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ABSTRACT: To transmit customer power data collected by smart meters (SMs) to utility companies, data must first
be transmitted to the corresponding data aggregation point (DAP) of the SM. The number of DAPs installed and the
installation location greatly impact the whole network. For the traditional DAP placement algorithm, the number
of DAPs must be set in advance, but determining the best number of DAPs is difficult, which undoubtedly reduces
the overall performance of the network. Moreover, the excessive gap between the loads of different DAPs is also an
important factor affecting the quality of the network. To address the above problems, this paper proposes a DAP
placement algorithm, APSSA, based on the improved affinity propagation (AP) algorithm and sparrow search (SSA)
algorithm, which can select the appropriate number of DAPs to be installed and the corresponding installation locations
according to the number of SMs and their distribution locations in different environments. The algorithm adds an
allocation mechanism to optimize the subnetwork in the SSA. APSSA is evaluated under three different areas and
compared with other DAP placement algorithms. The experimental results validated that the method in this paper can
reduce the network cost, shorten the average transmission distance, and reduce the load gap.
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1 Introduction
The growing development of communication technology provides power grids with the means to

effectively control and monitor power information [1]. A smart grid is the transformation of a power grid
from a traditional electromechanical control system to an electronic control network [2]. Smart grids are
based on an integrated, fast bidirectional communication network. Through the application of advanced
sensing and measuring technologies, control means, and decision-making system technologies, they realize
the goals of economic, high-efficiency, and environmental friendliness in the use of power grids [3].

An infrastructure that allows for bidirectional communication is called an advanced metering infras-
tructure (AMI) and is considered an essential component of smart grids. It consists of a smart meter (SM)
installed at a customer’s end, a metering data management system located in the utility company, and a
communication system connecting both, constituting a complete network processing system for measuring,
collecting, processing, and utilizing customers’ electricity consumption information [4]. AMI employs a
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stationary bidirectional communication network that reads the SM several times a day and transmits meter
information, including fault alarms, to the data control center in near real-time [5,6].

AMI consists of three main categories: home area network (HAN), neighborhood area network
(NAN), and wide area network (WAN). HAN is the network within a user’s home or premises, which
includes SM and other smart devices that collect power information from the users. NAN serves as an
intermediate network between HAN and WAN. In NAN, data collected from HAN devices are transmitted
to WAN for further processing and analysis. WAN is responsible for connecting multiple WANs and further
transmitting the collected user power data to the control center or data management system. To enable
communication within these networks, various technologies are commonly used. ZigBee, WiFi, Bluetooth,
power line communication, and 5G are among the preferred technologies for AMI networks [7,8]. A visual
representation of the AMI network framework is shown in Fig. 1.

Figure 1: AMI network framework diagram

NAN is an important part of a smart grid communication network. It usually consists of an SM and
a data aggregation point (DAP). DAP collects power information from different SMs and forwards it to
the WAN gateway. Wireless communication is recommended for NAN because of its low cost, ability to
connect a large number of devices, and ease of deployment [9–11]. In NAN, the location of DAPs and the
number of installations significantly impact the quality of communication between DAPs and SMs. First,
the position of the DAP affects the transmission distance between the DAP and SM, thereby influencing
the power consumption and transmission rate of NAN. Second, the number of DAPs affects the operational
costs of NAN; therefore, an appropriate number of DAPs must be selected while ensuring sufficient network
coverage [12]. Finally, each DAP has its maximum load; thus, if too many SMs are connected to a DAP, it not
only overloads the DAP but also causes a delay in transmitting data from the DAP to the control center [13].
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However, the problems in selecting the number of DAPs to be installed in the NAN and the location of
the installations (the DAP placement problem) have not been well explored. In this paper, we investigate the
placement of DAPs in NANs with different numbers of SMs (urban, suburban, and rural) to determine the
appropriate number of DAPs to reduce the operational cost of a NAN, select appropriate locations for DAP
placement to minimize the average transmission distance between SMs and DAPs, and optimize subnetworks
to minimize the gap in the number of loads between different DAPs. The simulated experimental results
demonstrate that our proposed affinity propagation (AP) algorithm and sparrow search (SSA) (APSSA)
algorithm can select the appropriate number of DAPs to reduce the network cost of NANs, shorten the
average transmission distance between SMs and DAPs, and reduce the load gap of DAPs.

The main contributions of this paper are as follows:
(1) This study improves the AP algorithm so that it can arrive at an optimal number of DAP installations

and installation locations on the basis of the number and distribution of SMs in different environments
without the need to preset the number of DAP installations while reducing the average transmission distance.

(2) In this paper, we consider optimizing different subnetworks as a set covering problem (SCP) and
establish corresponding coverage matrices to better solve the subnetwork optimization problem to reduce
the load gap between different DAPs.

(3) Based on the initial DAP and its corresponding subnetwork, the SSA algorithm is used to opti-
mize the subnetwork. An allocation mechanism is added to the SSA algorithm to allocate SM-optimized
subnetworks to reduce the load gap and form the final subnetwork.

(4) The APSSA algorithm is comprehensively evaluated considering three different NAN regions.
The rest of the paper is organized as follows: Section 2 discusses related work. Section 3 describes the

network model and the network cost model. In Section 4, the APSSA algorithm proposed in this paper is
described in detail. The performance of the APSSA algorithm in simulation experiments is described in detail
in Section 5. Section 6 concludes the paper and presents our future research directions.

2 Related Work
The number and placement of DAPs in a network play a vital role in wireless communication between

SMs and DAPs [14]. In this regard, Li et al. [15] introduced an effective approximation algorithm to handle
smart grid communication optimization tasks, which can handle complex DAP planning tasks and help
reduce the costs of smart grid communication systems. Meanwhile, Gallardo et al. [16] proposed a DAP
optimization framework based on residential grid AMI using K-medoids to select the optimal placement of
DAPs. Their experimental results demonstrated that their method could reduce the average and maximum
distance of communication between SMs and DAPs to some extent. In another study, Kong [13] argued that
in a smart grid, the communication network and the power network are interdependent; thus, the DAP
placement problem cannot be considered as a communication network problem only. Kong [17] further
argued that in a smart grid where power is supplied to DAPs by a transformer, the failure of the transformer
results in the loss of power to the corresponding connected DAPs and the loss of monitoring function, which
in turn results in the failure of the network cascade. Therefore, the DAP placement problem must also fully
consider how an SM can communicate normally with the data control center after a failure of the transformer
or DAP in a network.

The continuous development of Internet of Things (IoT) technologies provides new opportunities and
motivation for different smart grid applications, such as AMI and electric vehicles [18–20]. The development
of artificial intelligence IoT [21,22] has accelerated this process. In this respect, Gallardo et al. [23] proposed
an IoT-based AMI architecture that consists of three layers: a sensing layer, a communication network layer,
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and an application layer. Meanwhile, Khan et al. [24] proposed a quality of service (QoS)-based machine
learning framework for AMI to better design efficient smart grid architectures. This proposed framework
consisted of three components: a three-tier hierarchical architecture for AMI, a hierarchical clustering
approach based on machine learning, and a scheduling technique based on application item prioritization.
However, integrating these technologies has also introduced new security challenges, particularly the
vulnerability of machine learning-based smart grid applications (MLsgAPPs) to malicious attacks. Zhang
et al. [25] provided a comprehensive review of recent advances in attack strategies and defense mechanisms
for MLsgAPP security, marking a significant contribution as the first overview in this domain. This study
extends the discussion by systematically reviewing and comparing existing research on adversarial attacks
in MLsgAPP across power generation, transmission, distribution, and consumption scenarios, while also
examining countermeasures. Additionally, it analyzes potential vulnerabilities in smart grid applications
powered by large language models (e.g., ChatGPT). Literature [26] investigated data security risks in ML-
based smart grids, focusing on adversarial manipulations of critical input systems that could mislead system
operators and trigger cascading failures, such as major power outages. To address this issue, this study
proposes a physics-constrained robustness evaluation framework based on the tree ensemble (TE) model,
ensuring that adversarial samples not only deceive human intuition but also comply with physical laws
and bypass the power system’s error-checking mechanisms. By employing formal modeling and variable
transformation, an effective robustness assessment method is introduced and validated through simulations.

Artificial intelligence techniques can be applied to meet QoS requirements when determining the
placement of selected DAPs for a communication network structure, especially in some urban areas with a
high density of meter coverage. In particular, clustering methods [27] are useful for solving this optimization
problem [28]. Hassan et al. [29] evaluated and compared three clustering algorithms, namely, K-means,
self-organizing map, and fuzzy c-means, for the DAP placement problem in terms of the multihop shortest
path distance, cluster size, and computational complexity. Their simulation results showed that allocation
methods based on the K-means and self-organizing map had similar performances, whereas that based on
fuzzy c-means had a longer maximum multihop shortest path distance and higher complexity. Molokomme
et al. [30] proposed a NAN layout scheme based on an unsupervised K-means clustering algorithm and a
silhouette index method.

Other previous studies [31,32] presented a new idea of selecting SMs to work as DAPs directly in
the NAN. They concluded that shortening the transmission distance path between SMs and DAPs is an
important initiative to reduce the energy and time cost of a network in a smart grid communication network
environment. Thus, they categorized the DAP placement problem as solving the shortest distance path
problem and proposed the algorithms and using a multihop communication model to reduce the number
of DAPs. Table 1 shows the brief summary of the major related works.

Table 1: Related research

Literature Research methodology Key contribution Usage scenario
Li et al. [15] Approximation algorithm Optimizing smart grid

communication tasks and
reducing communication

system costs

Complex DAP
planning tasks

Gallardo et al. [16] K-medoids Optimize DAP selection to
reduce communication distance
and optimize network structure

Residential grid
AMI

(Continued)
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Table 1 (continued)

Literature Research methodology Key contribution Usage scenario
Kong [17] Approximation algorithm Emphasize the impact of power

supply equipment failures on
DAP selection

Smart grids

Hassan et al. [29] K-means, Self-organizing
map and Fuzzy c-means

Evaluating and comparing three
clustering algorithms for the

DAP problem

DAP selection
problems

Wang et al. [31,32] CDPAavg and CDPAws Select SM as DAP to optimize
communication distance

NAN

In smart grids, large amounts of data must be processed and exchanged. The availability of smart grids
requires meeting time delays for different operations and data transmission [33]. The shortest transmission
path is one of the commonly used approaches in various DAP placement problems as it provides an effective
way to reduce the consumption of network energy and the time taken to transmit data. In DAP placement
problems, the number of DAPs and their location selection is a very critical issue. In current research, most
clustering algorithms with an initial predetermined number of DAPs are used for the location selection of
DAPs. However, determining how many DAPs are optimal is difficult, especially for such a large network as
a smart grid. Moreover, the number of SMs connected by DAPs is not considered, which may easily lead to
a large gap between the number of SMs connected by different DAPs in the network, which is not conducive
to the distribution of energy and the guarantee of communication quality of the smart grid. Therefore, in this
paper, we focus on automatically selecting the appropriate number of SMs as DAPs from all the SMs in the
NAN without presetting the number of DAPs, thereby reducing the network costs, minimizing the average
transmission distance between SMs and DAPs, and balancing the load volume gap between different DAPs.

3 System Modeling and Problem Formulation

3.1 NAN Model
In this study, SM and DAP are connected using wireless communication. SM can send the data directly

to the DAP or it can also be used as a relay for forwarding the data from other SMs to the DAP, as shown
in Fig. 2.

Figure 2: NAN model
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There are N smart meters SM = {smi ∣ i = 1, 2, . . . , N} randomly distributed in the L × W region
monitored by NAN, and setting different numbers of SMs N in the region can change the distribution density
of SMs ρSM , N = ρSM ⋅ (L ⋅ W). All SMs have the same transmission range, which is denoted by a circle
of radius rc meters. Let (xi , yi) denote the coordinates of the ith SM smi . The distance between any two
SMs smi and sm j is denoted by:

d(smi , sm j) =
√
(xi − x j)2 + (yi − y j)2 (1)

If d(smi , sm j) ≤ rc , the two SMs are considered neighboring and can be connected directly. The shortest
transmission distance between the neighboring SMs smi and sm j is distance(smi , sm j) = d(smi , sm j), and
the path is route(smi , sm j) = sm j. The route(smi , sm j) indicates which node is the next step from smi to
sm j. If d(smi , sm j) > rc , then these two SMs are considered nonadjacent. The shortest transmission distance
and path between nonadjacent SMs smi and sm j must be obtained by searching the entire network using
the Floyd-Warshall algorithm. The neighbor nodes of SM smi are denoted as φ(smi) and defined as all SMs
within the communication range rc of smi . That is:

φ(smi) = {sm j ∣ d(smi , sm j) ≤ rc , sm j ∈ SM} (2)

The whole network is connected, which means that any two different SMs can directly or indirectly,
through a limited number of relay SMs, communicate with each other. In this paper, the DAP placement task
is to select a certain number of SMs from the NAN as DAPs and assign other SMs to these DAPs, dividing
the whole NAN into different subnetworks. Each subnetwork has only one DAP, and these DAPs collect the
data collected by the SMs within their own subnetwork to be forwarded to the WAN after further processing.
The DAP can be denoted as:

DAPS = {DAP1 , DAP2, DAP3 , . . . , DAPτ} (3)

where τ is the number of subnetworks which is also the number of DAPs. Each subnetwork can be
represented as:

SNS = {SN1 , SN2, SN3, . . . , SNτ} (4)

SNi denotes the set of SMs communicating with DAPi , SNi = {s1 , s2, s3, . . . , sni}, where ni = ∣SNi ∣
denotes the number of SMs communicating with DAPi , and the load volume Load(DAPi) = ni . The average
transmission distance Dav g between a DAP and its connected SMs is denoted as follows:

Dav g =
∑τ

j=1 ∑smi∈SN j distance(smi , DAPj)
∑τ

j=1 n j
(5)

To better measure the load gap of different DAPs, we use the population standard deviation to measure
the load gap of different subnetworks in the whole network, denoted as follows:

L =
√

∑τ
i=1(Load(DAPi) − Load)2

τ
(6)

In this equation, L is the load gap and Load is the average load.
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3.2 Network Cost Model
The total cost of the network can be categorized into three parts: DAP installation and maintenance

cost cmain, data transmission cost ctrans, and delay cost cdly [34]. Therefore, the sum of these costs should be
minimized when selecting the placement of DAPs:

ctotal = cmain + ctrans + cd l y (7)

Although SMs are selected from the network as DAPs, ordinary SMs cannot process large amounts of
data. Thus, to meet the network needs, a device that can process large amounts of data has to be installed as
a DAP at the location of the original SM. The cost of installing and maintaining a DAP is A. Then, cmain is
proportional to the number of DAPs selected to be set up and is denoted as:

cmain = A ⋅ τ (8)

ctrans denotes the average power cost consumed over the entire network lifetime for the transmission of
collected power data from SM to the relay SM or directly from SM to DAP, denoted as:

ctrans = B
N
∑
i=1

N
∑
j=1

yi j ⋅ PL (distance(smi , sm j)) (9)

where yi j is a binary variable; yi j is 1 if smi is assumed to communicate directly with sm j, and 0 if it is not.
N is the number of SMs in the network. B = g8MγEbκTm/Tl is the transmission cost per SM per unit of
path loss; Tl is the time interval between the transmissions; Tm is the assumed lifetime of the network; g
is the price of energy; γ is the ratio of the total modeled power consumption to the transmission power;
Eb is the required received energy per bit; κ is the fading margin; and the factor 8 in the formula indicates
that M is the packet size in bytes. For more detailed information on these parameters, see previous works
in the literature [12,34]. In this paper, we select some of these SMs as DAPs among the SMs present in
the NAN. Therefore, assuming that smi is selected as a DAP, we can denote this DAP with the original
coordinate (xi , yi). PL(distance(smi , sm j)) is the desired path loss over the communication distance
distance(smi , sm j) between SM smi and sm j, denoted as follows:

PL(distance(smi , sm j)) = PLd0 ⋅ (
distance(smi , sm j)

d0
)

ω

, i , j = 1, 2, . . . , N (10)

PLd0 is the path loss at the reference distance d0, and ω is the path-loss exponent. The delay cost cdly
can be expressed as:

cd l y = C ⋅ hop(smi , DAPj), smi ∈ SN j , j = 1, 2, . . . , τ (11)

hop(smi , DAPj) is denoted as the number of hops between smi and its communicating DAPj . C is the
delay cost, which is the loss in the number of hops of the path connecting the sender SM to its corresponding
DAP. Introducing the coefficient C transforms the communication delay into a monetary loss [34].

3.3 Problem Formulation
The main objective of this paper is to select the best SM as a DAP among the SMs distributed in the

NAN and to divide the NAN into various subnetworks to shorten the average transmission distance between



414 Comput Mater Contin. 2025;83(1)

the SMs and their belonging DAPs, reduce the load gap of each DAP, and reduce the cost of the network. The
DAP placement problem is formulated as:

min Dav g (12)
min L (13)
min ctotal (14)

The constraints are as follows:
τ
⋃
i=1

SNi = SM (15)

SNi ∩ SN j = ∅ ∀i ≠ j, i , j = 1, 2, . . . , τ (16)
SNi is a network of connections ∀i = 1, 2, . . . , τ (17)
DAPi ∈ SM ∀i = 1, 2, . . . , τ (18)

Constraint (15) denotes that all SMs are covered by the subnetwork. Constraint (16) denotes that there
is no duplicate coverage of SMs between different subnetworks; that is,each SM can only be assigned to
a single subnetwork. Constraint (17) denotes that SMs within each subnetwork can be transmitted either
directly or through a limited number of relay meters, and that the entire subnetwork is a connected network.
Constraint (18) indicates that the placement of the DAP is the location of the original SM, not a newly added
location in the network.

4 The Proposed APSSA Algorithm

4.1 Selection of the Number and Location of DAPs to Form Initial Subnetworks
In APSSA the number of DAPs and their positions are selected to form an initial subnetwork based on

the number of SMs and distribution positions using the improved AP clustering algorithm.
Traditional clustering algorithms such as K-means and K-medoids require a predefined number of

cluster centers based on data characteristics, and their results are highly sensitive to the initial cluster values.
To address these limitations, Frey and Dueck proposed the affinity propagation (AP) clustering algorithm
in 2007. Compared with traditional methods, AP clustering offers greater adaptability and stability. The
core idea of AP clustering is to establish a similarity matrix between data points and iteratively transfer
information to determine the optimal data clusters. The AP clustering algorithm relies on three types
of information: similarity, responsibility, and availability. During execution, the algorithm uses similarity
information to guide clustering, while responsibility and availability information are iteratively updated to
refine the clustering process, ultimately selecting the optimal clustering result.

This study enhances the AP clustering algorithm for wireless neighborhood area network (NAN) sce-
narios, enabling the adaptive determination of data aggregation points (DAPs) and their optimal placement
based on smart meter (SM) quantity and distribution. The improved algorithm aims to minimize network
interference and reduce the average transmission distance between SMs and their assigned DAPs.

To reduce the average transmission distance between SM and DAP, the similarity is calculated using
the negative value of the shortest transmission distance distance(smi , sm j) between smi and sm j and the
average transmission distance from smi to the other SMs, as shown in Eq. (19):

s(smi , sm j) = −
distance(smi , sm j)

average i
i , j ∈ {1, . . . , N} and i ≠ j (19)
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where the average distance average i is shown in Eq. (20):

averagei =
∑N

j=1 distance(smi , sm j)
N

i , j ∈ {1, . . . , N} and i ≠ j (20)

The similarity s(smi , sm j) between smi and sm j indicates the degree of suitability of sm j as a DAP for
smi . The diagonal element s(smi , smi) of the similarity matrix represents the reference of smi . The larger
s(smi , smi) is, the higher the probability of smi being a DAP. The reference is calculated as shown in Eq. (21):

s(smi , smi) = −
Avgsmax(smi) − Avgsmin(smi)

Avgs(smi) − Avgsmin(smi)
⋅ ∣φ(smi)∣max

∣φ(smi)∣
⋅ α i ∈ {1, . . . , N} (21)

Avgs(smi) = ∑ j∈φ(smi) s(smi , sm j)/∣φ(smi)∣ denotes the average similarity of smi . Avgsmax(smi) and
Avgsmin(smi) respectively denote the maximum and minimum values of the average similarity among
the neighboring nodes of smi . ∣φ(smi)∣ is the number of neighbor nodes of smi . ∣φ(smi)∣max denotes the
number of nodes with maximum neighbors among all the SMs of the NAN, and α is the reference degree
coefficient, which affects the reference degree of the SMs. The larger α is, the smaller the reference degree of
each SM and the smaller the number of DAPs in the network.

r(smi , sm j) = s(smi , sm j) − max
j∗≠ j

j , j∗∈N

{s(smi , sm j∗) + a(smi∗ , sm j∗)} (22)

a(smi , sm j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∗≠i
i∗∈N

max{0, r(smi∗ , sm j)} if j = i

min
⎛
⎜⎜⎜
⎝

0, r(smi , sm j) + ∑
i∗∈N
i∗≠i , j

max{0, r(smi∗ , sm j)}
⎞
⎟⎟⎟
⎠

if j ≠ i
(23)

After determining the similarity s(smi , sm j) and the reference s(smi , sm j), we utilize Eqs. (22) and (23)
to compute and update the responsibility r(smi , sm j) and availability a(smi , sm j). The algorithm is
initialized by first presetting all the availability to 0. The responsibility r(smi , sm j) is sent from smi to sm j,
reflecting the extent to which sm j is suitable to serve as a DAP for smi after considering the other SM as a
DAP. a(smi , sm j) sends from sm j to smi , reflecting the appropriateness of smi choosing sm j as the DAP
after considering the support of other SMs for sm j to be the DAP. The information transfer process is shown
in Fig. 3.

Figure 3: The information of responsibility and availability
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To avoid data oscillations during the iteration process, damping coefficients are set to update the values
of responsibility and availability, as shown in Eqs. (24) and (25):

rt+1(smi , sm j) = λrt(smi , sm j) + (1 − λ)rt+1(smi , sm j) (24)
at+1(smi , sm j) = λat(smi , sm j) + (1 − λ)at+1(smi , sm j) (25)

rt+1(smi , sm j) and at+1(smi , sm j) respectively denote the values of responsibility and availability for
the t + 1 iteration, whereas rt(smi , sm j) and at(smi , sm j) respectively denote the values of responsibility
and availability for the t iteration. The iteration is terminated when the number of iterations or the error
accuracy reaches a preset value. At the end of the iteration, for smi , take sm j that maximizes r(smi , sm j) +
a(smi , sm j). If j = i, then smi is selected as the DAP; otherwise, the meter node sm j is used as the DAP of
smi . According to this rule, the initial DAP can be selected and SM is assigned to the corresponding DAP to
form the initial subnetwork. Algorithm 1 gives the pseudocode for the above description.

Algorithm 1: Selecting DAPs and generating corresponding subnetworks using improved AP clustering
algorithm

1: Input:
• distance, matrix of N × N , and distance(smi , sm j) denotes the shortest transmission distance

between Smart Meters smi to smj.
• φ(smi), set of neighbor nodes of Smart Meter smi.

2: for i = 1 to N do
3: for j = 1 to N do
4: if i == j then
5: Calculate the reference according to Eq. (21)
6: else
7: Calculate the similarity according to Eqs. (19) and (20)
8: end if
9: end for

10: end for
11: repeat
12: for i = 1 to N do
13: for j = 1 to N do
14: Calculate the responsibility according to Eq. (22)
15: Calculate the availability according to Eq. (23)
16: Update responsibility and availability according to Eqs. (24) and (25)
17: end for
18: end for
19: until The number of iterations or error accuracy reaches a preset value
20: Output: Collection of SMs and corresponding subnetworks as DAPs

4.2 Optimization of Subnetworks Based on SSA Algorithm
In this section, the previously generated subnetworks are optimized to minimize the load gap among

different DAPs. This study introduces the set coverage problem (SCP) models subnetwork optimization
as an SCP problem. A distance threshold (β) is incorporated in the algorithm to balance transmission
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distance and load distribution. Based on this threshold, a SM coverage matrix is generated. Next, the SSA
algorithm is applied to solve the SCP problem in the subnetwork. Unlike the traditional SSA algorithm, this
approach intergrates an allocation mechanism that reasonably assigns SMs based on the DAP selected by
each individual, improving load balancing. By optimizing and improving the initial subnet structure formed
by the AP algorithm, the proposed method effectively reduces the load gap among different DAPs.

4.2.1 SCP and Coverage Matrix
In the general SCP problem, assume that there is a set X consisting of x elements and corresponding y

subsets C j ⊆ X, where j = {1, . . . , y}. The goal is to select multiple subsets so that each element in X belongs
to at least one of these subsets while minimizing some sum of costs. In this paper, we hope to reduce the DAP
load gap. To solve the SCP, a coverage matrix must first be constructed, as shown in Fig. 4, where the elements
of the matrix are denoted by Coveri j , D1 and D2 denote DAP, and SM1–SM12 denote SM. If Coveri j = 1, it
means that the ith SM can connect with the jth DAP. If Cover11 = 1 but Cover12 = 0, it means that SM1 can
only communicate with D1. Notably, SM5 and SM11 can use SM1 as a relay node to communicate with D1,
even though they are out of range of D1’s communication.

Figure 4: Coverage matrix based on Smart Meter location

SCP has been proved to be an NP-hard problem. Therefore, in practice, some approximation algorithms,
such as greedy algorithms or metaheuristic algorithms, are often used to find an approximate optimal
solution [35,36].

4.2.2 Algorithm Steps
Step 1: In the initial subnetwork generated by the AP algorithm, the load gap between different DAPs

is very large to allow SM to be assigned to other DAPs to reduce the load gap between different DAPs,
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to optimize the subnetwork and effectively reduce the average transmission distance. We set the distance
threshold β as shown in Eq. (26):

coveri j =
⎧⎪⎪⎨⎪⎪⎩

1 if distance(smi , DAPj) ≤ β ⋅ distance(smi , DAP∗)
0 if distance(smi , DAPj) > β ⋅ distance(smi , DAP∗)

i = 1, . . . , N j = 1, . . . , τ (26)

coveri j denotes the matrix element corresponding to the ith SM smi and the jth DAP, and DAP∗
denotes the DAP to which smi is connected in the initial subnetwork. We combine the SMs that can be
assigned to more than two different DAPs into a coverage matrix, as shown in Fig. 5.

Figure 5: Constituent coverage matrix

Step 2: Initialize the population. The initial population is generated randomly by randomly selecting
dim DAPs out of τ DAPs that constitute an individual S in the population, which also denotes the position
of each individual, and the size of the population is pop. In the algorithm, we add an allocation mechanism
Distribute to balance the amount of load between different DAPs. Algorithm 2 describes the mechanism.

Algorithm 2: Distribute()
1: Input:

• S, an array of size 1 × dim, an individual consisting of dim DAPs selected from τ.
• Matrix, the coverage matrix of size N∗ × τ, generated by Step 1, N∗ denotes the number of SMs that

can be assigned to more than two DAPs.
2: for i = 1 to N∗ do
3: DAP_able_allocated = allocated(Matrix(i,:), S);

Find which DAPs in individual S that smi can be assigned to according to the covering matrix
Matrix.
DAP_able_allocated represents the set of DAPs that can be allocated.

4: DAP_SM_quantity = Calculate_quantity(DAP_able_allocated);
5: Calculate the load of DAPs that can be distributed.
6: DAP_SM = add_to_minimal(DAP_SM_quantity, i);
7: Adding smi to a less loaded DAP.
8: end for
9: Output: Subnetwork of reallocated DAPs
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Step 3: Calculate the fitness value of each individual in the population species, as shown in Eq. (27):

f itness(S) = L =

!
""#∑τ

i=1 (Load(DAPi) − Load)2

τ
(27)

Step 4: Update the position of the explorer. Calculate the fitness value of each individual in the
population according to Step 3, and sort the population according to the fitness value. The top Epercent
individuals are the explorers, as shown in Eq. (28):

Xt+1
i , j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xt
i , j ⋅ ex p(− i

θ ⋅ itermax
) if R2 < ST

Xt
i , j + Q ⋅ p if R2 ≥ ST

(28)

where Xt
i j represents the position information of the ith individual in the explorer on the jth in the tth

iteration, which is the jth selected DAP. θ is a random number in [0, 1], itermax is the maximum number of
iterations,Q is a random number obeying a normal distribution, and p is a 1 × dim matrix with all ones. ST
represents the safety threshold, and R2 is a random number in [0, 1] indicating the warning value. When R2 <
ST , it means that the current location is safe; when R2 ≥ ST , it means that the current location is dangerous
and the individual needs to move to a safe area. After the position of each explorer is updated, such position
is restricted to within τ. The Distribute allocation mechanism is utilized to assign the SM, and the fitness
value of each explorer is then calculated.

Step 5: Update the location of the followers. In the population, all except explorers are followers. As
shown in Eq. (29):

Xt+1
i , j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q ⋅ ex p
⎛
⎝

Xt
worst − Xt

i , j

i2
⎞
⎠

if i < Z/2

Xt+1
p + ∣Xt

i , j − Xt+1
i , j ∣ ⋅ A+ ⋅ p otherwise

(29)

where Xt
worst is the worst individual in the tth iteration and Xt+1

p is the position of the current optimal
explorer, A+ = AT(AAT)−1. When the ith individual among the followers is the better follower of the first
half, the position is updated using the first subequation; when that follower is the worse follower of the second
half, it corresponds to the individual being very hungry and needing to randomly fly elsewhere in search
of food. Z is the number of followers. After the position of each follower is updated, the position of each
follower is restricted to within τ. The Distribute allocation mechanism is utilized to assign the SM, and then
the fitness value of each follower is calculated.

Step 6: Update the location of individuals aware of the danger. We randomly selected Dpercent
individuals from the population as individuals aware of the danger, as shown in Eq. (30):

Xt+1
i , j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xt
best + ψ ⋅ ∣Xt

i , j − Xt
best∣ if fi < fg

Xt
i , j + k ⋅

⎛
⎝
∣Xt

i , j − Xt
worst∣

( fi − fw) + ε
⎞
⎠

if fi = fg
(30)

where Xt
best is the optimal individual in the tth iteration, ψ is a random number that obeys a normal

distribution with a mean of 0 and a variance of 1, k is a random number of [−1, 1], fi is the fitness value of
the current individual, fg is the current worst fitness value, and ε is a constant that prevents the denominator
from being 0 and is usually very small. After the location of each individual who is aware of the danger is
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updated, such location is limited to τ. The Distribute allocation function is then used to allocate SM, and the
fitness value of the individual who is aware of the danger is calculated.

Step 7: Judge whether the stopping condition is satisfied; if so, output the optimal sparrow individual
position and the corresponding fitness value; otherwise, return to Step 4.

The detailed flowchart of APSSA is shown in Fig. 6.

Figure 6: Algorithm flowchart

5 Performance Evaluation
Experiments were conducted by deploying varying numbers of SMs in urban, suburban, and rural

environments within a 3000 × 3000 m2 area using the Poisson point process (PPP) [30]. PPP is a widely
used stochastic spatial process for modeling the random distribution of points in space. This model is highly
adaptable to diverse spatial scenarios and can be flexibly applied to different SM deployment configurations.
By adjusting PPP parameters, SM distributions with varying densities and patterns can be simulated. The
relevant parameters are prsented in Table 2.

Table 2: Simulation parameters

Parameter Value Parameter Value
N 4500 (urban) rc 100 m (urban)

2000 (suburban) 200 m (suburban)

(Continued)
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Table 2 (continued)

Parameter Value Parameter Value
500 (rural) 300 m (rural)

A $1000 d0 1 m
B 2.53 × 10−10 [12] PLd0 43 dB
C $5 [34] ω 3 [34]

dim τ ST [0.5, 1]
Epercent 20%–30% Dpercent 20%–30%

pop 100

In the simulation process, we evaluated the proposed APSSA algorithm using different values of the
reference degree coefficient α and distance threshold β. We also compared the APSSA algorithm with the
K-medoids [16] and CDPAavg [32] algorithms in terms of the average communication distance and load gap.

5.1 Analysis of the Reference Degree Coefficient α
The impact of different reference degree coefficients (α) on the number of DAPs selected by the APSSA

algorithm and the overall network cost was evaluated in three different deployment scenarios.
Fig. 7 illustrates the network costs associated with different α values in urban areas. As α decreases, the

reference degree of SMs increases, prompting the APSSA algorithm to select more DAPs to form subnetworks
wthin the wireless NAN network, which in turn, increases the installation and maintenance costs of DAPs.
However, with increased DAPs, the average transmission distance and number of hops between SMs and
DAPs decrease, thereby reducing data transmission and delay costs. In urban areas, the overall network cost
is lowest when α = 3.5 and highest when α = 6.5, where data transmission costs are considerably high.

Figure 7: Urban network costs
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The trend of network costs in suburban areas with different α values follows a pattern similar to that
observed in urban scenarios, as shown in Fig. 8. As distance and hop count ecrease, data transmission and
delay costs slo decline. In suburban areas, the overall network cost is lowest when α = 3, while it is highest
at α = 6.5, where the number of installed DAPs is minimal. However, at α = 6.5, data transmission costs
constitue a large proportion of the total network cost.

Figure 8: Suburban network costs

The network costs in rural areas for different values of α are shown in Fig. 9. When α = 1.5, the
transmission cost and delay costs are balanced against installation and maintenance costs, resulting in the
lowest overall network cost. In constrast, at α = 3, the overall network cost is the highest. Compared with
the urban and suburban areas, delay costs are notably higher in rural areas. This is due to the increased
distribution density of SMs in rural areas, which shortens the transmission distance between them but
increases the number of hops required for data transmission from SMs to DAPs.

The number of SMs distributed is a key factor influencing α values, as shown in Table 3. At lower α
values (e.g., α = 2 and α = 3), the number of DAPs increases with the number of SMs, although the growth
rate may vary. In contrast, at higher α values (e.g., α = 5 and α = 6), this growth trend is more moderate
and sometimes remains constant. Overall, the number of DAPs is more sensitive to increases in SM count at
lower α values, but the total number of selected DAPs continue to rise as the number of SMs increases.
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Figure 9: Rural network costs

Table 3: Reference degree coefficient α and number of SMs

N = 300 N = 400 N = 500 N = 600
α = 2 11 12 15 16
α = 3 10 10 11 14
α = 4 9 9 11 12
α = 5 8 8 10 11
α = 6 7 8 9 10

5.2 Analysis of the Distance Threshold β
To study the impact of the distance threshold β on the APSSA algorithm, we similarly tested different

values under the three regions. By testing different values of β, we can better understand its impact on the
optimized subnetwork and determine the best distance threshold setting. Notably, the values of the reference
degree coefficient α that we chose during our tests were all the lowest cost values, as mentioned before. It
was executed 100 times in each scenario separately.

As shown in Fig. 10, in the urban area, when the value of β was relatively small, the average transmission
distance between SMs and DAPs in the whole network was small, whereas the load gap was large. As the value
of β increased, the average transmission distance gradually increased while the load gap gradually decreased.
This was because, when the value of β was small, the SM could allocate fewer DAPs and could only choose
to communicate with the DAPs that were closer to it, which did not have a significant effect on reducing the
load gap. As the distance threshold (β) gradually increases, the number of DAPs that an SM can connect
also increases, allowing SMs to join DAP subnets with lower loads and helping to balance the load among
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between different DAPs. However, since SMs initially communicate with nearby in the subnetwork formation
process, switching to another DAP’s subnetwork leads to an increase in the average transmission distance.

Figure 10: Comparison of different β-values—Urban: (a) Average transmission distance in urban; (b) Load gap in
urban

In urban areas, when β = 1.2, the maximum average transmission distance is 185.98 m, and the minimum
is 184.88 m. The load gap ranges from a maximum of 17.2 to a minimum of 13.15. Compared with β = 1.1 and
β = 1.3, β = 1.2 effectively reduces the load gap among different DAPs, while keeping the average transmission
distance minimal, achieving a more balanced.

The effects of different β values on the optimized subnetwork in suburban areas are shown in Fig. 11.
As distance increases, the load gap decreases. When β = 1.2, the maximum average transmission distance is
219.57 m, and the minimum is 218.31 m. The load gap ranges from a minimum value of 17.8 to a minimum of
12.8.

Figure 11: Comparison of different β-values—Suburban: (a) Average transmission distance in suburban; (b) Load gap
in suburban
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Similarly, the influence of different β values on the optimal subnetwork in rural areas is shown in Fig. 12.
The maximum load gap value is 3.90, while the minimum is 3.38. When β = 1.2, the increase in the average
transmission distance of the wireless NAN network and the reduction in the load gap are relatively balanced,
effectively optimizing both objectives. Therefore, β = 1.2 is selected for subsequent experiments.

Figure 12: Comparison of different β-values—Rural: (a) Average transmission distance in rural; (b) Load gap in rural

The transmission distance is a key factor influencing β. The effect of transmission distance on the load
gap under a fixed value of β is shown in Table 4. Since the placement of SMs is random, no clear relationship
exists between different numbers of SMs at the same transmission distance. However, as the transmission
distance increases for a given number of SMs, the load gap between different DAPs gradually decreases, even
if β remains unchanged. This change occurs because a greater transmission distance allows SMs to connect
to more distant DAPs, which, under the influence of β, tend to be assigned to less-loaded DAPs, thereby
reducing the load gap across different DAPs.

Table 4: Distance threshold β and transmission distance

Rc = 300 Rc = 400 Rc = 500 Rc = 600
N = 300 7.64 5.46 5.05 4.89
N = 400 5.65 4.79 3.89 2.67
N = 500 4.98 3.82 3.74 3.65
N = 600 7.14 6.31 5.88 4.31

5.3 Comparison of Average Transmission Distance and Load Gap
In this subsection, the average transmission distance and DAP load gap of the proposed APSSA

algorithm are compared with the K-medoids and CDPAavg algorithms across three SM distribution density
areas. Since K-medoids and CDPAavg require a preset number of DAPs, the APSSA algorithm is first used
to determine the number of DAPs for different wireless NAN networks. This number is then applied to K-
medoids and CDPAavg to ensure fair comparison. The value of α in APSSA is set to the value that minimizes
network cost in each region, with the distance threshold fixed at β = 1.2.
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As shown in Fig. 13, the three DAP placement algorithms generate distinct DAP placements and
subnetworks in urban areas. Fig. 13a shows the proposed APSSA algorithm, Fig. 13b illustrates the CDPAavg
algorithm, and Fig. 13c presents the K-medoids algorithm. In each figure, red dots indicate DAP placements,
and different colors represent subnetworks formed by SMs within the NAN. Evidently, APSSA, K-medoids,
and CDPAavg yield different DAP placement results and subnetwork structures. Given the high SM dis-
tribution density in urban areas and the relatively short transmission distances between SMs, the average
transmission distance between SMs and DAPs is lower in urban areas than in suburban and rural areas,
whereas the SM coverage density per unit area of each DAP is the highest.

Figure 13: Demonstration of the three algorithmic realizations of DAP placement and the corresponding subnetwork—
Urban: (a) Demonstration of the APSSA in urban; (b) Demonstration of the CDPAavg in urban; (c) Demonstration of
the K-medoids in urban
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Fig. 14 shows the placements of DAPs selected by the three algorithms in the suburban area and the
corresponding subnetworks formed by the different DAPs. In this scenario, 2000 SMs are distributed over
the same area as in the urban area, but the SM density is lower. In addition, the suburban area has fewer DAPs
than the urban area. Comparing Figs. 14 and 13, DAPs in suburban areas cover larger regions than those in
urban areas, leading to an increase in the average transmission distance from SMs to DAPs and a decrease
in the SM coverage density per DAP per unit area.

Figure 14: Demonstration of the three algorithmic realizations of DAP placement and the corresponding subnetwork—
Suburban: (a) Demonstration of the APSSA in suburban; (b) Demonstration of the CDPAavg in suburban; (c)
Demonstration of the K-medoids in suburban
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Fig. 15 presents the selected DAP placements and corresponding subnetworks for the three algo-
rithms in rural areas. Compared with urban and suburban areas, SMs in rural areas are less densely
distributed, the distance between SMs is larger, and the network contains communication links with longer
transmission paths.

Figure 15: Demonstration of the three algorithmic realizations of DAP placement and the corresponding subnetwork—
Rural: (a) Demonstration of the APSSA in ruarl; (b) Demonstration of the CDPAavg in ruarl; (c) Demonstration of the
K-medoids in ruarl
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To reflect the real performance of the three algorithms, we executed each of them 100 times under each
region and plotted the obtained results as cumulative distribution function (CDF) plots, as shown in Figs. 16–
18. In this case, the reference degree coefficient α in APSSA was chosen to be the value that minimized the
cost of the network, and the distance threshold β = 1.2.

Figure 16: Comparison of average transmission distance and DAP load gap—Urban: (a) Average transmission distance
comparison in urban; (b) Load gap comparison in urban

Figure 17: Comparison of average transmission distance and DAP load gap—Suburban: (a) Average transmission
distance comparison in suburban; (b) Load gap comparison in suburban
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Figure 18: Comparison of average transmission distance and DAP load gap—Rural: (a) Average transmission distance
comparison in rural; (b) Load gap comparison in rural

Fig. 16a depicts the plot of the CDF of the average transmission distance achieved by APSSA, K-
medoids, and CDPAavg under the urban area. Apparently, APSSA outperformed CDPAavg in reducing the
average transmission distance but did not have much advantage over K-medoids. Compared with K-medoids
and CDPAavg, APSSA had a narrower curve, which meant that the difference between the maximum and
minimum values of the average distance produced by each run was smaller. Thus, APSSA was more stable
compared with the other two algorithms. Fig. 16b illustrates the load gap generated by the three algorithms.
The results demonstrate that the proposed APSSA algorithm maintains a load gap between 14.9 and 17.5,
which demonstrates greater stability compared withthe CDPAavg and K-medoids algorithms. In addition,
the proposed APSSA algorithm achieves much smaller load gap than the other two algorithms.

The experimental results for the suburban area, shown in Fig. 17, indicate that the APSSA algorithm
outperforms CDPAavg and slightly outperforms K-medoids in terms of average transmission distance. In
addition, APSSA demonstrates better stability, as the gap between its minimum and maximum average
transmission distances is smaller than that of the other two algorithms. Regarding the load gap, APSSA
achieves a range of 12.8–17.2, outperforming CDPAavg and K-medoids. The average transmission distance
for all three algorithms increases compared with the urban area, which is attributed to the lower SM
distribution density in suburban areas, leading to greater distances between SM nodes and necessitating
longer transmission distances to DAPs.

In rural areas, as shown in Fig. 18, APSSA outperforms CDPAavg and K-medoids in terms of average
transmission distance while also demonstrating greater stability. Regarding the load gap, APSSA achieves a
maximum value of 3.72 and a minimum value of 3.11, thereby reducing the load imbalance across DAPs.

5.4 Analysis of the APSSA Algorithm
Time and space complexities are critical factors in algorithm design and selection. The time complexity

directly influences the algorithm’s execution speed and determines its efficiency in handling large-scale data.
In addition, space complexity pertains to the algorithm’s memory consumption, which affects its scalability
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and stability. In the smart grid DAP placement problem, selecting an optimal algorithm requires balancing
these complexities based on problem-specific characteristics.

During NAN operation, the placement and number of installed DAPs installed considerably influence
communication performance. First, DAPs’ placement directly influences the transmission distances between
DAPs and SMs, thereby affecting the energy consumption and network transmission rates. Second, the
number of installed DAPs determines the operational cost of NAN, which requires an optimal balance
between cost efficiency and adequate network coverage. Finally, each DAP has a maximum load capacity
that limits the number of SMs it can support. If a DAP exceeds its capacity, it may experience overload,
leading to increased power transmission delays and hindering real-time monitoring and control of the SM
information transmitted by the control center, thereby affects the normal operation of the power system. To
comprehensively and efficiently address these challenges, we improved two well-performing DAP placement
algorithms and developed the APSSA algorithm, optimizing placement strategies while ensuring improved
network performance.

The time complexity of APSSA is O(N3 + pop × M × τ2), where N3 represents core computations
related to SM placement analysis for optimal DAP placement, while pop × M × τ2 accounts for the
population-based load balancing iterations. By appropriately setting the population size M and iteration
count τ, APSSA ensures computational efficiency, even for large-scale SM deployments. Although pop ×
M × τ2 increases with the the number of SMs, its growth rate remains relatively controllable. Compared to
other algorithms, APSSA achieves a superior balance between computational complexity and performance
for large-scale data. The space complexity of APSSA is O(N2 + N × τ), reflecting memory requirements
for storing SM placements and computational results. While space complexity scales with the number of
SMs, APSSA avoids excessive memory consumption, enabling stable operation in resource-constrained
environments. These findings demonstrate that the APSSA algorithm exhibits good performance in both
time and space complexity, making it well-suited for large-scale smart grids.

6 Conclusion and Future Directions
The number and location of DAPs affect the cost and quality of building NAN communication networks,

and the DAP placement problem is more tightly constrained because of the different locations of SMs in
different NANs. In this paper, we focused on the number and placement of DAPs in a NAN, aiming to
minimize the average transmission distance between SMs and their DAPs while reducing the gap in the
number of loads between different DAPs in the network. We described the objective functions of reducing
the network cost, minimizing the average transmission distance, and reducing the gap in the number of
loads in a NAN and proposed the APSSA algorithm based on the AP and SSA algorithms to solve the DAP
placement problem. First, we improved the AP clustering algorithm, which enabled the APSSA algorithm to
automatically select the appropriate number and location of DAPs based on the number and location of SMs
to reduce the average distance. Second, we added an allocation mechanism in the SSA algorithm to optimize
the subnetwork for balancing the loads of different DAPs and reducing the gap in the number of loads. In this
paper, three different regions were selected to evaluate the APSSA algorithm and compare it with two other
DAP placement algorithms. The experimental results demonstrated that our proposed APSSA algorithm can
effectively shorten the average transmission distance, reduce the load gap, and outperform the other two
DAP placement algorithms.

In the future, in addition to shortening the average transmission distance between DAPs and SMs
and reducing the load gap, other objectives may include robustness and energy consumption. Actual DAP
placement requires multiobjective optimization, which requires trade-offs between these objectives based
on practical needs. When a DAP fails, it leads to a disconnection between the subnetwork where this DAP
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is located and the main network. This problem stimulates the research on the resilience and reliability of
the AMI network for the failure of DAPs and SMs. Further experiments will validate APSSA in three large
residential areas near Fujian University of Technology, each containing over ten buildings with 20–30 floors
and multiple households per floor. These real-world scenarios will further assess APSSA’s effectiveness in
large-scale deployments.
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Nomenclature
DAP Data Aggregation Point
SSA Sparrow Search Algorithm
WAN Wide Area Network
HAN Home Area Network
NAN Neighborhood Area Network
IoT Internet of Things
SM Smart Meter
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