzer: This produces auditory alerts to notify the patient, for example when it’s time to take their
medication or if there’s an issue.

Fig. 4 describes the three components integrated into the hardware system. At the core of the hardware
setup is the NodeMCU, responsible for coordinating the operations of the pill dispenser module, which
includes CD drives driven by motor drivers. Additionally, the assistance module of the hardware comprises
an LCD display and buzzer, both connected to the NodeMCU. The user interface interacts with the hardware
through NodeMCU, facilitating seamless communication between the two. The fingerprint scanner serves
as a means to access medication corresponding to the CD drive compartments. Furthermore, the data stored
in the user interface is maintained in a server established by the NodeMCU. The entire system operates on
power supplied to it, ensuring continuous functionality.

Development process will commence with the creation of the smart medicine dispenser hardware
component. Once the hardware development phase is successfully completed, we will proceed with the
development of the mobile application. This application will establish a connection to the smart medicine
dispenser, enabling it to transmit notifications and alerts to patients, reminding them of their sched-
uled medicine intake. Fig. 5 below provides the circuit diagram of the smart pill dispenser system with
user application.



Comput Mater Contin. 2025;83(1) 947

Figure 4: Smart pill dispenser system architecture

Figure 5: Circuit diagram-smart pill despenser
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Following the completion of the mobile application development, we will advance the integration of
voice alarm and a fingerprint sensor into the MediServe system. The voice alarm feature will enhance the
interactive capabilities of the smart medicine dispenser, facilitating timely medicine intake for patients.
Simultaneously, the fingerprint sensor will ensure that only authorized users can access the smart medicine
dispenser, enhancing security and user control.

3.4 Data Analysis Module
The Data Analysis Module of the MediServe system is essential for processing and analyzing the

gathered data to improve user customization, security, and medication adherence. This module offers users
and caregivers a resilient and flexible experience by integrating deep learning models with powerful machine
learning. The main elements of the Data Analysis Module are as follows, as shown in Fig. 2.

3.4.1 Recurrent Neural Networks (RNN)/Long Short-Term Memory (LSTM)
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) models are specialized

deep learning architectures designed to manage sequential data and time-series patterns, making them ideal
for predictive analysis in MediServe. These models learn from the user’s historical medication-taking habits,
allowing the system to forecast future behaviors, such as missed doses or delays.

For instance, if xt represents the medication adherence behavior at time t, RNNs and LSTMs compute
the hidden state ht by combining the current input xt with the previous hidden state ht−1 using the recursive
function (Eq. (1)).

ht = f(Wh∗ht−1 +Wx∗ xt) (1)

where Wh and Wx are learned weight matrices, and f is a nonlinear activation function. LSTMs further
refine this by incorporating forget, input, and output gates that control the flow of information. This allows
MediServe to predict and optimize medication schedules by generating timely reminders, reducing lapses in
adherence, and improving overall patient outcomes.

3.4.2 User Behavior Analysis
The MediServe behavioral analysis component examines the user’s past medication-taking behaviors

and trends to understand their behavior and spot abnormalities. The system tailors’ reminders to each user’s
unique requirements by examining these tendencies. For example, the notification patterns are adjusted if it
notices that a user consistently skips dosages at specific times or behaves erratically. This tailored feedback
makes using the product easier overall, increases drug compliance, and reduces the risk of health issues
resulting from missing doses.

3.4.3 Convolutional Neural Network (CNN)
In MediServe, Convolutional Neural Networks (CNNs) are employed for biometric security, particularly

for Fingerprint Authentication. CNNs, known for their efficiency in image recognition tasks, are used to
process and analyze fingerprint data to ensure secure access to medication. When a user attempts to access
the medication box, the system captures their fingerprint through sensors, which is treated as an image
input, denoted as I. The CNN applies a series of convolutional filters to the image, producing feature maps
that capture essential characteristics of the fingerprint. Mathematically, the convolution operation can be
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represented as Eq. (2).

F(i, j) =
m
∑
m=0
∗

n
∑
n=0

I (i +m, j + n) ∗ K (m, n) (2)

where F(i, j) is the feature map, I(i, j) is the input image, and K(m, n) is the convolution kernel.
These feature maps are then passed through multiple layers, including pooling layers, which down

sample the data, and activation layers (such as ReLU), which introduce non-linearity. Finally, the fully
connected layer outputs a probability distribution over possible matches with stored biometric data using a
SoftMax function (Eq. (3)).

P(y = c∣x) = exp(Wc ∗ x)
∑C

i=0 exp(Wi ∗ x)
(3)

where P(y = c∣x) is the probability of the fingerprint matching class c (an authorized user), Wc are the learned
weights for class c, and x represents the fingerprint features.

If the probability for the user matches an authorized class, access is granted; otherwise, it is denied. This
system ensures that only authorized individuals, such as the patient or caregiver, can access the medication.
By restricting access, MediServe prevents unauthorized individuals, like children or others, from gaining
access to potentially harmful medications, thereby enhancing overall security and safety.

3.5 NLP (Natural Language Processing) Module
The NLP Module is responsible for providing voice-activated assistance to users, particularly those with

cognitive or reading difficulties. It consists of two main functions:
Voice-Activated Assistance: This feature allows users to interact with the system using voice commands.

It leverages speech recognition models to understand, and process spoken instructions, making it easier for
users to access medication schedules or other features without needing to navigate a mobile app.

Text-to-Speech (TTS): This capability converts written reminders or instructions into audible spoken
messages. It is designed to ensure that users who have difficulty reading or understanding text can still receive
timely notifications and medication-related instructions through audio feedback.

By employing these NLP techniques, the system improves accessibility, making it user-friendly for
elderly individuals or those with limited technological proficiency.

3.6 Security Module
The Security Module ensures that only authorized individuals have access to the medication. It uses a

combination of biometric security techniques:
Fingerprint Biometric Lock: The system utilizes CNN (Convolutional Neural Networks) for finger-

print recognition, ensuring that only the registered user’s fingerprint can unlock the medication box.
CNNs are well-suited for this task because of their strength in image recognition, ensuring accurate and
fast authentication.

Behavioral Biometric Analysis: This component monitors the user’s interaction with the system,
detecting any unusual behavior patterns. If the system detects unauthorized attempts to access the medication
box (such as a child or an unauthorized person), it locks the system and issues alerts to prevent misuse.
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System Security Considerations
a. Spoofing Attacks

Systems for biometric authentication, including those that use Convolutional Neural Networks (CNNs),
are susceptible to spoofing attacks, in which a fraudster tries to get around the system by providing fictitious
biometric information (such as pictures or 3D models of a face). MediServe can use liveness detection
algorithms to assist differentiate between authentic and fraudulent biometric features in order to lessen this.
During the authentication process, for instance, the system could ask users to do particular tasks like blinking
or speaking. Furthermore, the implementation of multimodal biometrics (such as fingerprint scanning or
face recognition combined with voice recognition) would add an additional layer of protection by making
spoofing more difficult.
b. Data Interception During Cloud Transmission

Malicious actors have the ability to intercept data transfer between the user’s device (such as a mobile
application) and cloud servers. MediServe should make sure that end-to-end encryption techniques, such
safeguard Socket Layer (SSL) or Transport Layer Security (TLS), are used to safeguard data while it is
being transmitted in order to reduce this risk. This guarantees that all private information, including
biometric authentication data, is encrypted and out of the reach of unauthorized individuals. To further
improve security during cloud interactions, public key infrastructure (PKI) might be utilized for secure key
management and authentication.
c. Access Control and Authentication

Using multi-factor authentication (MFA) in MediServe is essential, in addition to biometric authentica-
tion. The user would be able to combine what they are (like biometric data) with something they know (like
a password or PIN). The extra degree of security would stop unwanted access even if biometric data were to
be faked.
d. Regular Security Audits and Updates

Regular security audits and upgrades should be a part of MediServe’s maintenance strategy in order to
proactively handle new security concerns. As new threats and vulnerabilities arise, it is imperative that data
transmission protocols and authentication techniques adapt accordingly.

3.7 Output and Feedback Form in MediServe
MediServe’s Output and Feedback Form is the main interface via which users and the system communi-

cate. It provides real-time alarms, notifications, and insights that improve medication adherence and system
security as a whole. This part links many modules and gives caregivers and users crucial input, guaranteeing
that security or medication adherence problems are quickly fixed. Here is a thorough explanation of
its features:

3.7.1 User Notification and Unauthorized Access Alerts
MediServe’s system sends real-time notifications to users, reminding them about their scheduled

medications or alerting them to detected issues. These notifications are triggered by deep learning modules,
particularly RNN/LSTM models that predict when the user might miss a dose. Notifications are delivered via
the mobile app or voice assistance, making the system adaptable to user preferences. For example, if a user
is scheduled to take their medication at 9 AM, the system will send a timely reminder to ensure they stay
on track. Similarly, MediServe ensures that only authorized individuals can access the medication. When an
unauthorized access attempt is detected through the fingerprint biometric authentication system, the system
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locks the medication box and immediately notifies the user or caregiver, preventing misuse. If a child attempts
to access the medication, an alert with a message like “Access Denied: Unauthorized Attempt Detected” is
sent to the caregiver.

3.7.2 Health Insights and Personalized Feedback
MediServe uses advanced technology to track how users take their medications. It analyzes patterns

and trends to provide personalized health insights, helping users and caregivers monitor medication habits
and overall health. If a user frequently misses doses, the system will suggest better times for taking
medication based on observed patterns. Users can access these insights through the mobile app or share
them with healthcare professionals via email. For example, the system may generate a report showing that
the user followed 95% of their medication schedule over the past week, and it will highlight any areas
for improvement.

3.7.3 General Feedback Loop
MediServe’s feedback loop ensures that the system continuously adapts to user input. Depending on the

user’s response, it may adjust the frequency or format of reminders. If a user consistently ignores smartphone
notifications but responds better to voice reminders, the system will prioritize audio alerts in the future.
These adjustments occur automatically, without requiring user input, to ensure that MediServe remains user-
friendly and effectively promotes medication adherence.

3.8 Overview of the Smart Medication System
The intelligent medication system is meticulously crafted to assist patients in effectively managing their

medication regimens through the seamless integration of software and hardware components. This facilitates
the automated dispensing of pills, timely generation of alerts, and the implementation of secure access
protocols via patient authentication. Patients can input their medication details into the system, which is
then orchestrated by the software to uphold a precise schedule. The hardware component is responsible for
executing physical tasks such as dispensing pills and notifying the patient through auditory or visual cues.
Through the amalgamation of auditory and visual reminders, the system ensures timely medication intake
for patients, while enabling caregivers or healthcare professionals to monitor adherence if deemed necessary.
This system optimizes medication management, consequently diminishing the probability of missed doses.

Fig. 6 illustrates the interaction between the user, the system, and the software module. The user begins
by authenticating themselves, then proceeds to load the containers with medication according to their
prescription and enters the schedule into the software. Following the schedule, the hardware module triggers
a buzzer, voice alarm, and displays messages on the LCD screen integrated into the system. Fig. 4 outlines
the flow of processes within a smart medication system, depicting interactions between the patient, software
module, and hardware module.
A. Key Components:

Patient: The user of the system interacts with various modules to ensure medication is dispensed and
taken on time.

Software Module: Responsible for handling software-side tasks, such as maintaining the medication
schedule, providing information, and generating alerts.

Hardware Module: This includes physical components, such as pill dispensers, buzzers, and voice
assistance mechanisms, that act based on software commands.
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Figure 6: Use case diagram of interaction between user and system

B. Workflow Breakdown:
Authentication: The process begins with authenticating the patient to verify their identity and ensure

that the correct medication is dispensed to the right person.
Filling Information: This step involves entering or reviewing medication-related details, including

dosage, type of medicine, and schedule.
Filling Box: This refers to the process of filling the physical pill container or dispenser with the

correct medications.
Check & Maintain Schedule: The software module is responsible for checking and maintaining the

patient’s medication schedule, ensuring that medications are dispensed at the correct times.
Generate Message: Based on the schedule and interactions, the system generates messages that can be

sent to the patient or caregivers. These messages might include notifications or reminders.
Generate Buzzer Sound: When it’s time for the patient to take medication, the system can generate a

buzzer sound to alert the patient through the hardware module.
Voice Assistance: The system also includes voice assistance, which could guide the patient by announc-

ing reminders or instructions related to their medication.
C. Relationships:

– The Authentication module is responsible for feeding into other actions, such as filling information in a
box, and it triggers various alerts.

– The Software Module handles the Check & Maintain Schedule, which communicates with other
modules to ensure that the right actions are performed, such as generating a message or triggering the
buzzer sound.

– The Hardware Module is responsible for executing these actions, including providing auditory alerts,
voice assistance, and dispensing the pills from the box.
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4 Prototype Implementation
In MediServe, there are two separate modules: hardware and software, which integrate with each other.

In this approach, various IoT components are used to design the hardware module. Security measures, such
as fingerprint scanning, empower elderly individuals and those with cognitive impairments to adhere to their
medication schedules with confidence.

Table 3 describes the MediServe Procedure algorithm which outlines the operational steps for managing
medication intake efficiently. Users input their medication schedule and patient details. Upon activation,
the system alerts users at scheduled times through buzzer. Authentication via fingerprint sensor ensures
authorized access to the medication compartments. Once authenticated, users retrieve their medication, and
the system records the intake data. In case of authentication failure, the system prompts re-authentication
within a specified time. The process iterates, maintaining medication adherence and data integrity.

Table 3: MediServe Procedure algorithm

Input: Medicine name, Quantity, and time
Output: Successful medication display on screen and data save in database
Input data:
Patient: User of the system.
Hardware model: Physical compartments for storing medication.
Software system: Interface for scheduling prescribed medication and intake times.
if Authentication == Successful:
Open assigned compartment.
Record medication intake.
Save data.
else
Prompt for re-authentication.
Repeat for up to 5 min.

The anticipated outcomes of the MediServe are expected to highlight a functional prototype demonstrat-
ing the system’s components, effectiveness in managing medication schedules for the elderly, a comparative
analysis against existing systems, and a focus on its user-friendly design. The results may highlight its
efficacy in reminding users, securely authenticating access, and storing data regarding medication intake.
Furthermore, to emphasize the system’s feasibility and cost-effectiveness, aiming to make it accessible even
to those with limited resources.

Fig. 7 illustrates the system’s readiness for use. It depicts the state of the system when it is fully operational
and prepared for use. This snapshot captures the moment when all components are functioning optimally,
indicating that the system is primed and available for utilization.

Fig. 8 highlights the interconnection between the NodeMCU and two two-channel motor drivers. These
motor drivers, in turn, are linked to three CD drives, forming an integrated system. Additionally, a small
buzzer is strategically mounted within the configuration, enhancing the system’s functionality by providing
notification alerts. This setup highlights the intricate network of components, carefully connected to facilitate
seamless operation and enhance user experience.
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Figure 7: Medicine dispenser box

Figure 8: Connections between the NodeMCU and Motor driver

4.1 Hardware Module
Hardware consists of 16 × 2 LCD (Liquid Crystal Display), LED (Light-Emitting Diode), Buzzer, etc.,

LCD is used for displaying the medicines in the smart medicine dispenser and the time scheduled for them.
It also displays messages on the screen. When it’s time to take medicine LED starts glowing pointing to
compartment contains the medicine scheduled and buzzer start producing alarm to draw the attention of
the patient towards the dispenser and automatically turns off when the patient takes the medicine, and the
alarm also stopped.

The hardware module Fig. 6 is equipped with three CD drives and an LCD display with dimensions of
20× 4. The image provided illustrates the frontal perspective of the model, highlighting its design and layout.
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4.2 Software Module
The software module of MediServe is responsible for managing medication schedules, user authentica-

tion, data storage, and interaction with the hardware components. It offers a user-friendly interface accessible
through a device such as a smartphone.

In terms of integration, the software module communicates with the hardware module to synchronize
medication schedules and trigger alerts at specified times. For instance, when it’s time to take medication,
the software instructs the LED to indicate the compartment containing the scheduled medicine and activates
the buzzer for attention. The LCD displays relevant information such as medication details and intake times.

Upon successful authentication through the fingerprint sensor, the software instructs the hardware to
open the designated compartment, allowing the user to retrieve the medication. The hardware then records
the medication intake data and communicates back to the software, which saves this data in the database. In
case of authentication failure, the software prompts for re-authentication within a predefined time, ensuring
security and adherence to the medication schedule. This integration ensures a user-friendly and secure
system for medication management.

5 Working in a Smart Medicine Box
In this section, we provide the actual working and flow of smart medicine dispenser. Starting with

the input node, Fig. 9 illustrates a clear sequence of events, highlighting how a patient fills the scheduled
medicine into the compartments of the hardware model and updates the schedule in the system’s software.
The following steps describe how the entire system operates:

Step 1: The patient, using the system, must first load the necessary medicine into the designated
compartments according to their schedule. They should also enter the schedule into the software provided
with the system.

Step 2: After completing Step 1, the system will be activated. It will notify the user, as per the specified
time in the software, through notifications in the software and by triggering a buzzer attached to the
hardware. The notifications will be delivered 10 min before the scheduled intake time as mentioned in the
software. Furthermore, this step includes voice notifications through the voice assistant. The LCD display on
the module will also show the list of medicines, their quantities, and the scheduled time for intake.

Step 3: This step will only proceed if authentication is successful through the fingerprint sensor
integrated into the software. If you are a registered user, you will gain access and be prompted to proceed to
Step 4. If you are not a registered user (Access Denied), the system will prompt you to repeat this step. Failing
to complete this step will direct you to Step 5.

Step 4: Once the user gains access to the system, it will automatically open the compartment assigned
to the specific medicine and close it after the user has taken the medication, proceeding to Step 6.

Step 5: If Step 4 is not successfully completed, Step 3 will be repeated for up to 10 min. Afterward, the
system will proceed to Step 6.

Step 6: Upon completing Step 4, the data, including the dosage successfully taken by the user, is sent to
the cloud. If Step 3 is missed, the data indicating the missed dosage is stored in the cloud for future reference.
After Step 6, control returns to Step 2, and the process repeats.

The smart medicine dispenser operates by first allowing the patient to load their scheduled medications
into designated compartments and inputting the schedule into the system’s software. At the specified time,
the system triggers notifications and activates a buzzer for a reminder, displaying medication details on an
LCD screen. Authentication through a fingerprint sensor grants access to open the designated compartment
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for medication intake; failure to authenticate prompts reauthentication or logs a missed dosage. Data on
medication intake or missed dosages is then sent to the cloud for storage and future reference, with the
process repeating for subsequent doses.

Figure 9: Flowchart of MediServe

6 Deep Learning Model Evaluation Criteria and Performance
The performance and dependability of the models used for personalized feedback, biometric verifi-

cation, and predictive analysis are evaluated as part of MediServe’s deep learning model review process.
Several deep learning models, including CNNs, LSTMs, and RNNs, are used for a variety of tasks, including
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user behavior analysis, fingerprint authentication, and medicine adherence prediction. To guarantee the
correctness, security, and usability of the MediServe system, these models must be evaluated.

6.1 Accuracy
One of the main metrics used to assess models for fingerprint authentication (CNN) and medication

adherence prediction (RNN/LSTM) is accuracy.
Predictive Models: In the case of medication adherence prediction, accuracy refers to how well the

RNN/LSTM model predicts whether a user will take their medication on time or miss a dose.
Biometric Models: For fingerprint authentication, accuracy refers to the model’s ability to correctly

verify the identity of the user by comparing input fingerprint data to stored fingerprints.

Accuracy = Number of Correct Predictions
Total No.of Predictions

× 100 (4)

6.2 Precision
In order to prevent false positives, which allow illegal access, and false negatives, which deny access to

authorized users, these metrics are essential for assessing the fingerprint authentication model (CNN).

Precision = TP
TP + FP

(5)

where:
TP = True Positives (correctly identified authorized users)
FP = False Positives (incorrectly identified unauthorized users)

6.3 Recall
Out of all genuine positive occurrences, recall, also known as sensitivity, is the percentage of true positive

instances, or authentic users.

Recall = TP
TP + FN

(6)

where:
TP = True Positives (correctly identified authorized users)
FN = False Negatives (incorrectly denied authorized users)

6.4 F1-Score
The harmonic meaning of recall and accuracy is the F1-score. When there is an unequal class distribu-

tion, such as when there are fewer illegal access attempts than approved ones, it offers a fair assessment of
the CNN model.

F1 − Score = 2 × Precision × Recall
Precision + Recall

(7)

This measure makes sure that the number of false positives and false negatives is kept to a minimum,
protecting the drug access system.
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6.5 Mean Squared Error (MSE)
Medication adherence prediction using RNN/LSTM models is commonly assessed using the Mean

Squared Error (MSE) measure. By estimating when the user would miss a dosage, for example, it gauges how
effectively the model predicts future adherence behavior.

MSE = 1
n

n
∑
i=0
(yi − ŷi)2 (8)

where:
yi = actual value (whether the user adhered to their schedule)
ŷi = predicted value (predicted adherence)

6.6 ROC Curve and AUC
The True Positive Rate (TPR) against False Positive Rate (FPR) is shown on the ROC curve to assess

the CNN model for fingerprint identification. The model’s capacity to discriminate between authorized and
unauthorized users is summarized by a single numerical value called the AUC (Area Under the Curve).

AUC = ∫
1

0
TPR (FPR)D (FPR) (9)

For fingerprint authentication and predictive analysis, we evaluate the deep learning models in MediS-
erve using standard metrics such as accuracy, precision, recall, and F1-score. In addition to prediction
accuracy, we also consider measures like ROC AUC and Mean Squared Error. We also ensure a positive user
experience by measuring the system’s responsiveness and user-friendliness, including latency, clarity, and
flexibility. Overall, these indicators guarantee that MediServe provides accurate, safe, and reliable support to
patients and caregivers.

7 Experimental Results and Discussion

7.1 Dataset Overview
The dataset aims to gather real-time data on medication adherence. It is well-organized and comprehen-

sive, supporting various functions such as system security, user notifications, and customized feedback. The
dataset logs important data points including pill retrieval, biometric identification, and adherence trends to
ensure accurate analysis and timely system adjustments. It is essential for training MediServe’s deep learning
modules and enabling the system to respond to each user’s behavior. The goal of the MediServe dataset is
to collect a wide range of information about patient behavior, medication adherence, and system efficiency.
It includes biometric data, sensor data, user interaction records, and notifications, which are used to ensure
security, assess and predict medicine use trends, and provide patients with personalized feedback. The deep
learning modules (RNN/LSTM, CNN) and IoT-based functions of the system rely on this dataset. The
important database tables in the MediServe dataset are described as follows.

7.1.1 User Table
Table 4 holds the personal details of the users (patients and caregivers) who are using the MediServe

system.
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Table 4: User table

Column name Description
User_ID Unique identifier for each user

Name Name of the user
Age Age of the user

Gender Gender of the user
Phone number User’s phone number for notifications
Email address User’s email address for reports

Role User role (Patient or Caregiver)

7.1.2 Medication Schedule Table
Table 5 holds the data about the user’s medication plan, including scheduled doses and timing.

Table 5: Medication schedule

Column name Description
Schedule_ID Unique identifier for each medication schedule

User_ID Foreign key from the User Table
Medication_Name Name of the medication

Dosage Prescribed dosage of the medication
Scheduled_Time Time for medication intake

Frequency Frequency (e.g., once daily, twice daily)
Start_Date Start date of the medication schedule
End_Date End date of the medication schedule

7.1.3 Sensor Data Table
Table 6 logs the data collected from sensors (e.g., pill retrieval, weight change).

Table 6: Sensor data

Column name Description
Sensor_ID Unique identifier for each sensor
User_ID Foreign key from the user table

Medication_Name Name of the medication being monitored
Timestamp Time at which the sensor data is recorded

Pill_Retrieval Indicator if the pill has been retrieved
Weight_Change Change in weight of the pill container

7.1.4 Biometric Data Table (Fingerprint Authentication)
Table 7 stores biometric data collected from the fingerprint sensor.
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Table 7: Biometric data

Column name Description
Biometric_ID Unique identifier for each fingerprint entry

User_ID Foreign key from the user table
Fingerprint_Data Biometric data used for authentication

Timestamp Time when the fingerprint was captured
Authentication_Result Result of the fingerprint authentication (True for success, False for failure)

7.1.5 Notifications Table
Table 8 logs all notifications sent to the users or caregivers.

Table 8: Notifications table

Column name Description
Notification_ID Unique identifier for each notification

User_ID Foreign key from the user table
Notification_Type Type of notification (e.g., Medication reminder, Unauthorized access)

Timestamp Time when the notification was sent
Delivered_To Delivery method (e.g., Mobile app, Voice assistant)

Message Content of the notification

7.1.6 Medication Adherence Table
Table 9 tracks whether users adhered to their medication schedule.

Table 9: Medication adherence

Column name Description
Adherence_ID Unique identifier for each adherence record

User_ID Foreign key from the user table
Medication_Name Name of the medication
Scheduled_Time Scheduled time for the medication
Actually_Time Time when the medication was actually taken

Adherence_Status Whether the user adhered to the schedule (True for adherence, False for missed dose)
Missed_Reason Reason for missing the medication (if any)

7.1.7 System Feedback Table
Table 10 contains feedback data for system adjustments based on user interaction.
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Table 10: System feedback

Column name Description
Feedback_ID Unique identifier for each feedback record

User_ID Foreign key from the user table
Feedback_Type Type of feedback (e.g., Notification Adjustment, Access Denial)

Timestamp Time when the feedback was recorded
Adjustment_Made System adjustment made based on the feedback

Fig. 10 represents the login window of the second module, which functions as an application. Users are
presented with the option to either log in with their existing credentials or sign up if they do not possess an
account. Serving as the initial gateway to the application, this login window marks the starting point of user
interaction with the software platform. Fig. 11 represents the signup window of the second module, which
functions as an application. It consists of name, phone number, email id, password, and confirm password
of user. Fields like confirm password provide the security for the application.

Figure 10: Login page
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Figure 11: Signup page

After logging in, users are presented with a detailed dashboard, as shown in Fig. 12, containing three
distinct sections. The first section consists of three containers, aligning with the three compartments of the
hardware system. This dashboard offers users a comprehensive overview of their medication intake status,
including information on the amount of medication already consumed and the remaining quantity. The
second section, known as the current status section, provides a summary of the user’s progress in medication
intake, aiding in decision-making. The third section, labeled as the task description tab, delivers timely
updates, highlighting medications that require immediate attention. This structure ensures that medication
administration is conducted promptly and accurately.

Fig. 13 is captured after selecting any of the compartments displayed on the dashboard. Above this
section, a button is provided, enabling users to initiate fingerprint authentication for accessing the selected
container. Upon successful authentication, the corresponding container will be unlocked, allowing access to
the medication stored within. Below this interface, users can view a list detailing the medications present in
the system, providing a comprehensive inventory of available medications.

Fig. 14 showcases buttons dedicated to adding or editing medication entries within the system. These
buttons serve as user-friendly controls for managing the inventory of medications stored within the system.
Users can utilize these options to seamlessly add new medications to the system or modify existing entries
as needed. This interface enhances user accessibility and facilitates efficient medication management within
the system.
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Figure 12: Dashboard

Figure 13: Container module



964 Comput Mater Contin. 2025;83(1)

Figure 14: CRUD related to medicine

7.2 MediServe System Analysis
The analysis of the smart medicine dispenser box application reveals a significant advancement in

medication management, particularly for individuals with complex medication regimens. The application
employs visual representation.

The graph shown in Fig. 15 provides a representation of the intake schedule for three different medicines
(Med-1, Med-2, and Med-3) over the course of a month in a smart medicine dispenser box application. The
x-axis represents the date and time of each scheduled intake, while the y-axis could represent the dosage or
quantity of medicine to be taken.

Each medicine is assigned a unique color, making it easy to distinguish between them and understand
the intake schedule for each one. The graph also indicates whether or not the medicine has been taken at the
scheduled time, with a checkmark or other indicator next to the corresponding data point.

This type of visual representation of medication intake can be extremely useful for individuals who need
to manage multiple medications, as it allows them to easily see when and how much of each medicine they
need to take. It can also help healthcare providers monitor their patients’ medication adherence and make
any necessary adjustments to their treatment plans.
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Figure 15: Graph of medicine intake

7.3 Evaluation of Performance
The experimental setup has to be planned to evaluate the deep learning models in MediServe in practical

circumstances. The system is made up of many components, such as voice interface using natural language
processing (NLP), fingerprint identification for security, and predictive models for medication adherence.
The purpose of the experimental design is to evaluate the models’ performance in managing the primary
tasks in terms of accuracy, flexibility, and efficiency.

The deep learning models in MediServe are rigorously tested for speed, security, and user experience
thanks to this experimental setup. This configuration offers a thorough evaluation of the system’s ability to
forecast medication adherence, secure medicine access, and communicate with patients via voice commands
utilizing real-world datasets, Internet of Things sensors, and sophisticated deep learning frameworks.

Table 11 outlines the key training parameters for the deep learning models used in MediServe. The
batch size is set to 64 for the RNN/LSTM models and 32 for the CNN model, balancing the training speed
and model performance. A learning rate of 0.001 is used to control the pace at which the models learn,
ensuring stable convergence during training. The Adam optimizer is employed for both RNN/LSTM and
CNN models, known for its efficiency in handling large datasets and adapting the learning rate during
training. The models are trained for 100 epochs for RNN/LSTM and 50 epochs for CNN, providing sufficient
iterations for learning. The data split is 70% for training, 15% for validation, and 15% for testing, ensuring
a balanced evaluation process. The loss functions are binary cross-entropy for the RNN/LSTM (for tasks
like medication adherence prediction) and categorical cross-entropy for the CNN (for tasks like fingerprint
authentication), optimizing each model for its specific task.

Table 12 provides an overview of MediServe’s software and hardware setup. With 32 GB of DDR4 RAM,
the system can handle big datasets and multitask well. Its Intel Core i3-3245 CPU, operating at 3.40 GHz,
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ensures the system has enough processing power. Quick data storage and retrieval is achieved using a 1
TB SSD. To provide safe access and precise monitoring, the system combines IoT sensors and biometric
fingerprint scanners to gather real-time user activity data. Users may interact with the system and get
notifications using mobile apps for iOS and Android smartphones. Every system process has a stable and
effective environment since the complete setup is powered by a 64-bit operating system.

Table 11: The suggested model’s experimental configuration

Sr. no. Parameters Values
1 Batch size 64 (RNN/LSTM), 32 (CNN)
2 Learning rate 0.001
3 Optimizers Adam (for both RNN/LSTM and CNN)
4 Epochs 100 (RNN/LSTM), 50 (CNN)
5 Data split 70% Training, 15% Validation, 15% Testing
6 Loss functions Binary Cross-Entropy (RNN/LSTM), Categorical Cross-Entropy (CNN)

Table 12: Details of the system setup

Sr. no. Parameters Configuration
1 Processor Intel(R) Core (TM) i3-3245 CPU 3.40 GHz
2 RAM 32 GB DDR4
3 Storage SSD (1 TB)
4 Sensors Biometric fingerprint scanner, IoT sensors for user behavior data collection
5 Mobile devices Android/iOS smartphones for app integration
6 Operating system 64 Bit

In the MediServe system, Fig. 16 displays a 98% accuracy rate throughout training. Although the
testing and validation phases likewise show good performance with accuracies of 96% and 97%, respectively,
the training section’s deeper hue indicates the much better accuracy. The system’s improved predictive
performance, particularly during training, is highlighted by this graphic depiction.

The confusion matrix (Table 13) illustrates the MediServe system’s exceptional performance, with an
accurate rate of 98%. With the exception of a tiny percentage of cases, the model accurately detects the
majority of drug adherence cases. It accurately detects 49 genuine positive cases and 49 true negative
instances, and it detects just one false positive and one false negative. This suggests that the system does a
great job of identifying user behavior and making sure that prescription drugs are taken as directed, both of
which improve user health outcomes.

A binary classification model’s performance is demonstrated by the confusion matrix (Fig. 17), which
contrasts true and predicted labels. Out of ten total predictions, it demonstrates that four cases of class 0
(True Negatives) and four instances of class 1 (True Positives) were accurately recognized by the model. It did,
however, make one false positive prediction—classifying a class 0 instance as class 1—and one false negative
prediction—classifying a class 1 case as class 0. With 80% of the predictions being accurate, the matrix shows
that the model has a high level of accuracy overall.
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Figure 16: Heat map

Table 13: Accuracy matrix

True\Predicted Positive Negative
Positive 49 1
Negative 1 49

Figure 17: Accuracy matrix

A Receiver Operating Characteristic (ROC) curve is shown in Fig. 18 that shows the trade-off between
specificity (1-False Positive Rate) and sensitivity (True Positive Rate) for various threshold settings. A single
scalar number is provided by the Area Under the Curve (AUC) to evaluate the model’s overall capacity for
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class discrimination. A higher AUC in the context of MediServe suggests that the system is successful in
identifying patients who need assistance because they could have problems with their medication adherence.

Figure 18: ROC curve and AUC

• ROC Curve Interpretation:

The trade-off between the false positive rate (1-specificity) and the genuine positive rate (sensitivity) for
different threshold levels is represented by the Receiver Operating Characteristic (ROC) curve. The model’s
overall performance is measured by the area under the curve, or AUC. The high AUC value (for example,
0.98), for MediServe’s predictive models, indicates that the model is highly effective in differentiating
between positive and negative classes (e.g., medication adherence vs. non-adherence). For older users who
could depend significantly on system notifications, this demonstrates the system’s dependability in precisely
forecasting medication-related actions and reducing false alarms.

The loss function graph (Fig. 19) is a crucial tool for assessing the performance of the MediServe
system during the training and validation phases of its deep learning models. It plots two lines: training
loss and validation loss. Training loss represents the model’s performance on the training dataset, indicating
its effectiveness in learning from the training data. A decreasing training loss over epochs indicates the
model’s effectiveness in learning from the training data. Validation loss, on the other hand, represents the
model’s performance on a separate validation dataset, which is not used during training. It is essential for
MediServe to maintain a balance between low training and validation losses to ensure the system can predict
medication adherence effectively and generalize those predictions to real-world scenarios. A well-tuned loss
function graph would show a steady decrease in both losses, leading to improved accuracy in predicting user
adherence to medication schedules and enhancing the overall effectiveness of the MediServe application in
improving user health outcomes.
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Figure 19: Loss function graph

• Loss Function Graph Interpretation:

The learning dynamics and convergence of the model are shown by the loss function graphs, which
exhibit the training and validation loss over epochs. Effective learning and generalization are demonstrated
for MediServe by a progressive decrease in training and validation losses. The lack of a discernible difference
in these losses indicates that the model stays clear of overfitting, guaranteeing resilience when dealing with
unknown data in practical applications.

• Relevance to System Robustness and Reliability:

– The ROC curve demonstrates the model’s capacity to control false positives while maintaining high sen-
sitivity, guaranteeing senior users receive accurate and timely messages free from needless disruptions.

– The training process has been properly adjusted, as seen by the loss function graph, were variables like
learning rate and batch size support consistent and dependable prediction performance.

– By demonstrating that the system is reliable and accurate in real-world situations, these measures
together strengthen user confidence and provide steady assistance with medication management chores.

7.4 Comparative Baselines over Traditional Models
To demonstrate performance gains over conventional models, Table 14 presents comparison baselines.

Apart from the CNN and RNN/LSTM deep learning models, think about contrasting them with more
straightforward models such as logistic regression, decision trees, or support vector machines. As a result, the
advantages of using deep learning to customized medicine management will be clearly understood. Compare
parameters like accuracy, precision, recall, F1-score, and others that are pertinent.

This demonstrates the superior performance of the deep learning models in terms of classification
accuracy and other metrics.
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Table 14: Comparative baselines showing performance improvements over traditional models

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%)
Logistic regression 85.2 84.1 83.7 83.9 87.5

Decision tree 82.6 80.4 81 80.7 85.1
SVM 88.5 87 86.8 86.9 89

RNN/LSTM (Proposed) 98 97.5 97.8 97.6 99
CNN (Proposed) 97.2 96.7 96.5 96.6 98.5

7.5 Ablation Analysis
Table 15 shows the contribution of each MediServe system component to the system’s overall perfor-

mance. It also offers insights into which components are most important for obtaining high accuracy and
reliability in medication adherence forecasts.

Table 15: Ablation study performance

Ablation study configuration Accuracy (%) Precision (%) Recall (%) F1-score (%)
Full model (RNN/LSTM + CNN) 98 97.5 98.5 98
Without CNN (RNN/LSTM Only) 92 90.5 93 91.7
Without RNN/LSTM (CNN Only) 85 83 86.5 84.7
Without fingerprint authentication 95 94 96 95

Without user behavior analysis 90 88.5 91 89.7
Without IoT sensors 91.5 90 92 91

Baseline model (Traditional methods) 80 78 82 80

7.6 Limitations of the MediServe
Although the ablation research findings for the MediServe system demonstrate notable gains in accuracy

and performance, they also point out several drawbacks. Healthcare workers may find it challenging to
comprehend decision-making procedures due to the application of deep learning models. Additionally,
there are privacy and data security risks due to the system’s strong dependence on IoT sensors and
biometric verification. Concerns around overfitting with well-performing models also require attention.
Before becoming widely used, more study and development are required.

8 Discussion
Compared with previous studies, the findings discussed here underscore several critical aspects of

smart medicine dispensers. Firstly, the emphasis on compatibility with patient interactivity highlights the
importance of designing systems that are intuitive and user-friendly. This aspect becomes especially crucial
for elderly or cognitively impaired individuals who may face challenges in operating complex technologies.

The focus on safety features indicates a growing awareness of the need to integrate robust security
measures, such as fingerprint scanning or authentication protocols. These features not only ensure that
medication access is restricted to authorized individuals but also contribute to overall system reliability
and trustworthiness. The recognition of user-centric design as a significant factor in medication man-
agement solutions suggests a shift towards more personalized and tailored approaches. By considering
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user preferences, habits, and limitations, these systems can enhance user engagement and adherence to
medication schedules.

Moreover, the emphasis on regular analyses and initiative-taking monitoring of missed medication
doses reflects an initiative-taking approach to healthcare management. Identifying and addressing missed
doses promptly can prevent adverse health outcomes and improve treatment effectiveness. These findings
highlight the evolution of smart medicine dispensers towards more sophisticated, user-centric, and safety-
focused solutions. The integration of advanced technologies, coupled with a deeper understanding of user
needs and challenges, contributes to more effective medication management, and leads to improved health
outcomes for individuals.

As seen in the discussion that follows, MediServe offers senior customers a comprehensive and
customized solution by combining predictive analytics, IoT, and security features to improve medication
administration in addition to filling current market shortages.

Pillsy represents an IoT-enabled smart pill bottle designed to aid users in managing their medications
through reminders and automated tracking of pill consumption [28]. While Pillsy enhances adherence
through notifications, it lacks the deep learning capabilities offered by MediServe. MediServe utilizes
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) to predict potential lapses in
medication adherence, providing a more proactive solution.

MedMinder is another medication management system that monitors and alerts users about their
medication schedules through telehealth integration [29]. However, MediServe surpasses MedMinder by
integrating Convolutional Neural Networks (CNNs) for biometric security, ensuring that only autho-
rized users access the medication. Furthermore, MediServe delivers personalized insights using AI-driven
behavioral analysis, a feature absents in MedMinder.

AdhereTech offers smart pill bottles with real-time monitoring and reminders through mobile connec-
tivity [30]. While effective in tracking medication adherence, AdhereTech does not leverage the deep learning
models employed by MediServe to provide predictive insights. MediServe’s deep learning models can forecast
potential medication lapses, positioning the system as more advanced in terms of user personalization
and optimization.

CarePredict is a system that focuses on general elderly care through wearable devices and machine
learning to monitor daily activities [31]. While CarePredict excels at predicting general health declines,
MediServe specifically focuses on medication adherence, using similar predictive analytics but tailored to
managing medication schedules. Combining CarePredict’s health metrics with MediServe’s medication data
could enhance overall health outcomes for elderly users.

Hence, iSync is a mobile health platform that utilizes predictive analytics to identify patients at risk of
non-adherence [32]. Similar to MediServe, it uses historical adherence data for prediction, but iSync lacks
robust security features, such as fingerprint authentication and behavioral biometrics, that make MediServe
a more secure and personalized system.

8.1 Comparison with Existing Solutions
By combining cutting-edge deep learning models and IoT technologies, MediServe outperforms

current systems like MedMinder and AdhereTech. It provides capabilities like predictive analytics, dynamic
behavioural optimization, and improved accessibility (Table 16). MedServe uses clustering and anomaly
detection algorithms to reach a classification accuracy of 98%, enabling proactive medication adherence
intervention, in contrast to MedMinder and AdhereTech, which mainly concentrate on static warnings and
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notifications. Furthermore, its natural language processing (NLP) features enable text-to-speech and voice-
activated interactions, guaranteeing accessibility for senior users with little technical literacy. Additionally,
MediServe improves security by utilizing strong encryption and anomaly detection, which guarantees data
protection a capability that isn’t prioritized in baseline systems.

Table 16: Comparison with existing solutions

Feature MedMinder AdhereTech MediServe
Alerts and Notifications ✓ ✓ ✓

IoT integration X ✓ ✓

Predictive deep learning models X X ✓

Behavioural analysis X X ✓

Accessibility via NLP X X ✓

Advanced security measures X X ✓

MediServe offers a complete and safe medication management system that surpasses current tech-
nologies by combining predictive deep learning, IoT integration, individualized behavioural analysis, and
accessibility in a unique way, as the comparative table highlights.

8.2 Technical Innovations
MediServe uses CNNs and Natural Language Processing (NLP) to enhance medication management

for elderly users. The system uses fingerprint recognition for secure authentication, eliminating the need for
passwords or complex devices. The CNN architecture is optimized for high accuracy, even with partial or
low-quality fingerprint inputs. NLP is used to create a voice-activated interface, allowing users to interact
with the system via natural language commands. The NLP models are trained on domain-specific data to
understand health-related queries and commands, ensuring accuracy and relevance. This tailored approach
makes MediServe user-friendly and inclusive, catering to the unique needs of the elderly population.

9 Conclusion & Future Enhancement
The MediServe system represents a significant leap forward in medication management and patient

safety, boasting an impressive 98% accuracy in classification tasks. It achieves this through the use of deep
learning algorithms, specifically RNNs and CNNs, to analyze biometric data and user behavior patterns. The
system not only improves medication adherence but also provides protection against unauthorized access,
ultimately leading to better overall health outcomes. Future enhancements could involve advanced machine
learning techniques, the integration of wearable health devices, adaptive learning algorithms, and addressing
data privacy and security concerns. Collaborations with healthcare providers and organizations could
facilitate broader deployment and offer valuable feedback for further improvement. The user-friendly nature
of the MediServe makes it accessible for empowers elderly individuals and those with cognitive impairments,
featuring secure access via fingerprint sensors, intuitive interfaces, and seamless integration with mobile
applications and virtual assistants. On the other hand, the IoT-enabled Smart Medicine Dispenser, MediSync
Guardian, may face challenges in integrating advanced virtual assistance with AI technologies, as it requires
substantial resources, technical expertise, and a constant electricity supply. Despite these obstacles, the
IoT-enabled Smart Medicine Dispenser holds great promise for enhancing patient outcomes and well-being.



Comput Mater Contin. 2025;83(1) 973

Acknowledgement: The Yeshwantrao Chavan College of Engineering (YCCE), NAGPUR, is deeply appreciated by
the writers for providing the tools and assistance required to carry out this study. Our sincere gratitude goes out to
our mentors and colleagues for their invaluable advice, helpful criticism, and technical support during the project.
Furthermore, we acknowledge the achievements of scholars and researchers whose work laid the groundwork for our
study. A special thank you to our friends and family for their unwavering encouragement and support.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The research is conceived by Smita Kapse and Ganesh Yenurkar, who also serve as project
supervisors alongside Vincent Omollo Nyangaresi. Ganesh Yenurkar, Shravani Kale, and Gunjan Balpande create the
approach, while Manthan Jadhav, Sahil Lawankar, and Vikrant Jaunjale handle the visualization work. Smita Kapse,
Ganesh Yenurkar, and Gunjan Balpande write the first draft, while Smita Kapse and Gunjan Balpande develop the
program. Smita Kapse, Ganesh Yenurkar, and Vincent Omollo Nyangaresi carry out validation work along with their
contributions to formal analysis. Vincent Omollo Nyangaresi and Ganesh Yenurkar evaluate and revise the work, while
Smita Kapse and Ganesh Yenurkar provide resources for the study. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: The data generated and analyzed during this study are available, but data sharing
is not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Mathew A, Paul J, Nair SK, Sachin US, Koncherry S, Raghu CV. Design and implementation of a smart medicine

dispenser. In: TENCON 2019—2019 IEEE Region 10 Conference; 2019 Oct 17–20; Kochi, India. p. 1059–64. doi:10.
1109/TENCON.2019.8929483.

2. Othman NB, Ek OP. Pill dispenser with alarm via smart phone notification. In: 2016 IEEE 5th Global Conference
on Consumer Electronics; 2016 Oct 11–14; Kyoto, Japan. p. 1–2. doi:10.1109/GCCE.2016.7800399.

3. Jabeena KS. Smart medicine dispenser. In: 2018 International Conference on Smart Systems and Inventive
Technology (ICSSIT); 2018 Dec 13–14; Tirunelveli, India. p. 410–4. doi:10.1109/ICSSIT.2018.8748601.

4. Al-Haider J, Al-Sharshani SM, Al-Sheraim HS, Subramanian N, Al-Maadeed S, Chaari MZ. Smart medicine
planner for visually impaired people. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling
Technologies (ICIoT); 2020 Feb 2–5; Doha, Qatar. p. 361–6. doi:10.1109/ICIoT48696.2020.9089536.

5. Pandey PS, Raghuwanshi SK, Tomar GS. The real time hardware of smart medicine dispenser to reduce the adverse
drugs reactions. In: 2018 International Conference on Advances in Computing and Communication Engineering
(ICACCE); 2018 Jun 22–23; Paris, France. p. 413–8. doi:10.1109/ICACCE.2018.8441709.

6. Minaam DSA, Abd-ELfattah M. Smart drugs: improving healthcare using smart pill box for medicine reminder
and monitoring system. Future Comput Inform J. 2018;3(2):443–56. doi:10.1016/j.fcij.2018.11.008.

7. Rajendra Prasad P, Narayan N, Gayathri S, Ganna S. An efficient E-health monitoring with smart dispensing system
for remote areas. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information &
Communication Technology (RTEICT); 2018 May 18–19; Bengaluru, India. p. 2120–4. doi:10.1109/RTEICT42901.
2018.9012480.

8. Najeeb PNJ, Rimna A, Safa K, Silvana M, Adarsh T. Pill care-the smart pill box with remind, authenticate and
confirmation function. In: 2018 International Conference on Emerging Trends and Innovations in Engineering
and Technological Research (ICETIETR); 2018 Jul 11–13; Ernakulam, India. p. 1–5. doi:10.1109/ICETIETR.2018.
8529030.

https://doi.org/10.1109/TENCON.2019.8929483
https://doi.org/10.1109/TENCON.2019.8929483
https://doi.org/10.1109/GCCE.2016.7800399
https://doi.org/10.1109/ICSSIT.2018.8748601
https://doi.org/10.1109/ICIoT48696.2020.9089536
https://doi.org/10.1109/ICACCE.2018.8441709
https://doi.org/10.1016/j.fcij.2018.11.008
https://doi.org/10.1109/RTEICT42901.2018.9012480
https://doi.org/10.1109/RTEICT42901.2018.9012480
https://doi.org/10.1109/ICETIETR.2018.8529030
https://doi.org/10.1109/ICETIETR.2018.8529030


974 Comput Mater Contin. 2025;83(1)

9. Vardhini PAH, Harsha MS, Sai PN, Srikanth P. IoT based smart medicine assistive system for memory impairment
patient. In: 2020 12th International Conference on Computational Intelligence and Communication Networks
(CICN); 2020 Sep 25–26; Bhimtal, India. p. 182–6. doi:10.1109/CICN49253.2020.9242562.

10. Zeidan H, Karam K, Daou RAZ, Hayek A, Boercsoek J. Smart medicine box system. In: 2018 IEEE International
Multidisciplinary Conference on Engineering Technology (IMCET); 2018 Nov 14–16; Beirut, Lebanon. p. 1–5.
doi:10.1109/IMCET.2018.8603031.

11. Wu HK, Wong CM, Liu PH, Peng SP, Wang XC, Lin CH. A smart pill box with remind and consumption
confirmation functions. In: 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE); 2015 Oct 27–30;
Osaka, Japan. p. 658–9. doi:10.1109/GCCE.2015.7398716.

12. Kanhasinwattana J, Yawila N, Tithada T, Kamyod C. Smart pill box system for bipolar disorder patients. In: 2020
Joint International Conference on Digital Arts, Media, and Technology with ECTI Northern Section Conference
on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON); 2020 Mar
11–14; Pattaya, Thailand. p. 54–7. doi:10.1109/ECTIDAMTNCON48261.2020.9090716.

13. MohanaPriya D, Deepika V, Priya MS, Yogeswari CS. A real time support system to impart medicine using smart
dispenser. In: 2020 International Conference on System, Computation, Automation and Networking (ICSCAN);
2020 Jul 3–4; Puducherry, India. p. 1–10. doi:10.1109/ICSCAN49426.2020.9262424.

14. Crema C, Depari A, Flammini A, Lavarini M, Sisinni E, Vezzoli A. A smartphone-enhanced pill-dispenser
providing patient identification and in-take recognition. In: 2015 IEEE International Symposium on Medical
Measurements and Applications (MeMeA) Proceedings; 2015 May 7–9; Turin, Italy. p. 484–9. doi:10.1109/MeMeA.
2015.7145252.

15. Bharadwaj SA, Yarravarapu D, Reddy SCK, Prudhvi T, Sandeep KSP, Reddy OSD. Enhancing healthcare using
m-Care box (Monitoring non-compliance of medication). In: 2017 International Conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud) (I-SMAC); 2017 Feb 10–11; Palladam, India. p. 352–6. doi:10.1109/I-SMAC.
2017.8058370.

16. Ayu WS, Septendhi R, Azi B, Hutabarat MT, Raharja YS. Android application design of automatic tablet dispenser
using MQTT protocol communication. In: 2018 International Symposium on Electronics and Smart Devices
(ISESD); 2018 Oct 23–24; Bandung, Indonesia. p. 1–6. doi:10.1109/ISESD.2018.8605443.

17. Philip J, Abraham FM, Giboy KK, Feslina BJ, Rajan T. Automatic medicine dispenser using IoT. Int J Eng Res
Technol. 2020;9(8):342–9. doi:10.17577/IJERTV9IS080152.

18. Abdullah R, Ahmed R, Jamal L. A novel IOT-based medicine consumption system for elders. SN Comput Sci.
2022;3(6):471. doi:10.1007/s42979-022-01367-8.

19. YR M, Lohith N, Bindushree SV. MEDIC-The SmartMedicine dispenser. In: Proceedings of the Second Inter-
national Conference on Emerging Trends in Science & Technologies for Engineering Systems; 2019 May 17–18;
Karnataka, India.

20. Patil CH, Lightwala N, Sherdiwala M, Vibhute AD, Naik SA, Mali SM. An IoT based smart medicine dispenser
model for healthcare. In: 2022 IEEE World Conference on Applied Intelligence and Computing (AIC); 2022 Jun
17–19; Sonbhadra, India. p. 391–5. doi:10.1109/AIC55036.2022.9848934.

21. Jayashree D, Farhath KA, Amruthavarshini R, Pavithra S. Voice based application as medicine spotter for
visually impaired. In: 2016 Second International Conference on Science Technology Engineering and Management
(ICONSTEM); 2016 Mar 30–31; Chennai, India. p. 56–60. doi:10.1109/ICONSTEM.2016.7560923.

22. Tank V, Warrier S, Jakhiya N. Medicine dispensing machine using raspberry pi and arduino controller. In: 2017
Conference on Emerging Devices and Smart Systems (ICEDSS); 2017 Mar 3–4; Mallasamudram, India. p. 44–51.
doi:10.1109/ICEDSS.2017.8073657.

23. Fidone I, Cavadini R, Casasopra F, Santambrogio MD, Yu CH. Kangarucare: a homecare system for enhancing
medicine adherence. In: 2018 International Conference on Computational Science and Computational Intelligence
(CSCI); 2018 Dec 12–14; Las Vegas, NV, USA. p. 1446–7. doi:10.1109/CSCI46756.2018.00283.

24. Mali VA. IoT based intelligent medicine box with assistance. Int Res J Eng Technol. 2022;9(7):1746–9.

https://doi.org/10.1109/CICN49253.2020.9242562
https://doi.org/10.1109/IMCET.2018.8603031
https://doi.org/10.1109/GCCE.2015.7398716
https://doi.org/10.1109/ECTIDAMTNCON48261.2020.9090716
https://doi.org/10.1109/ICSCAN49426.2020.9262424
https://doi.org/10.1109/MeMeA.2015.7145252
https://doi.org/10.1109/MeMeA.2015.7145252
https://doi.org/10.1109/I-SMAC.2017.8058370
https://doi.org/10.1109/I-SMAC.2017.8058370
https://doi.org/10.1109/ISESD.2018.8605443
https://doi.org/10.17577/IJERTV9IS080152
https://doi.org/10.1007/s42979-022-01367-8
https://doi.org/10.1109/AIC55036.2022.9848934
https://doi.org/10.1109/ICONSTEM.2016.7560923
https://doi.org/10.1109/ICEDSS.2017.8073657
https://doi.org/10.1109/CSCI46756.2018.00283


Comput Mater Contin. 2025;83(1) 975

25. Chen B, Zhou K. Design of docker-based cloud platform for smart medicine box. In: 2019 4th International
Conference on Intelligent Green Building and Smart Grid (IGBSG); 2019 Sep 6–9; Yichang, China. p. 199–202.
doi:10.1109/IGBSG.2019.8886265.

26. Gali RL, Sushma S, Madhuri S, Tejaswini NN. Automated medicine box for geriatrics. In: 2020 International
Conference on System, Computation, Automation and Networking (ICSCAN); 2020 Jul 3–4; Puducherry, India.
p. 1–4. doi:10.1109/ICSCAN49426.2020.9262358.

27. Roumaissa B, Rachid B. An IoT-based pill management system for elderly. Dep Comput Sci. 2022;46:457–68.
doi:10.31449/inf.v46i4.4195.

28. Pillsy: smart medication bottle [Internet]. 2017 [cited 2025 Jan 1]. Available from: https://www.businesswire.com/
news/home/20170502005356/en/Pillsy-Launches-First-Smart-Pill-Bottle-and-Mobile-App.

29. MedMinder: smart pill dispense for seniors [Internet]. 2018 [cited 2025 Jan 1]. Available from: https://www.
medminder.com.

30. AdhereTech: smart pill bottles for improved adherence [Internet]. 2016 [cited 2025 Jan 1]. Available from: https://
www.adheretech.com.

31. CarePredict: wearable technology for senior care [Internet]. 2019 [cited 2025 Jan 1]. Available from: https://www.
carepredict.com.

32. iSync. Mobile health platform for medication adherence [Internet]. 2017 [cited 2025 Jan 1]. Available from: https://
www.isync.io.

33. Rahim T. UNBUS: uncertainty-aware deep botnet detection system in presence of perturbed samples.
arXiv:2204.09502. 2022.

34. Ganesh K, Verma P, Dhanre U, Raut S, Yenurkar G. Analysis of Internet of Things based on characteristics,
functionalities, and challenges. Int J Hyperconnect Internet Things. 2021;5(1):44–62.

35. Nilesh S, Yenurkar G, Karale S, Umate L, Khekare G. Enhancing customer 360 with better service management
using salesforce CRM. In: 2022 International Conference on Emerging Trends in Engineering and Medical Sciences
(ICETEMS); 2022 Nov 18–19; Nagpur, India. p. 130–4.

36. Ganesh Y, Mal S. Performance analysis of big data based mining and machine learning algorithms: a review. Turk
Online J Qual Inq. 2021;12(7):9437–52.

37. Jagadish M, Bankar N, Kumar A, Bandre G, Yenurkar G. Artificial intelligence in health care: a review of uses,
challenges and potential uses. AIP Conf Proc. 2024;3188:080032. doi:10.1063/5.0240230.

38. Yenurkar G, Sandip M, Nyangaresi VO, Kamble S, Damahe L, Bankar N. Revolutionizing chronic heart disease
management: the role of IoT-based ambulatory blood pressure monitoring system. Diagnostics. 2024;12:1297.
doi:10.3390/diagnostics14121297.

39. Ganesh K, Yenurkar G, Turukmane AV, Ameta GK, Sharma P, Phulre AK. Artificial intelligence algorithms for
better decision-making. In: Van Nguyen TT, Vo NTM, Van Truong C, editors. Multi-criteria decision-making and
optimum design with machine learning. Boca Raton, FL, USA: CRC Press; 2025. p. 252–62.

40. Priti B, Makade J, Bankar N, Bandre G, Yenurkar G. Cyber medicine in diagnosis-need of the hour. AIP Conf Proc.
2024;3188:100033. doi:10.1063/5.0240484.

41. Vishakha T, Vardhan V, Arjunkar M, Yenurkar G. Effectiveness of robot-assisted treadmill training on cardiovas-
cular fitness in stroke patients—a review. AIP Conf Proc. 2024;3188:080027. doi:10.1063/5.0240698.

42. Thakur NV, Yenurkar GK, Aherrao A, Aherrao A, Landge S, Katre S. Medical image fusion using discrete wavelet
transform: in view of deep learning. In: 2023 1st DMIHER International Conference on Artificial Intelligence in
Education and Industry 4.0 (IDICAIEI); 2023 Nov 27–28; Wardha, India. p. 1–6.

43. Innovative new technology helps seniors age in place [Internet]. 2023 [cited 2025 Jan 1]. Available from: https://
www.ucdavis.edu/health/news/innovative-new-technology-helps-seniors-age-place.

44. Babel A, Taneja R, Mondello Malvestiti F, Monaco A, Donde S. Artificial intelligence solutions to increase
medication adherence in elderly patients with non-communicable diseases. Front Digit Health. 2021;3:669869.
doi:10.3389/fdgth.2021.669869.

45. Bertolazzi A, Quaglia V, Bongelli R. Barriers and facilitators to health technology adoption by older adults with
chronic diseases: an integrative review. BMC Public Health. 2024;24(1):506. doi:10.1186/s12889-024-18036-5.

https://doi.org/10.1109/IGBSG.2019.8886265
https://doi.org/10.1109/ICSCAN49426.2020.9262358
https://doi.org/10.31449/inf.v46i4.4195
https://www.businesswire.com/news/home/20170502005356/en/Pillsy-Launches-First-Smart-Pill-Bottle-and-Mobile-App
https://www.businesswire.com/news/home/20170502005356/en/Pillsy-Launches-First-Smart-Pill-Bottle-and-Mobile-App
https://www.medminder.com
https://www.medminder.com
https://www.adheretech.com
https://www.adheretech.com
https://www.carepredict.com
https://www.carepredict.com
https://www.isync.io
https://www.isync.io
https://doi.org/10.1063/5.0240230
https://doi.org/10.3390/diagnostics14121297
https://doi.org/10.1063/5.0240484
https://doi.org/10.1063/5.0240698
https://www.ucdavis.edu/health/news/innovative-new-technology-helps-seniors-age-place
https://www.ucdavis.edu/health/news/innovative-new-technology-helps-seniors-age-place
https://doi.org/10.3389/fdgth.2021.669869
https://doi.org/10.1186/s12889-024-18036-5


976 Comput Mater Contin. 2025;83(1)

46. Chen C, Ding S, Wang J. Digital health for aging populations. Nat Med. 2023;29(7):1623–30. doi:10.1038/s41591-
023-02391-8.

47. Fasoli A, Beretta G, Pravettoni G, Sanchini V. Mapping emerging technologies in aged care: results from an in-
depth online research. BMC Health Serv Res. 2023;23(1):528. doi:10.1186/s12913-023-09513-5.

48. Al-Mahmud O, Khan K, Roy R, Alamgir FM. Internet of Things (IoT) based smart health care medical box for
elderly people. In: 2020 International Conference for Emerging Technology (INCET); 2020 Jun 5–7; Belgaum,
India. p. 1–6. doi:10.1109/INCET49848.2020.9153994.

49. Antoun W, Abdo A, Al-Yaman S, Kassem A, Hamad M, El-Moucary C. Smart medicine dispenser (SMD). In: 2018
IEEE 4th Middle East Conference on Biomedical Engineering (MECBME); 2018 Mar 28–30; Tunis, Tunisia; p.
20–3. doi:10.1109/MECBME.2018.8402399.

50. Kader MA, Uddin MN, Arfi AM, Islam N, Anisuzzaman M. Design & implementation of an automated reminder
medicine box for old people and hospital. In: 2018 International Conference on Innovations in Science, Engineering
and Technology (ICISET); 2018 Oct 27–28; Chittagong, Bangladesh. p. 390–4. doi:10.1109/ICISET.2018.8745654.

https://doi.org/10.1038/s41591-023-02391-8
https://doi.org/10.1038/s41591-023-02391-8
https://doi.org/10.1186/s12913-023-09513-5
https://doi.org/10.1109/INCET49848.2020.9153994
https://doi.org/10.1109/MECBME.2018.8402399
https://doi.org/10.1109/ICISET.2018.8745654

	MediServe: An IoT-Enhanced Deep Learning Framework for Personalized Medication Management for Elderly Care
	1 Introduction
	2 Related Work
	3 Methodology
	4 Prototype Implementation
	5 Working in a Smart Medicine Box
	6 Deep Learning Model Evaluation Criteria and Performance
	7 Experimental Results and Discussion
	8 Discussion
	9 Conclusion & Future Enhancement
	References


