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ABSTRACT: The liver is a crucial gland and the second-largest organ in the human body and also essential in
digestion, metabolism, detoxification, and immunity. Liver diseases result from factors such as viral infections, obesity,
alcohol consumption, injuries, or genetic predispositions. Pose significant health risks and demand timely diagnosis
and treatment to enhance survival rates. Traditionally, diagnosing liver diseases relied heavily on clinical expertise,
often leading to subjective, challenging, and time-intensive processes. However, early detection is essential for effective
intervention, and advancements in machine learning (ML) have demonstrated remarkable success in predicting
various conditions, including Chronic Obstructive Pulmonary Disease (COPD), hypertension, and diabetes. This
study proposed a novel XGBoost-liver predictor by integrating distinct feature methodologies, including Ranking and
Statistical Projection-based strategies to detect early signs of liver disease. The Fisher score method is applied to perform
global interpretation analysis, helping to select optimal features by assessing their contributions to the overall model.
The performance of the proposed model has been extensively evaluated through k-fold cross-validation tests. Firstly,
the performance of the proposed model is evaluated using individual and hybrid features. Secondly, the XGBoost-Liver
model performance is compared to that of commonly used classifier algorithms. Thirdly, its performance is compared
with the existing state-of-the-art computational models. The experimental results show that the proposed model
performed better than the existing predictors, reaching an average accuracy rate of 92.07%. This paper demonstrates
the potential of machine learning to improve liver disease prediction, enhance diagnostic accuracy, and enable timely
medical interventions for better patient outcomes.

KEYWORDS: Machine learning; deep neural network; SHAP (SHapley Additive exPlanation); liver disease; classifica-
tion; SMOTE (synthetic minority over-sampling technique)

1 Introduction
The liver is a complex and multifunctional organ, playing a pivotal role in digestion, metabolism,

detoxification, and immune defense, making it indispensable for overall health. Despite its remarkable
regenerative capabilities and adaptability, the liver remains highly vulnerable to infections, injuries, and
genetic disorders that can compromise its functions and pose serious health risks. Such conditions can
lead to chronic inflammation, jaundice, and other complications, significantly impacting quality of life
and longevity. Addressing these challenges requires a deeper understanding of the factors contributing to
liver dysfunction and the development of effective diagnostic and preventative strategies. Early detection
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and timely interventions are crucial for managing liver diseases (LD), reducing associated mortality, and
improving patient outcomes. The healthcare industry has undergone substantial transformations in its
delivery systems and organizational structures due to advancements in data processing, primarily through
ML (Machine Learning) and Artificial Intelligence (AI). These innovations have revolutionized how data
is collected, stored, and analyzed, enabling clinical practitioners to incorporate advanced decision-making
models into traditional healthcare practices. This integration has significantly enhanced diagnostic accuracy
and informed decision-making across the sector. Notably, the progressive development of AI and ML
applications has made early illness prediction feasible for conditions such as diabetes, hypertension, COPD,
and cardiovascular diseases. By leveraging big data, these technologies provide critical insights into diag-
nosis, prognosis management, and treatment, complementing preventative measures that promote healthy
behavior. The ongoing integration of AI and ML into healthcare is paving the way for advancements in
precision medicine, drug discovery, and diagnostic tools, with implications for improved healthcare delivery,
personalized treatment, and overall population health outcomes.

Numerous ML techniques have been explored for the classification of liver disease. In 2016, Prasad
Babu et al. [1] introduced a K-means clustering methodology for liver illness detection, utilizing various
classification models to evaluate its effectiveness. Their results revealed accuracies of 56% for Naive Bayes
(NB), 64% for K-Nearest Neighbors (KNN), and 69% for the C4.5 decision tree classifier. Similarly,
Gan et al. [2] examined multiple classification methods for liver disease prediction and demonstrated
that their AdaC-TANBN approach, combining AdaBoost with a modified Tree-Augmented Naive Bayes
(TANBN) model, achieved an accuracy of 69.03%. Anagaw et al. [3] proposed an advanced classification
model employing Complement Naive Bayes (CNB), gaining 71.36% accuracy, outperforming traditional
Naive Bayes classifiers. Further advancements include Sreejith et al. [4], who applied Chaotic Multi-Verse
Optimization (CMVO) for feature selection alongside the Synthetic Minority Over-sampling Technique
(SMOTE), achieving 82.62% accuracy on the ILPD dataset. Kumar et al. introduced a Variable-NWFKNN
approach to enhance liver disease classification accuracy, attaining 87.71% using 10-fold cross-validation and
addressing dataset imbalance with Tomek connections and redundancy-based under-sampling (TR-RUS).
Kuzhippallil et al. [5] improved classification accuracy to 88% by employing advanced data preparation and
feature selection methods. Most recently, Amin et al. [6] presented a sophisticated projection-based statistical
feature selection and classification technique using the ILPD dataset, achieving 88.10% accuracy with Support
Vector Machine, Logistic Regression, and Random Forest methods. These developments underscore the
evolving role of machine learning in enhancing the accuracy and efficiency of liver disease diagnosis,
enabling timely and effective medical interventions.

This study proposes a comprehensive and novel approach to predicting liver disease. A random
oversampling strategy is applied to address the challenges of overfitting and class imbalance during model
development. Next, we employ two distinct feature selection methodologies: Ranking-based strategies,
including Analysis of Variance (ANOVA) and Chi-Square (CHI2), and Statistical Projection-based strategies,
comprising Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). These methods
rank and evaluate each feature’s relevance to the target class of liver illness. Subsequently, a hybrid feature
vector is constructed by combining all four feature sets. The Fisher score method is employed for feature
selection to enhance computational efficiency and identify the most impactful features. The proposed model
is called XGBoost-Liver, and its framework is shown in Fig. 1. Diverse machine learning models, including
Logistic Regression (LR), K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine
(SVM), and Naive Bayes (NB), are leveraged to evaluate prediction performance. The proposed methodology
undergoes rigorous performance assessment using metrics such as the Matthews Correlation Coefficient,
Accuracy, Sensitivity, Specificity, and Area Under the Curve (AUC). The results demonstrate the superior
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predictive capability of the XGBoost (EXtreme Gradient Boosting) model, providing valuable insights for
early liver disease detection, improving diagnostic precision, and facilitating timely medical interventions.

Figure 1: The architecture of the proposed XGBoost-liver

2 Proposed Model Framework

2.1 Benchmark Dataset
According to Chou’s review, using a reliable and valid dataset is essential for building robust and

powerful computational models. Our study used the Indian Liver Patient Dataset (ILPD) [6], a well-known
benchmark dataset. The ILPD contains 583 records with ten different features. Table 1 summarizes the
dataset, which includes 439 male participants (75.30%) and 144 female participants (24.70%). The main focus
of the dataset is to help diagnose liver disease by identifying whether participants have the condition. The
long-term liver disease risk is addressed as a classification challenge with “Liver-Disease” (LD) or “Non-
Liver-Disease” (Non-LD) classes. The total dataset comprises 416 positive cases of liver disease and 167
controlled cases. Considering the significance of balanced datasets in machine learning analysis, we applied
a data balancing technique, i.e., Random oversampling, resulting in a dataset of 832 cases, evenly distributed
between instances of liver disease and non-disease cases (i.e., LD = 416, Non-LD = 416).

Table 1: ILPD dataset features details

Feature Details
Age (years) Age of participants (4 to 90 years)

ALP Level of Alkaline Phosphatase (ALP)
SGOT Level of Aspartate Aminotransferase (SGOT)

Gender Participant’s gender
ALB Level of Albumin (ALB)
TB Level of Total Bilirubin (TB)

SGPT Level of Alanine Aminotransferase (SGPT)

(Continued)
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Table 1 (continued)

Feature Details
DB Level of Direct Bilirubin (DB)
TP Level of Total Protein (TP)

AGR Albumin and Globulin Ratio (AGR)

Statistical aspects of the features in the balanced dataset are shown in Table 2, with key values such as
standard deviation, mean, minimum, and maximum for each variable. The numerical distributions of the
dataset are thoroughly examined in this investigation. Table 2 provides numerical distribution analysis by
summarising the statistical attributes of features, such as max, min, mean, and standard deviation.

Table 2: Numerical features for the statistical properties features

Features Max Min Mean ±Stdv
TP 9.6 2.7 6.5 ±1.02

SGOT 4929 10 88.78 ±245.07
TB 75 0.4 2.65 ±5.32

AGR 2.8 0.3 0.98 ±0.30
ALB 5.5 0.9 3.19 ±0.76

SGPT 2000 10 66.78 ±155.16
ALP 2110 63 267.26 ±212.62
DB 19.7 0.1 1.16 ±2.42
Age 90 4 43.55 ±16.28

2.2 Feature Formulation Technique
ML algorithms often face the obscenity of dimensionality, which arises when there are many data points

but relatively few meaningful features or when the feature space contains irrelevant information [7]. To
address this challenge, we first implement two ranking methods [8], i.e., Analysis of Variance (ANOVA)
and Chi-Square (CHI2), to examine the involvement of each feature to the target class (i.e., liver disease).
Subsequently, we used a statistical projection-based strategy comprising PCA and LDA, which rely on
statistics to identify essential features. To select the most impactful features, we used the Fisher Score method
as a feature selection. The Fisher score method helps to simplify the dataset by making it easier to analyze
and reducing the computing power needed [9,10].

2.2.1 CHI-SQUARE (CHI2)
CHI2 is a widely used filter feature selection method, and it is called Chi-Square (Chi2). It’s a handy

tool that relies on statistical information. Chi2 helps us understand whether there’s a connection between
two or unrelated variables. It’s like a test we use in statistics to examine two separate observations. In text
classification, these separate observations are the words we use and the categories they belong to. To calculate
Chi2 information:

chi2 (t) = ∑t∈{0,1}∑c∈{0,1} {(Nt ,c − Et ,c)2/Et ,c} (1)
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The variables N and E denote the memorialized and expected frequencies for each case of term t and
class C. The mathematical form of the Chi2 method used in this study is given in Eq. (2).

chi2 (t) = ∑
m
j=1 p(pc j ∗ chi2(t, c)) (2)

2.2.2 Analysis of Variance (ANOVA)
The ANOVA F-Score is a statistical method used to rank features based on their ability to distinguish

between classes by analyzing the variance within and between groups. It measures how much the mean value
of a feature varies across different classes compared to the variability within each class. Features with higher
F-scores are more effective at separating classes, making them valuable for classification tasks. This method
is computationally efficient, easy to implement, and works well for datasets with continuous features and
categorical targets, making it a popular choice for feature selection in machine learning workflows. For a
feature f and a dataset with c classes, the F-Score is defined as:

f =
1

c−1 ∑
c
j=1 N j(μ j − μ)2

1
N−c ∑

c
j=1∑k∈c j(x jk − μ j)2 (3)

where c represents the number of classes, Nj is the number of samples in class j . μj represents the mean value
of feature f for class j, μ represents the overall mean value of feature f, N is the total number of samples, jk is
the value of feature f for the k-th sample in class j, and Cj is the set of samples in class j.

2.2.3 Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique that projects

data onto a lower-dimensional space while maximizing class separability. The main goal of LDA is to find
a transformation matrix W that maximizes the ratio of between-class variance to within-class variance,
ensuring that different classes are well-separated in the projected space. Mathematically, the objective
function of LDA is to maximize the following criterion. Where Sb is the between-class scatter matrix, Sw is
the within-class scatter matrix, and W is the transformation matrix to be optimized.

LDA(W) = [W T SbW]/[W T Sw W] (4)

2.2.4 Principle Components Analysis (PCA)
PCA reduces data dimensions using covariance matrices [11] with minimum loss of discriminative

features. Let’s consider a feature vector S with the dimension of i * j, where “i” represents the number of
extracted features and “j” represents the number of samples. Let “k” represent the number of desired features.
The value of “k” must be less than “i”. Let’s consider the following input feature vector S using Eq. (5):

[s1 , s2, s3, . . . sn] (5)

Through the PCA algorithm, we implemented the following steps to reduce the dimensionality of the
feature vector:

Step 1: Compute the mean

S = 1
i∑

i
n=1 sn (6)
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Step 2: Subtract the mean

S̀n = sn − S n = (1, 2, 3, . . .) (7)

Step 3: Compute the covariance

Cn = Śn (S̀n)
T

BBT (8)

where B = {Ś1 , Ś2, . . . Śp}(i ∗ j) and T = transpose of a matrix.
Step 4: Calculate the eigenvalues in ascending order. The first eigenvalue should be greater than the

second and fourth.

γ1 > γ2 > γ3 . . . γn (9)

Step 5: Compute the corresponding eigenvectors

Cn ∶ {σ1 , σ2, σ3 . . . σn} (10)

Last step: Select k eigenvectors corresponding to the largest eigenvalues to reconstruct a new set of
feature vectors in the space. This selection process helps avoid dimensionality problems, keeping the most
essential data. It also improves the computational speed and interpretability of various other tasks being
performed in the analytical methods of the dataset, which is the main aim of PCA in the case of data
preprocessing and data analysis.

PCA = ∑s
j=1 Cn ∗ x j (11)

2.3 Hybrid Feature
The methodology proposed in this paper incorporates four feature extraction mechanisms, detailed

in Section 2.2. These mechanisms are combined to construct a hybrid feature vector, as defined in Eq. (12).
Mathematically referred to as the hybrid feature vector, it integrates features contributed by each technique
(10 dimensions per method) to form a unified representation comprising 40 dimensions.

chi2 (t) ∪ f ∪ LADA(W) ∪ PCA (12)

2.4 Feature Selection Methods
An essential step in machine learning and statistics is feature selection, which means picking out

relevant features to build a forecast model. Feature selection lessens the “curse of dimensionality” by
making the dataset less multidimensional. This speeds up training times and can sometimes improve model
performance. Much research has shown that choosing the right features for data can make it work better
with some learning models and help store naturally occurring patterns in the input space [12,13]. There are
two main types of feature selection methods: supervised and unsupervised. Labeled datasets are treated with
supervised methods that look for features that make supervised learning models work better, like those used
in classification and regression tasks. Unsupervised methods are used to find natural trends for unlabeled
data without setting goal labels ahead of time.

This study employs XGBoost, a supervised learning method, and therefore relies on supervised feature
selection techniques. Specifically, this work proposes the filter method for feature selection, leveraging its
ability to evaluate and rank features based on statistical criteria independently of the learning algorithm.
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This approach ensures the selection of the most relevant features, optimizing model performance. In filter
methods, the chosen features don’t depend on the algorithm being used. They use the general features of the
training data to select features that aren’t related to any prediction. Instead of the error rate, filter methods
always use a reference measure to rank the scores of features. In this study, we used the filter method (i.e.,
the Fisher score method), which finds the lengths between each feature’s data points. Fig. 2 shows the top 10
features using SHAP to visualize the impact of these selected features. In the Fisher score method, feature
scores are ranked by this rule: a feature gets a better score if the distances between data points in different
classes are longer but not if the distances between data points in the same class are shorter. The Fisher score
method is shown below:

F (a) = (xa
(+) − xa)2 + ((xa

(−) − xa))2

1
n+ − 1 ∑

n+
j=1(x j ,a(+) − xa

+)2 + 1
n− − 1 ∑

n−
j=1(x j ,a(−) − xa

−)2
(13)

Figure 2: Vital features selected from hybrid features using the Fisher score method

The variables xa
(+), xa , xa

(−) represent the average of the a-th feature across the entire dataset and
within the positive and negative subsets, respectively. Here, j corresponds to the j-th sample of the a-
th feature. The numerator quantifies the distinction between the positive and negative subsets, while the
denominator measures the variation within each subset. A higher Fisher score indicates that the feature is
more discriminative.

2.5 XGBoost
XGBoost is a gradient-boosting library that delivers faster, more flexible, and scalable machine learning.

It employs gradient boosting, an ensemble learning algorithm that combines the outputs of multiple
weak learners, typically decision trees, to build a robust predictive model. A specialized matrix class
in XGBoost improves data storage and access efficiency, enhancing performance during training and
evaluation. XGBoost minimizes the mean squared error (MSE) between actual and predicted values for
regression tasks. It supports various loss functions, such as squared error, absolute error, and Huber loss,
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to guide Optimization. The objective function assesses overall model performance, while the loss function
evaluates the difference between predicted and actual values, as illustrated in Fig. 3.

Figure 3: The workflow of the XGBoost algorithm

XGBoost trains models in stages by sequentially adding new trees to correct errors made by the
previous ones, guided by the negative gradient of the loss function. Cross-validation is a crucial technique
for evaluating XGBoost’s performance, where the dataset is divided into subsets to enable multiple rounds of
training and validation. The XGBoost classifier supports binary and multiclass classification objectives, such
as logistic regression and Softmax. Seamlessly integrating with scikit-learn, XGBoost allows users to switch
between its native API and scikit-learn’s API without compatibility issues, facilitating using other machine
learning libraries to optimize model parameters.

3 Performance Evaluation
The efficiency of a machine learning system is quantified using various standard assessment metrics.

For this study, we employed commonly used performance measures, including Accuracy (ACC), Specificity
(SP), Sensitivity (SN), the Area Under the Receiver Operating Characteristic Curve (AUC), and the Matthews
Correlation Coefficient (MCC). Accuracy (ACC) represents the overall correctness of the model’s predic-
tions. Sensitivity (SN) measures the proportion of true positives identified correctly, while Specificity (SP)
evaluates the proportion of true negatives. Sensitivity and Specificity are inversely related, as adjustments in
the decision threshold can increase one metric at the expense of the other. Lowering the threshold increases
Sensitivity but decreases Specificity, whereas raising it has the opposite effect [14]. The Matthews Correlation
Coefficient (MCC) provides a balanced evaluation, accurately reflecting the model’s ability to identify
positive and negative outcomes. Unlike other metrics, MCC is robust even in class imbalance, making it
particularly useful for this study. The AUC score, derived from the Receiver Operating Characteristic (ROC)
curve, plots the True Positive Rate (TPR, equivalent to Sensitivity) against the False Positive Rate (FPR, where
FPR = 1 − Specificity). AUC is a threshold-independent metric, making it a reliable criterion for evaluating
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the model’s discrimination capability. These metrics using the Chou symbol are defined as:

ACC = T+ + T−

T+ + F+ + T− + F−
0 ≤ ACC ≤ 1 (14)

SP = T−

F+ + T−
0 ≤ SP ≤ 1 (15)

SN = T+

T+ + F−
0 ≤ SN ≤ 1 (16)

MCC = (T− ∗ T+) − (F− ∗ F+)√
( f + + T+) (T+ + F−) (F+ + T−) (T− + F−)

− 1 ≤ MCC ≤ 1 (17)

where T+ symbolizes true positives, F+ symbolizes false positives, T− Symbolizes true negatives, and F− false
negatives, respectively.

4 Results and Analysis

4.1 Experimental Setup
The experiments were conducted on a computing system configured with an 11th-generation Intel Core

i7-1165G7 processor operating at 2.80 GHz, RAM of 16 GB, and a 512-GB SSD, running Windows 11 Home
on a 64-bit architecture. This setup provided adequate computational power for data preprocessing, model
training, and evaluation tasks. Including an SSD (Solid State Disk) ensured faster data access and improved
system responsiveness compared to traditional HDDs (Hard Disk Drive). While this configuration was
sufficient for handling moderate datasets and typical machine learning workflows, larger-scale datasets or
resource-intensive tasks may necessitate further enhancements to the CPU (Central Processing Unit) and
RAM (Random Access Memory). The software environment consisted of Python 3 and several essential data
science and machine learning libraries. NumPy and SciPy were used for numerical computations, Matplotlib
was used for data visualization, and Pandas was used for data preprocessing and analysis. TensorFlow and
Keras were employed to design and evaluate DL (Deep Learning) models. This comprehensive suite of
tools facilitated the efficient implementation, training, and testing of ML models. Standard metrics assessed
the proposed model performance to measure prediction correctness, stability, and reliability. These metrics
provided a detailed understanding of the model’s strengths and limitations, guiding further Optimization.
The integration of this hardware-software combination enabled a seamless workflow for data processing and
model validation, and the overall configuration of the system is presented in Table 3.

Table 3: The system configuration

System 2.80 GHz, Dell Cor i7 11th generation
RAM 16 GB
SSD 512 GB

Framework Matplotlib, Keras, Tensorflow, Pandas
Language Python 3

4.2 Hyper-Parameters Optimization
This section optimizes the suggested XGBoost model by using various hyper-parameter settings.

XGBoost is a robust and highly customizable gradient-boosting library widely recognized for its ability to
address complex machine-learning tasks. Its performance is primarily influenced by the careful tuning of
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hyper-parameters, which directly impact the model’s learning process, complexity, and ability to balance
bias and variance. Table 4 outlines the primary hyper-parameters utilized in this study, i.e., the number
of estimators, maximum tree depth, and the learning rate, along with a concise description of their roles
and permissible value ranges. A grid search method optimized the parameters, systematically exploring all
combinations of hyper-parameter values within defined intervals. Each configuration was evaluated on the
training dataset, and the hyper-parameters minimizing the objective function error were selected to enhance
model performance and mitigate over-fitting [10,15–17].

Table 4: XGBoost classifier optimized parameters

Parameter Value
Random state 42

colsample_bytree 1.0
n_estimators 200
Subsample 0.6

lambda (reg_alpha) 0.1
gamma 0.5

Min child weight 1
Learning rate 0.15

Max depth 3
Alpha (reg_lambda) 1

Moreover, the optimized hyper-parameters identified for our proposed XGBoost classifier include the
maximum tree depth (i.e., 3) and the number of estimators (i.e., 200), ensuring deep learning capabilities.
Regularization parameters like lambda and alpha, explored at 0.1 and 1, help prevent over-fitting by
controlling complexity. The learning rate, a critical parameter for adjusting model updates, is set at 0.01 for
gradual learning. Other parameters, such as the column sampling ratio and minimum child weight, are fine-
tuned to enhance generalization. These parameters optimize model accuracy and performance, leveraging
XGBoost’s powerful gradient-boosting capabilities.

Furthermore, the optimal hyper-parameters were also determined by selecting the combination that
yielded the smallest Root Mean Squared Error (RMSE) across all tested configurations. Fig. 4 illustrates the
variation in RMSE for each hyper-parameter across its search range, clearly highlighting the values associated
with minimal RMSE. The optimal settings are identified based on these results: colsample_bytree set to 1,
learning_rate to 0.15, max_depth to 3, and subsample to 0.6. These values, detailed in Table 4, ensure the best
model performance by effectively balancing complexity and accuracy.
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Figure 4: Relationship between RMSE and four major hyper-parameters

4.3 Performance Evaluation
This section evaluates the XGBoost model’s prediction results using individual and hybrid feature

methods. The XGBoost model’s efficacy was further enhanced using the Fisher feature selection method.
In literature [18,19], researchers have used machine learning methods like k-fold cross-validation (CV) to
assess model performance predictions. The results of the XGBoost method are verified in this paper by
implementing a 5-fold and 10-fold cross-validation. Tables 5 and 6 illustrate the estimated outcomes that the
proposed model achieved on the balanced dataset by employing a variety of feature vectors.

Table 5: Individual features performance using 5-fold

Methods ACC (%) SP (%) SN (%) MCC
PCA 81.49 81.73 81.25 0.630
Chi2 82.81 81.25 84.38 0.657
LDA 84.13 82.93 85.34 0.683

ANOVA 86.06 86.78 85.34 0.721
Hybrid feature 88.82 88.46 89.18 0.776

Hybrid feature-after Fisher score 90.26 90.14 90.38 0.805

From Table 5, the proposed model outperformed using a hybrid features vector compared to the
individual features by 5-fold cross-validation. The proposed model achieved an accuracy rate of 88.82%
and an MCC of 0.776 utilizing a hybrid feature vector. In order to further enhance the performance of the
proposed model, we apply the feature selection method, i.e., the Fisher score method. The selected features
attained an accuracy of 90.26% and a MCC of 0.805.

Moreover, Table 6 demonstrates that the proposed model using 10-fold cross-validation attained supe-
rior performance with an optimized hybrid feature vector compared to the optimized hybrid features using
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5-fold cross-validation. The proposed model achieved an accuracy rate of 92.07%, Sensitivity of 91.83%,
Specificity of 92.31%, and an MCC of 0.841 utilizing an optimized hybrid feature vector. The experimental
results demonstrate that the proposed model performs better using a resourceful feature set and applying
10-fold cross-validation to improve prediction accuracy and target result identification.

Table 6: Individual features performance using 10-fold

Methods ACC (%) SP (%) SN (%) MCC
PCA 82.45 81.97 82.93 0.649
Chi2 85.70 85.82 85.58 0.714
LDA 87.50 87.74 87.26 0.750

ANOVA 88.70 88.22 89.18 0.774
Hybrid feature 89.90 89.66 90.14 0.798

Hybrid feature-after Fisher score 92.07 92.31 91.83 0.841

Additionally, a confusion matrix is presented in Fig. 5 to further explore the behavior of the proposed
model in prediction using the optimized hybrid features vector. The confusion matrix analysis shows that
our proposed model achieves balanced recognition of both positive and negative. This confirms the model’s
accuracy and reliability in unique among +Pos and −Neg sequences, making it particularly suitable for
predictive tasks in the specific problem domain.

Figure 5: XGBoost confusion matrix using optimal hybrid features

4.4 Performance Comparison with Other Classifiers
Here, we use optimized hybrid feature vectors to compare the performance of the proposed model

with other traditional ML classifiers. The classifiers being assessed, such as RF [20], SVM [21], NB, LR, and
KNN [22]. Random Forest is a widely used ensemble learning technique for classification and prediction,
constructing numerous decision trees from random data. SVM is extensively used in life sciences for linear
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and nonlinear classification since it identifies the optimal border for class separation [23]. Naive Bayes (NB) is
a simple probabilistic classifier based on Bayes’ theorem, assuming feature independence. NB is widely used
for text classification, spam detection, and medical diagnosis due to its efficiency and robustness. Logistic
Regression (LR) is a statistical method used for binary classification, modeling the relationship between
independent variables and a binary outcome using a sigmoid function. It is widely applied in healthcare,
finance, and marketing for predictive analysis. KNN, often used in image processing, is a distance-based
technique that classifies by contrasting instances. Table 7 presents a comparative analysis of the overall
performance of several classifiers using 10-fold cross-validation.

Table 7: Performance comparison with ML algorithms

Methods ACC (%) SP (%) SN (%) MCC
XGBoost-liver 92.07 92.31 91.83 0.841

SVM 90.26 90.87 89.66 0.805
KNN 89.30 90.14 88.46 0.786

Random forest 87.74 88.46 87.02 0.755
NB 83.50 85.18 81.82 0.670
LR 82.23 85.98 78.48 0.640

The proposed model achieved the highest accuracy of 92.07%, with an MCC of 0.841. Comparatively,
among the traditional ML models, the SVM demonstrated an accuracy of 90.26%, a specificity of 90.87%,
a sensitivity of 89.66%, and an MCC of 0.805. Similarly, the KNN and RF models achieve lower accuracy,
at 89.30% and 87.74%, respectively, compared to XGBoost-Liver and SVM, highlighting limitations in
managing complex data relationships and making them less suitable for datasets with mixed or overlapping
classes. Overall, the XGBoost-Liver demonstrates the most balanced and robust performance, improving
average accuracy by 2.96%. Furthermore, we compared the performance of the XGBoost-Liver model with
traditional learning algorithms in terms of AUC (Area under the ROC curve) [24], as illustrated in Fig. 6.
The ROC curve value indicates model efficiency, with higher values reflecting better performance. Fig. 6
highlights that the XGBoost-Liver model achieved the highest AUC of 0.932, outperforming SVM (0.912),
KNN (0.902), and RF (0.881).

Figure 6: Area under the cure (AUC) performance comparison of machine learning algorithms
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4.5 Performance Comparison with the Existing Predictors
In this section, we compare the performance of the proposed model with the existing state-of-the-art

models, as mentioned in [6,25–27]. Table 8 compares the proposed models with research published using
the same dataset. Table 8 shows that the proposed model provided the best prediction accuracy among four
previously published predictors. For example, Gupta et al. [26] in 2022 achieved an accuracy level of 63%,
whereas the recently published predictor, Amin et al. [6], achieved an accuracy of 88.10%. Similarly, Dritsas
et al. [27] achieved 80.10%. These results confirm that the proposed model performed better than the existing
predictors, with an average accuracy improvement of 15.88%.

Table 8: Performance comparison with existing models

Method Classifiers ACC (%)
Gupta et al. [26] Light GB 63.00
Altaf et al. [25] Voting 73.56

Dritsas et al. [27] Voting 80.10
Amin et al. [6] Random forest 88.10
XGBoost-liver XGBoost 92.07

5 Conclusion
Liver disease (LD) is a severe condition that poses significant risks to human health and requires timely

medical intervention. Healthcare professionals rely on neurological techniques for evaluating and diagnosing
affected individuals. In this paper, we explored the prediction of chronic LD using an XGBoost method
enhanced with integrated and optimized features. Our model used several techniques to assess feature
importance, including ANOVA CHI2, PCA, and LDA. We also employed the Fisher score method to interpret
complex features and select the most relevant ones for accurate LD prediction. The proposed XGBoost-
Liver model underwent comprehensive performance evaluation, with experimental findings demonstrating
its accuracy in predicting LD. Furthermore, a comparative analysis was conducted against existing models,
revealing that the XGBoost-Liver model achieved superior performance compared to the alternatives.

Furthermore, the results show that our model enhances discriminative ability, offering a more reliable
tool for the early detection of chronic LD. Integrating AI and machine learning into clinical settings
holds great potential for advancing disease detection and improving patient outcomes. We plan to create
an accessible web platform for biologists to use this model. Additionally, we aim to expand the dataset,
explore new features, and implement more advanced algorithms to refine further and validate our model’s
predictive capabilities.
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