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ABSTRACT: This paper employs the Direct Finite Element Squared (DFE2) method to develop Sparse Polynomial
Chaos Expansions (SPCE) models for analyzing the electromechanical properties of multiscale piezoelectric structures.
By incorporating variations in piezoelectric and elastic constants, the DFE2 method is utilized to simulate the statistical
characteristics—such as expected values and standard deviations—of electromechanical properties, including Mises
stress, maximum in-plane principal strain, electric potential gradient, and electric potential, under varying parameters.
This approach achieves a balance between computational efficiency and accuracy. Different SPCE models are used to
investigate the influence of piezoelectric and elastic constants on multiscale piezoelectric materials. Additionally, the
multiscale parameterization study investigates how microscale material properties affect the macroscopic response of
these structures and materials.
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1 Introduction
Advanced industrial applications requiring multifunctional structures or components have prompted

the emergence of smart materials. These materials exhibit remarkable mechanical responses to various
external stimuli, including fluctuations in temperature, variations in pressure, electrical fields, and magnetic
influences [1–4]. Piezoelectric ceramics, as a type of smart material, are widely used in the fabrication of
transducers, actuators, and sensors. These components serve various purposes, including health monitoring
and the control of structural deformations [5–7]. Accurately and efficiently evaluating the interdependent
electrical and mechanical properties of piezoelectric ceramics and their associated structures is essential
for guiding their design, optimization, and fabrication in various engineering applications. However, this
task is challenging due to the complex interplay of material parameters—such as elasticity, piezoelectric
behavior, and dielectric properties—along with geometric factors, all of which significantly influence
the mechanical performance of macroscopic piezoelectric systems [8–10]. Traditionally, empirical tests
combined with theoretical analyses have been used to evaluate piezoelectric ceramics’ electromechanical
properties, particularly under relatively uncomplicated loading conditions [11–13]. Nevertheless, these
techniques fall short of accurately capturing the coupled electromechanical responses under complex
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loading conditions typical of industrial applications. This limitation mainly arises from the constraints
imposed by experimental methodologies and theoretical assumptions [14]. Aiming to tackle these obstacles,
growing research attention has been dedicated to finite element (FE) simulations facilitated by widely used
commercial codes like ABAQUS [15]. To simulate the behavior of piezoelectric ceramics or structures
using the finite element method (FEM) [16–20], it is essential to develop a FE model that captures all
relevant features and patterns inherent to the material or structural system [21]. For piezoelectric ceramics
or structural systems with multiscale characteristics and micro-patterns, many finite elements are required
to build a comprehensive FE model that can represent both microscopic and macroscopic features. However,
the significant computational cost associated with such many finite elements makes direct FEM simulation of
these multiscale piezoelectric ceramics and structures impractical [22–24]. Consequently, performing direct
numerical simulations (DNS) for these multiscale systems becomes nearly an impossibility. Therefore, it
proves crucial to develop precise and computationally efficient multilevel techniques enabling co-simulation
of micro-scale and macro-scale responses in piezoelectric ceramics [25]. To address this need, Fang et al. [26]
conducted an extensive investigation into various methodologies for analyzing ferroelectric and piezoelectric
behaviors. Lv et al. [27] suggested a layered multiscale method using multiscale FEM to model the
thermo-electro-mechanical coupled of smart materials with different piezoelectric microstructures. These
methodologies were categorized into three classes: macroscopic, mesoscopic, and atomic-scale techniques.
Jafari et al. [28] explored the representative volume element (RVE) to investigate the mechanical and
electrical properties of nanocomposites containing piezoelectric nanotubes. Maruccio et al. [29] introduced
the computational homogenization approach designed to characterize the nonlinear constitutive behavior
observed in piezoelectric shells. Fu et al. [30] proposed a multiscale computational method that is very
effective for heterogeneous piezoelectric ceramics geometrically nonlinear analysis. Recent studies have
investigated meshless methods, such as the spectral element method (SEM), to reduce computational costs
in dynamic analyses of piezoelectric materials [31,32].

As one of the aforementioned multiscale modeling methodologies, the finite element squared (FE2)
technique was originally formulated by Feyel [33]. The FE2 methodology uses the Hill-Mandel homogeniza-
tion principle to infer from a multiscale material’s or structural system’s micro-scale RVE its macro-scale
properties [34–36]. In the FE2 method, The micro-scale RVE and the macro-scale FE model form the
two iterative loops. The macro-scale model’s kinematic field is transferred into the corresponding micro-
scale RVEs for simulations. The effective mechanical properties are then obtained by homogenizing the
simulation results, and they are then returned to the macro-scale model [37–40]. This method facilitates
the simultaneous simulation of multiscale materials and structures’ macro- and micro-scale behaviors.
However, it presents challenges in numerical implementation due to the need for control scripts to facilitate
data exchange between the macro- and micro-scale models. Moreover, these control scripts are often
problem-specific, limiting their transferability to different applications.

Tan [41] introduced the DFE2 method, which offers a streamlined approach for integrating two-scale
FE computations into a single computation. This is accomplished by applying multiple points constraints
(MPCs), which are obtained from the Hill-Mandel condition and the energy equilibrium equation of FEM.
The use of MPCs, commonly found in various commercial FE software, significantly enhances the accessibil-
ity and straightforwardness of implementing the DFE2 method [42]. Consequently, this method has found
widespread application in addressing a diverse range of multiscale problems. In one example, Zhi et al. [43]
used the DFE2 method to analyze the heterogeneous materials’ dynamic and thermodynamic responses. The
DFE2 method eliminates the need for exhaustive macro-to-micro iterative loops, reducing computational
costs compared to DNS while maintaining predictive accuracy for heterogeneous material behaviors.
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Most studies on the numerical analysis of piezoelectric problems primarily focus on the deterministic
parameters of the materials under examination [44,45]. However, in real-world engineering scenarios, highly
uncertain input parameters are often encountered, and the limitations of parameter estimation in models
can lead to flawed decisions when addressing certain engineering challenges. Uncertainty quantification
in engineering aims to derive the statistical properties of the system’s response by evaluating the uncer-
tainty associated with the input parameters. Various methods, including Monte Carlo simulations (MCs)
[46–50], stochastic spectral methods [51,52], and perturbation techniques [53], are commonly employed
to analyze uncertainty. These approaches typically assess the statistical characteristics, such as the mean
and standard deviation, of the system’s response. With the growing demands for modeling, the complexity
of the simulation model increases, leading to longer computation times for uncertainty quantification and
reduced efficiency. This presents challenges for traditional MCs, which require a large number of samples
and model evaluations to address complex problems [54]. To overcome these challenges, surrogate models
provide an alternative to complex analytical or computational models. By using basic polynomial functions to
establish input-output relationships, surrogate models enable the generation of necessary model evaluations
at a reasonable computational cost, overcoming the limitations of conventional approaches [55,56].

Polynomial chaos expansions (PCE) [57] are effective for uncertainty quantification and reliability
analysis, but their complexity grows exponentially with system dimensionality or polynomial degree,
resulting in the “curse of dimensionality.” To address this, SPCE reduces the number of terms by exploiting
sparsity, maintaining accuracy while improving computational efficiency for high-dimensional problems.
SPCE techniques use various algorithms to identify and retain only the most significant terms in the
polynomial expansion. The SPCE model alleviates the computational burden associated with traditional
MCs by reducing the required sample size while preserving accuracy. Methods such as least angle regression
(LAR) [58], stepwise regression [59], and Bayesian approaches [60] have been proposed to construct
sparse expansions efficiently. These methods can be adaptive, as they iteratively select important terms
and improve computational efficiency without sacrificing accuracy. In addition, greedy algorithms [61] and
diffeomorphic modulation under observable response-preserving homotopy (D-MORPH) regression [62]
have been explored to optimize the selection of basis terms. Recent advancements in SPCE have extended
its application to stochastic finite element analysis [63], sensitivity analysis [60], and reliability assess-
ment [64]. These approaches have demonstrated that SPCE can significantly reduce computational costs
while maintaining robust performance across a wide range of engineering applications. The efficacy of
SPCE has been benchmarked in several studies [65], highlighting its potential for handling complex systems
with uncertainty.

Despite significant advancements in multiscale modeling, existing methods for the analysis of piezo-
electric materials face critical limitations. DNS requires immense computational resources, making them
impractical for large-scale or complex systems. Current approaches struggle to efficiently account for
uncertainties in piezoelectric and elastic properties, which are critical for practical engineering applications.
Additionally, many existing models fail to accurately represent coupled electromechanical behaviors in
heterogeneous multiscale systems. To address these deficiencies, this study proposes an integrated frame-
work that combines the computational efficiency of the DFE2 method with the flexibility of SPCE. This
approach ensures significant reductions in computational cost, the accurate modeling of stochastic parameter
variations, and an enhanced capability to represent electromechanical coupling in multiscale piezoelectric
materials. As proposed by Li et al. [66], the piezoelectric DFE2 method enables accurate and efficient
multiscale simulations while accounting for stochastic disturbances in piezoelectric parameters. When
integrated with the SPCE method, it significantly improves computational efficiency and accuracy, providing
a robust solution for uncertainty analysis in multiscale piezoelectric systems.
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2 Brief Introduction of the Piezoelectric DFE2 Method
Li et al. [66] successfully extended the theory of the DFE2 method to piezoelectric problems and is

briefly introduced as follows.
The electromechanical coupling of the piezoelectric material and structure with random input param-

eters x can be described as:

σi j = σ S
i j + σ E

i j
Di = DS

i + DE
i

(1)

and

σ S
i j = Ci jk l εk l

σ E
i j = −eki jEk

DS
i = eik l εk l

DE
i = κi k Ek

(2)

where the stress resulting from mechanical deformation is denoted as σ S
i j for the strain tensor εkl , and σ E

i j
for the electric gradient tensor Ek . Similarly, the gradient tensor Ek and the electric displacement vectors εkl
are represented as DS

i and DE
i , respectively. The strain tensor εi j = 1

2 (ui , j + u j , i) (i , j ∈ {1, 3}), the gradient
tensor Ei = −φ, i , the variable u represents displacement and φ corresponds to electric potential.

Consider a multiscale piezoelectric material or structure, such as the fiber-reinforced composite in Fig. 1.
The density of electric enthalpy δHden evaluated can be formulated as:

δHden = σ S
i jδεi j + σ E

i jδεi j + DS
i δφ, i + DE

i δφ, i = σi j∇ jδui + Di∇ jδφ (i , j ∈ {1, 3}) (3)

Energy equilibrium between the macro-scale and meso-scale requires that the macro-scale electric
enthalpy equals the volumetric mean of the electric enthalpy evaluated at the meso-scale, i.e.,

δH = ⟨δĤ⟩ = 1
∣V̂ ∣ ∫

(σ̂i jδûi , j + D̂i δφ̂, i)dV̂ (4)

where the symbol ⟨⋅⟩ represents volume-averaged quantities and ∣V̂ ∣ denotes the volume of the RVE (A
small-scale material sample assumed to statistically represent the entire heterogeneous material in multiscale
simulations.).

To satisfy the energy equilibrium and kinematic constraints between the macro- and meso-scales, one
needs to prescribe periodic boundary conditions to the meso-scale RVEs as follows (see Fig. 1 for reference):

û1 ∣R − û1∣L = 2l1∇1u1
û3 ∣R − û3∣L = 2l1∇1u3
φ̂ ∣R − φ̂∣L = 2l1∇φ
û1 ∣T − û1∣B = 2l3∇3u1
û3 ∣T − û3∣B = 2l3∇3u3
φ̂ ∣T − φ̂∣B = 2l3∇φ

(5)

where T , L, R, B refer to the upper, left, right, and lower edges of the RVE, respectively. Periodic boundary
conditions were enforced by linking corresponding slave and master nodes along opposite edges of the RVE
using MPCs available in ABAQUS. This ensures the continuity of the electric potential and the displacement
across the RVE boundaries.
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Figure 1: The application of periodic boundary conditions through the MPC method entails integrating a single
macroscale FE with RVEs positioned at the 2 × 2 Gauss quadrature points [66]

Enforcing the Hill-Mandel condition also requires scaling of the meso-scale RVEs such that:

wc =
wc Jc

∣V̂c ∣
= 1 (6)

which indicates that the volume ∣V̂c ∣ of RVE at the Gaussian point c needs to be scaled to wc Jc . This can be
easily done by scaling the RVE’s thickness for 2D cases. More details about the piezoelectric DFE2 method
refer to [66].

From the theory reviewed above, it can be seen that the meso-scale material properties such as
elastic constants Ĉi jk l , piezoelectric constants êk i j and dielectric constants κ̂i k dominates the macro-scale
piezoelectric responses, while this study was focused on the effect of Ĉi jk l and êk i j.

3 Parametric Analysis via a Combination of the DFE2 and SPCE Methods

To conduct a parametric analysis of multiscale piezoelectric materials and structures, a large number
(thousands or more) of data points is required to account for the randomness (or uncertainties) in various
properties. Performing such many simulations is impractical, even though the DFE2 method significantly
reduces computational cost. To address this issue, the DFE2 method was combined with the SPCE method.

As a widely used method for stochastic finite element analysis, the SPCE method constructs a surrogate
model to facilitate uncertainty quantification analyses using a sparse representation of polynomial basis
functions that are orthogonal with respect to the distribution of the random vector. To implement the
SPCE method for the parametric study of the effect of meso-scale material properties on the macro-
scale response of heterogeneous piezoelectric materials and structures, one can assume that the meso-scale
material properties vary randomly within a defined range for the parametric analysis. In this work, only the
meso-scale elastic constants Ĉi jk l and piezoelectric constants êk i j are considered, and thus they are assumed

to be random and denoted as $x = [Ĉm
i jk l , êm

ki j]
T

if the multiscale piezoelectric material or structure consists
of m meso-scale parental materials where m ≥ 1. According to the SPCE method, the response Y (such as
macro-scale electric potential, electric potential gradient, stress, or logarithmic strain components) of the
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multiscale piezoelectric material or structure can be expressed using a sparse set of orthogonal polynomials,
as shown below:

Y (x) = ∑
α∈S

θα Ψα (x) (7)

where Ψα represents multivariate orthogonal polynomials, and θα denotes the corresponding coefficient for
each polynomial. The index set S contains all non-zero or significant polynomial chaos terms, emphasizing
the sparsity of the expansion. In SPCE, a sparse subset of these polynomials is used, significantly reducing
the computational complexity while maintaining accuracy in representing the response Y . The polynomial
order (p) determines the highest-degree terms retained in the expansion. In this study, we chose p = 3, 5, 7
to explore the trade-off between computational cost and fitting precision. Lower orders (e.g., p = 3) provide a
coarse approximation with minimal computational effort, while higher orders (e.g., p = 7) improve the fitting
of nonlinear responses but increase computational demand. Stepwise regression was selected as the primary
method for feature selection in the SPCE model due to its balance between computational efficiency and
accuracy. This method iteratively adds or removes predictors based on predefined criteria (e.g., p values),
ensuring that the final model retains only the most relevant terms while avoiding overfitting. In comparison
to alternative sparse modeling techniques, such as LAR or Bayesian methods:

1. LAR: While effective for high-dimensional data, LAR tends to be computationally intensive for large-
scale nonlinear problems and may overestimate the importance of collinear variables;

2. Bayesian methods: These provide probabilistic interpretations and can handle uncertainty better, but
they often require prior knowledge, are computationally expensive, and may lack scalability in high-
dimensional settings.

The multivariate orthogonal polynomials Ψα can be obtained using the cumulative product of
univariate orthogonal polynomials:

Ψα (x) =
n
∏
i=1

ψα i (xi) (8)

where ψα i (xi) denotes univariate polynomials of the random input parameters xi in x. In SPCE, a sparse
subset of these multivariate orthogonal polynomials is chosen based on their significance, thereby reducing
computational complexity while maintaining the accuracy of the response representation.

Several sample points are needed to determine the coefficients θα . This is done by conducting a
series of piezoelectric DFE2 simulations whereby the parameters and responses are denoted by xk and
Y k(k = 1, 2, . . . , K), respectively. Every DFE2 simulation results in a sample point (xk , Y k), and thus K
sample points can be obtained. As detailed in [67], coefficients θα can then be calculated as:

θ = (ΨTΨ)−1
ΨTU (9)

where θ is a vector consisting of all coefficients θα and U is a vector consisting of the responses of sample
points.

θ = {θα ∶ α ∈ S}T , U = {Y 1 (x1) , Y 2 (x2) , . . . , Y K (xK)}T
(10)
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and Ψ is a K × ∣S∣matrix consisting of the selected sparse multivariate orthogonal polynomials Ψα for each
sample point:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψα1 (x1) Ψα2 (x1) . . . Ψα∣S∣ (x1)
Ψα1 (x2) Ψα2 (x2) . . . Ψα∣S∣ (x2)
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

Ψα1 (xK) Ψα2 (xK) . . . Ψα∣S∣ (xK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

In this work, the random parameters, i.e., x = [Ĉm
i jk l , êm

ki j]
T

, are assumed to follow a Gaussian
distribution which can be described using the following probability density function (PDF):

f (x) = 1√
2πσ 2

e−
(x−μ)2

2σ2 (12)

COV = σ
μ

(13)

where x is the random variable, μ is the mean (expected value), σ is the standard deviation, and σ 2 is the
variance. COV stands for coefficient of variation, a relative measure of data dispersion.

In SPCE, Gaussian distribution corresponds to Hermite orthogonal polynomialsHα (x). Hence,

Ψα (x) =Hα (x) = (−1)α e
x2
2

dα

dxα (e
− x2

2 ) = α!
∣α/2∣

∑
k=0

(−1)k

k!2k (α − 2k)! xα−2k (14)

where ∣⋅∣ represents the floor function, and x denotes random parameters.
In SPCE, a sparse subset of these Hermite polynomials Ψα is chosen based on their significance, thereby

reducing computational complexity while maintaining the accuracy of the response representation.
The Hermite orthogonal polynomials can also be expressed using the following recurrence relation,

with the first five Hermite orthogonal polynomials displayed in Fig. 2:

Hα+1 (x) = xHα (x) − αHα−1 (x) (15)

In SPCE, a sparse subset of these Hermite polynomials Hα (x) is chosen based on their significance,
thereby reducing computational complexity while maintaining the accuracy of the response representation.

To evaluate the accuracy of the SPCE model established above, a parameter, namely the coefficient of
variation (CV), is typically defined using the relative root mean square deviation (RRMSE):

CV =

�
  !

N
∑
k=1
(Y k−Ŷ k)2

N
N
∑
k=1

Y k

N

(16)

where Y k denotes the response in the sample points generated via the DFE2 simulations, and Ŷ k represents
the response predicted by the SPCE model.
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Figure 2: The first five polynomials of Hermite orthogonal polynomials

The multiscale parametric analysis, namely the effect of meso-scale material properties on macro-scale
behavior, can be summarized in the following steps:

1. Generate a series of random values for meso-scale properties xk (k = 1, 2, . . . , K) for the multiscale
piezoelectric material or structure;

2. Obtain the corresponding macro-scale responses Y k (k = 1, 2, . . . , K) using DFE2 simulations, and thus
get K sample points (xk , Y k);

3. Use Eqs. (9) to (15) to establish the SPCE model that can accurately approximate the relationship
between the meso-scale properties xk and macro-scale responses Y k ;

4. Analyze the effect of the meso-scale properties xk on the macro-scale responses Y k based on the
SPCE model.

Hence, this combination of the DFE2 and SPCE methods enables the analysis of the effect of meso-scale
parameters on the macro-scale responses of multiscale materials and structures using a limited number of
DFE2 simulation results. Furthermore, the expected value and standard deviation of the response predicted
by the SPCE model are crucial for estimating the performance of structures, accounting for the randomness
of meso-scale parameters. The SPCE model, which utilizes PCE to approximate system responses, requires
feature selection methods capable of efficiently handling nonlinear dependencies while preserving model
interpretability. Stepwise regression satisfies these requirements by iteratively selecting the most significant
terms, enabling it to scale effectively to higher-order polynomial terms in SPCE. Its computational simplicity
and widespread availability in statistical software make it a practical choice for engineering applications,
particularly when real-time model updates or limited computational resources are factors to consider.

4 Accuracy and Efficiency of the DFE2 Method
Uncertainty analysis using SPCE requires a series of data, which is generated through multiscale analysis

based on the DFE2 method in this work. Therefore, it is essential to first validate the accuracy and efficiency of
the DFE2 method. To achieve this, a complex piezoelectric composite was modeled using the DFE2 method
and DNS. The geometric nonlinearity and piezoelectric plane strain elements [68] were employed for all
numerical simulations. Details of the numerical implementation can be found in [66].

A 24 mm × 24 mm composite piezoelectric panel with a thickness of t = 1 mm, shaped like a rhombus
with its base parallel to the x-axis, was simulated using DFE analysis. This panel comprises 120 smaller
rhombus-shaped composite panels aligned horizontally. A tensile displacement load was applied to the
right edge, while the left edge was constrained to have zero horizontal displacement. The bottom edge
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was set to zero electric potential, and a vertical displacement constraint was applied to the top edge, as
displayed in Fig. 3a. Fig. 3b provides a magnified view of a selected region from Fig. 3a, showing the periodic
arrangement of the composite elements, which is further enlarged in Fig. 3c to depict a detailed model with
a 0.1 mm diameter central circular hole within a 0.2 mm rhombus. Subsequently, an RVE was established
at each macro-element integration point. The RVE comprises a piezoelectric composite model featuring a
central circular hole with a diameter of 0.1 mm and an enclosing rhombus with a side length of 0.2 mm, as
displayed in Fig. 3d–f. The thickness of all RVEs was adjusted in accordance with Eq. (6). Periodic boundary
conditions were applied to the edge nodes P+ and P− of the RVE (see Fig. 3f), where the node Pi+ corresponds
to Pi−, and Pj+ corresponds to Pj−. Further details are available in Li et al.’s paper [66].

Figure 3: The composite piezoelectric panel is shown schematically: (a) boundary conditions of composite piezoelectric
plates, (b) a detailed local enlargement of the DNS is shown, (c) the internal mesh division of the DNS is depicted, (d)
the corresponding DFE2 model of the composite piezoelectric panel consists of 6 × 6 macro-scale elements, with each
RVE’s thickness scaled by a factor of 25 as per Eq. (6), (e) the RVEs located at the Gauss integration points are illustrated,
(f) the periodic boundary conditions (PBCs) of the RVE are outlined

The panel comprises PZT-5H as the matrix and PZT-8 as the fiber phase, as illustrated in Fig. 4a. The
material properties of these phases are provided in Table 1. The panel’s left edge was fixed horizontally, while
a displacement of 1.2 mm was applied to the right edge. The lower edge’s electric potential is zero, and the
top edge remains vertically fixed. Both the meso-scale RVE and the macro-scale panel were discretized using
CPE4E elements (see Fig. 4b). The boundary conditions described in Eq. (5) were applied to the multiscale
model, and Eq. (6) was employed to compute the RVE thickness, tRVE, for the CPE4E elements.

wc Jc

∣V̂c ∣
= 1

4
∣Ve ∣
∣V̂c ∣
= Le We t

4LRVEWRVEtRVE
= 1⇒ tRVE =

LWt
4LRVEWRVEtRVENL NW

(17)

where the dimensions of the macro-element, denoted as Le , We , and t, represent the length, width,
and thickness, respectively. Additionally, LRVE and WRVE indicate the length and width of the RVE. The
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piezoelectric composites were divided into NL × NW elements along the length and width directions, as
illustrated in Fig. 4d. Consequently, Le = L

NL
and We = W

NW
are derived.

Figure 4: The effect of mesh size at macro-and meso-scales on the simulation outcomes for the composite piezoelectric
panel is investigated, (a) composite RVE of the PZT-5H matrix with PZT-8 inclusion, (b) DFE2 model with varying
mesh sizes, (c) the modeling results for meso-scale RVEs with elements of different sizes, (d) the modeling results for
macro-scale RVEs with elements of different sizes

Table 1: Material properties of each component of the piezoelectric composite [69]

Parameter PZT-5H PZT-8
C1111 (MPa) 1.26 × 105 1.37 × 105

C1133 (MPa) 8.39 × 104 7.11 × 104

C1133 (MPa) 1.17 × 105 1.23 × 105

C1133 (MPa) 2.30 × 104 3.13 × 104

e133 (C/mm2) 1.70 × 10−5 1.04 × 10−5

e311 (C/mm2) −6.5 × 10−6 −4.0 × 10−6

e333 (C/mm2) 2.33 × 10−5 1.32 × 10−5

κ11 (C/(Vmm)) 1.51 × 10−11 7.97 × 10−12

κ33 (C/(Vmm)) 1.30 × 10−11 5.14 × 10−12

The DFE2 simulations were performed using various meso-element sizes: lm = 0.043, 0.02, and 0.013 mm
(as illustrated in Fig. 4b). These simulations aimed to investigate the impact of meso-element size on the
simulation outcomes. The electric potential-displacement curves in Fig. 4c indicate negligible variation when
the meso-element size is reduced below 0.02 mm. Additionally, simulations with varying numbers of macro-
elements were conducted to examine the effect of macro-element size on the DFE2 results (i.e., NL = 3 NW= 2,
NL = 6 NW = 4, and NL = 10 NW = 6). As the number of macro-elements increased to 6 × 4, the results from
DFE2 simulations (see Fig. 4d) converged with those obtained from DNS. To balance computational accuracy
and efficiency, subsequent DFE2 simulations adopted a 6 × 4 macro-element mesh. RVEs were discretized
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using an element size of lm = 0.02 mm at the meso-scale (as illustrated in Fig. 4b). The same meso-element
size (lm = 0.02 mm) was also used for meshing the DNS model.

The electric potential and displacement outlines of certain unit cells at points F and E, as found by both
the DNS and DFE2 methods, are shown in Fig. 5a,b. The results indicate favorable agreement between DNS
and DFE2 simulations, demonstrating the capability of the proposed DFE2 approach to accurately capture the
coupled electromechanical response of piezoelectric composites. Additionally, the RVE’s electric potential
and displacement outlines at points F and E (illustrated in Fig. 5) derived from DNS and DFE2 methods show
a maximum discrepancy of 2.2%. This minor difference can be attributed to slight variations in element size
and aspect ratio between the macro- and meso-scale models. Despite these discrepancies, the errors remain
within acceptable bounds for most engineering applications, confirming that the DFE2 method delivers both
accurate and computationally efficient predictions.

Figure 5: The displacement magnitude and electric potential distribution at points F and E for the chosen cells in the
DFE2 and DNS models are shown: (a) distribution of displacement magnitude, (b) distribution of electric potential
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Both the DFE2 simulations and DNS were performed on the same computer, equipped with an Intel
Core i7-8700 CPU and 64 GB of RAM. For the composite piezoelectric panel, the computational times were
16 s for the DFE2 method and 385 s for DNS. The significant reduction in computational time, combined with
the favorable accuracy of the DFE2 method, establishes it as a promising tool for generating a sufficiently
large dataset. This capability facilitates large-scale uncertainty quantification and optimization using the
SPCE method. To further validate the accuracy and efficiency of the DFE2 method, we reference the findings
from [66], which applied the DFE2 method to multiscale material and structural analysis. The DFE2 and DNS
approaches differed by less than 3% at most. Furthermore, the efficiency in the computation of the DFE2

method was shown to be approximately 10 times higher than that of DNS, consistent with the results in this
study. This comparison provides additional context and supports the robustness of our results.

5 Multiscale Parametric Analysis: Results and Discussion
In this section, the influence of meso-scale parameters on the macro-scale electromechanical responses

of the composite piezoelectric panel is analyzed using the combined DFE2 and SPCE methods, as outlined
in Section 4. Both univariate and bivariate analyses are performed. For the univariate analysis, one of
the two parameters in x = (Ĉ1111 , ê333) was treated as a random variable, while all other parameters were
assigned fixed values as listed in Table 1. A Gaussian distribution was used to generate 100 random values
for the selected parameter. Subsequently, 100 DFE2 simulations were performed to evaluate the piezoelectric
responses. The random meso-scale parameters considered were x = (Ĉ1111 , ê333). In the bivariate analysis,
the same parameters x = (Ĉ1111 , ê333) were treated as random variables, with a COV set to 0.2. The model’s
elastic constants (x1 = Ĉ1111) and piezoelectric parameters (x2 = ê333) were varied 50 times each, resulting in
a total of 2500 parameter combinations. Subsequently, 2500 DFE2 simulations were performed to compute
the piezoelectric responses, following the same setup detailed in Section 5.

The macro-scale responses of interest in this study include the electric potential ϕ and displacement
magnitude ∣u∣ at the selected points E (36.54, 7.65) and F (6.89, −9.14) in Fig. 5, i.e., Y ∈ (ϕ, ∣u∣). SPCE models
were constructed using the sample points (x, Y) obtained through the methods introduced in Section 4. For
the univariate analysis, two types of SPCE models, i.e., x1 (Ĉ1111) ∼ Y and x2 (ê333) ∼ Y , were established,
while for the bivariate analysis, only one type of SPCE model, i.e., x ∼ Y , was needed. The results of the
univariate and bivariate analyses are discussed in the following sections.

5.1 Univariate Analysis
Fig. 6a,b illustrates the displacement magnitude ∣u∣ of the composite piezoelectric panel, as predicted

by the univariate SPCE models x1 ∼ Y and x2 ∼ Y . It is observed that as the elastic constant x1 and
piezoelectric constant x2 increase, the corresponding displacement exhibits a nonlinear growth trend.
Additionally, the polynomial order p has a significant impact on the fitting precision. When p = 3, the
SPCE model captures the general trend but fails to accurately represent localized nonlinearities. When p = 5,
the SPCE model accurately captures the displacement response trend with minimal error, indicating that
this order provides an optimal balance between accuracy and computational efficiency. When p = 7, the
highest accuracy is achieved, especially for strongly nonlinear responses, though at the expense of increased
computational effort. This trend indicates that higher-order SPCE models provide superior fitting precision,
particularly in capturing the nonlinear responses of complex materials and accurately modeling multiphysics
coupling problems.
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Figure 6: Results obtained from the univariate SPCE model x1 ∼ Y and x2 ∼ Y for the composite piezoelectric
panel (dots represent sample points obtained from DFE2 simulations, while dashed lines indicate the results from
SPCE models using different orders p = 3, 5, 7): (a) displacement magnitude ∣u∣ corresponding to variations in elastic
constants, (b) displacement magnitude ∣u∣ corresponding to variations in piezoelectric constants

Fig. 7a,b depicts the influence of the meso-scale elastic constant x1 = Ĉ1111 and the piezoelectric constant
x2 = e333 on the macroscopic electric potential response ϕ. Fig. 7a reveals a clear linear relationship between
the elastic constant Ĉ1111 and the electric potential ϕ, which can be attributed to the assumption of linear
elasticity in the meso-scale material. As x1 = Ĉ1111 increases, a decreasing trend in the electric potential
ϕ is evident, due to the interaction between the electric potential ϕ and the elastic strain energy. Con-
versely, Fig. 7b demonstrates an increasing trend in the electric potential ϕ with rising x2 = e333, attributed
to the coupling between the electric potential ϕ, the electric field, and polarization effects. The variations
in ϕ are more pronounced with changes in the piezoelectric constant than in the elastic constant. This
is primarily because the piezoelectric effect directly influences the charge distribution and polarization
response, rendering the electric potential more sensitive to these changes.

Figure 7: Results obtained from the univariate SPCE model x1 ∼ Y and x2 ∼ Y for the composite piezoelectric panel: (a)
electric potential ϕ corresponding to variations in elastic constants, (b) electric potential ϕ corresponding to variations
in piezoelectric constants

5.2 Bivariate Analysis

The bivariate SPCE model x ∼ Y , with the order p = 4, corresponds to two macro-scale responses
(i.e., ∣u∣ and ϕ). Numerical validation confirms that the model accurately captures the complex nonlinear
relationships in predicting these two macro-scale responses, showcasing strong accuracy and stability [61].
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Fig. 8a,b illustrates the coupled effects of the mesoscale elastic constant x1 = Ĉ1111 and the piezoelectric
constant x2 = ê333 on two macro-scale responses: displacement ∣u∣ and electric potential ϕ. The results
indicate that both displacement ∣u∣ and electric potential ϕ are predominantly influenced by the piezoelectric
constant, with minimal contribution from the elastic constant. This phenomenon can likely be attributed
to the tensile load applied to the panel, where variations in displacement are primarily governed by the
piezoelectric effect, while changes in the elastic constant have a limited impact on both displacement and
electric potential.

Figure 8: Results obtained from the bivariate SPCE model x ∼ Y for the composite piezoelectric panel (dots represent
sample points obtained from DFE2 simulations, while surfaces represent the results from the SPCE model): (a)
displacement magnitude ∣u∣ corresponding to variations in both elastic and piezoelectric constants, (b) electric potential
ϕ corresponding to variations in both elastic and piezoelectric constants

6 Conclusion
A novel framework for multiscale parametric analysis of heterogeneous piezoelectric materials and

structures, incorporating random meso-scale properties, is proposed. This approach employs the piezo-
electric DFE2 method to facilitate concurrent multiscale simulations. The simulation data are subsequently
utilized to construct univariate and bivariate SPCE models for parametric analysis across different scales.

To validate the methodology, a composite piezoelectric panel was analyzed as a case study, treating
meso-scale elastic constants Ĉ1111 and piezoelectric constants ê333 as random variables. The SPCE mod-
els effectively captured the influence of these meso-scale parameters on the macroscopic responses ∣u∣
(displacement) and ϕ (electric charge) of the panel. The results demonstrate a favorable balance between
computational efficiency, scalability, and accuracy, underscoring the framework’s potential for optimizing
piezoelectric energy harvesting devices. This is particularly significant in scenarios where computational
efficiency and precision are critical for evaluating performance under varying operational conditions.
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