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ABSTRACT: Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.
However, this task is challenging due to the morphological similarities between abnormal and normal cells and the
significant variations in cell size. Pathologists often refer to surrounding cells to identify abnormalities. To emulate
this slide examination behavior, this study proposes a Multi-Scale Feature Fusion Network (MSFF-Net) for detecting
cervical abnormal cells. MSFF-Net employs a Cross-Scale Pooling Model (CSPM) to effectively capture diverse features
and contextual information, ranging from local details to the overall structure. Additionally, a Multi-Scale Fusion
Attention (MSFA) module is introduced to mitigate the impact of cell size variations by adaptively fusing local and
global information at different scales. To handle the complex environment of cervical cell images, such as cell adhesion
and overlapping, the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding
boxes, thereby improving detection accuracy in such scenarios. Experimental results on the Comparison detector
dataset demonstrate that MSFF-Net achieves a mean average precision (mAP) of 63.2%, outperforming state-of-the-art
methods while maintaining a relatively small number of parameters (26.8 M). This study highlights the effectiveness
of multi-scale feature fusion in enhancing the detection of cervical abnormal cells, contributing to more accurate and
efficient cervical cancer screening.
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1 Introduction
Cervical cancer ranks as the fourth most common cancer in women globally, with around 604,000

new cases and 342,000 deaths in 2020 [1]. Notably, while the development of cervical cancer is relatively
slow-typically taking around 10 years to progress from high-risk HPV infection through precancerous
abnormalities to invasive cancer-the disease is highly treatable if detected early. This lengthy progression
period offers a valuable window for effective screening and intervention, with timely screening shown to
reduce incidence by at least 60% [2].Currently, the most commonly used method for cervical cancer detection
is cytology-based screening, primarily conducted through liquid-based cervical cytology using Thinprep
cytologic test(TCT) [3]. Physicians collect cervical cell samples from patients, prepare cervical cell slides, and
perform visual inspections under a microscope, along with cytopathological analyses. Pathologists provide
preliminary diagnostic opinions by evaluating cell types and morphological characteristics, such as nuclear
size and the nuclear-to-cytoplasm ratio. However, manual analysis of cell slides is tedious, time-consuming,
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and highly subjective, which increases the likelihood of errors [4]. Moreover, since abnormal cells constitute
only a small fraction of image samples, this further exacerbates the waste of medical resources.

With advancements in image processing technology and computational power, deep learning-based
analysis of cervical cancer cell images has become increasingly widespread. Early detection methods for
cervical abnormal cells typically involve three key steps: cell segmentation (cytoplasm and nucleus), feature
extraction, and cell classification [5]. The identification of abnormal cells relies on morphological changes
in the nucleus and cytoplasm, with cell segmentation considered a crucial initial step. However, cervical
cell segmentation remains a challenge due to high inter-cell similarity, significant size variations, and the
complexities of the imaging environment [6]. The subsequent classification relies on the extraction of
handcrafted features such as cell shape, size, color, and texture, whose accuracy is inherently tied to the
precision of segmentation [7]. Once segmentation errors occur, classification accuracy can be significantly
reduced, ultimately impacting the detection precision of abnormal cervical cells.

To address this issue, the direct application of end-to-end object detectors for detecting abnormal
cervical cells has proven to be an effective solution. Faster R-CNN [8] and RetinaNet [9] have been directly
applied to large cervical cell datasets for detection [10]. However, cervical cell images differ from other
natural images, such as those of animals or vehicles, due to their unique characteristics. Therefore, it is
essential to fully consider the specific morphological features of cervical cell images when detecting abnormal
cells. In the detection of abnormal cervical cells, there may be small differences between classes (inter-
class) and large variations within the same class (intra-class). As shown in Fig. 1d illustrates two cells from
different lesion categories that appear similar in appearance, while (e) shows two cells from the same
lesion category that differ significantly in appearance. Additionally, cervical cell images exhibit notable
variations in cell size, as seen in Fig. 1; some cells are very small (e.g., Fig. 1b), while others are relatively
large (e.g., Fig. 1c). Therefore, relying solely on local inference is often insufficient. Clinically, cytopathologists
typically compare the target cell with surrounding cells as a reference to determine whether it is normal or
abnormal. Existing methods [11–13] lack feature interactions between cells, which can lead to suboptimal
classification performance.

To more closely replicate the way pathologists reference surrounding cells during slide examination
to identify abnormalities and enhance feature interaction between cells, while addressing the challenges
associated with subtle intercellular differences and notable size variations, this study proposes a multi-scale
feature fusion method (MSFF-Net) for detecting abnormal cervical cells. Specifically, we designed a feature
extraction framework based on a pyramid pooling structure to fully leverage contextual relationships among
cervical cells and to strengthen feature interactions between them. Additionally, we developed an attention-
based multi-scale feature fusion approach that efficiently integrates multi-scale features and accentuates
critical characteristics, thereby better accommodating substantial variations in cell size.

The primary contributions of this study are as follows:
1. To emulate how pathologists reference surrounding cell features to identify abnormalities and to

enhance feature interactions between cells, this study introduces a multi-scale feature fusion network (MSFF-
Net) designed to address substantial intra-class variability, minimal inter-class differences, and significant
cell size variations.

2. Inspired by the way pathologists reference surrounding cell features, this study adopts an approach
focused on capturing long-range contextual information, introducing a cross-scale pooling method (CSPM)
for multi-scale feature extraction to enrich both local and global information.
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3. Expanding on the idea of multi-scale feature fusion, this study enhances cross-scale feature integration
and dynamically adjusts feature weights, resulting in a multi-scale fusion attention module (MSFA) to
effectively handle considerable cervical cell size variations.

4. The proposed method was validated on publicly available datasets, showing better overall perfor-
mance than current state-of-the-art general and specific detection methods. achieving a 2.6% increase in
detection accuracy.

Figure 1: Description of abnormal cervical cells in the Comparison Detector dataset. (a) Size distribution histogram
of abnormal cervical cells (in pixels). (b) Smaller cervical abnormal cells. (c) Larger cervical abnormal cells. The blue
and red boxes in (a) indicate the positions of the cell sizes in (b) and (c) within the overall distribution. (d) Two
cell clusters from different lesion categories that appear similar in appearance, making them difficult to distinguish,
showing minimal differences between categories. (e) Similarly, two cervical cells categorized as LSIL, but with significant
differences in appearance, indicating considerable variation within the same category

2 Related Work
In recent years, with the widespread application of computers in medical imaging, the automatic

detection of cervical lesion cells has become possible. Nasir et al. [14] utilized a federated machine learning
technique with Bayesian regularization to predict cervical cancer. Xiang et al. [15] modified YOLOv3
to improve recognition performance for difficult categories by integrating a task-specific classifier into
the original model, enabling the detection of 10 distinct abnormal cell types. Ontor, Md Zahid Hasan,
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et al. [16]compared the performance of YOLOv5 and its variants on cervical cell detection to identify
the most suitable model for constructing a low-cost automated system for early-stage cervical cancer
diagnosis. Jin et al. [17] proposed FuseDLAM to rapidly localize single squamous epithelial cells, effectively
leveraging extracted features for segmentation and classification, thus reducing the reliance on expensive
manual annotations. However, their approach relied solely on local information from cervical cell images,
disregarding the broader contextual information.

To better leverage the full contextual scope for detecting abnormal cells. Liang et al. [18] proposed a
global context-aware framework, incorporating an additional image-level classification branch to reduce
false-positive predictions. Liang et al. [19] enriched the attention-based RoI features by encoding the
relationships between cells and global context information. However, cell size variability is common in
microscope images, and these methods continue to face challenges in addressing this scale diversity, which
may result in missed diagnoses. To address the issue of size inconsistency, Cao et al. [20] implemented
channel and spatial attention mechanisms within Faster R-CNN to improve cell detection performance,
effectively addressing the issue of size variation by refining feature extraction to discern which features
to emphasize or suppress. However, their approach did not consider interactions between cell features. In
studies related to auxiliary screening for cervical cancer, several methods have been proposed to address the
issue of diverse object scales. Duan et al. [21] employed heterogeneous receptive field convolutions to extract
multi-scale features and address size inconsistencies in lesion regions of colpo scopic images. Khan et al. [22]
used an ensemble learning approach based on multi-scale Transformers for analyzing whole slide images
(WSI) to detect cells at different stages. These methods inspired us to adopt a multi-scale approach to address
the scale diversity of cervical cells, which enhances the model’s adaptability to objects of varying sizes [23].

This study distinguishes itself from existing approaches by incorporating multi-scale feature fusion,
which effectively integrates local details and global contextual information while enhancing interactions
between cell features. Unlike traditional methods that primarily focus on single-scale features or rely
solely on local information, the proposed approach demonstrates superior adaptability to cell size diversity
and leverages both contextual and inter-cell relational features, resulting in improved detection accuracy
and robustness.

3 Method
This study presents a multi-scale feature fusion method (MSFF-Net) for cervical abnormal cell detec-

tion based on YOLOv8, designed to enhance inter-cell feature interactions to more closely replicate the
examination approach of pathologists. Compared to existing methods, MSFF-Net achieves better accuracy
by enhancing inter-cell feature interactions and integrating both local and global contextual information.
Specifically, the CSPM module addresses challenges posed by subtle differences between abnormal and nor-
mal cells, while the MSFA module adapts to the multi-scale characteristics of detection targets. Additionally,
the Inner-CIoU loss function improves bounding box regression for overlapping or ambiguous lesions,
making MSFF-Net particularly suitable for cervical cancer screening in clinical practice.

The MSFF-Net architecture, illustrated in Fig. 2, comprises three main components: the backbone
network, neck module, and detection heads. Initially, the input image undergoes preprocessing with Mosaic
high-order data augmentation strategy and adaptive image adjustment strategy. The backbone network is
responsible for feature extraction, merging high-resolution but semantically shallow feature maps with low-
resolution, semantically rich deep feature maps to produce high-resolution, semantically enriched feature
maps that enhance detection performance. The CSPM module combines multiple grouped convolution
blocks (including 1 × 1 and 3 × 3 convolutions) with three serial max pooling layers of varying receptive
fields, thereby improving cell feature interaction while reducing parameter count. The neck module, which



Comput Mater Contin. 2025;83(1) 563

incorporates FPN and PAN structures, fuses deep and shallow features and utilizes the MSFA module for
efficient multi-scale feature integration, resulting in more informative fused features. Finally, three detection
heads, specifically tailored for large, medium, and small targets, are employed to achieve precise detection
of cervical abnormal cells.

Figure 2: Structure diagram of MSFF-Net. The figure primarily consists of three parts: (1) a flowchart of the network’s
detection process; (2) the CSPM module for capturing contextual information; and (3) the MSFA, which is placed in
front of three detection heads to fuse multi-scale features for targets of different sizes

3.1 Cross-Scale Pooling Model
The CSPM module is designed to address the limitations of YOLOv8’s original SPPF module, which

struggles with capturing long-range contextual information. Unlike traditional pooling approaches, CSPM
combines grouped convolutions with multi-scale pooling to effectively capture features across diverse
receptive fields. This design allows CSPM to integrate both detailed local features and global context,
mimicking the diagnostic behavior of pathologists who compare suspicious abnormal cells with surrounding
normal cells. The structure of CSPM is depicted in Fig. 2a.

The CSPM module first segments the feature maps along the channel dimension [24], which reduces
computational load and parameter count while preserving information integrity. Specifically, it divides the
input feature map into two parts along the channel dimension, applies different operations to each part,
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and then reassembles the feature maps. One part performs simple feature extraction, while the other applies
multiple convolutions followed by pooling operations at different scales to capture features from diverse
receptive fields, thus enhancing the model’s ability to detect multi-scale targets. This multi-scale pooling
strategy uses a series of pooling layers of varying sizes, allowing the feature maps to progressively acquire
contextual information at multiple scales through pooling at each layer. The three pooling layers, each with
a distinct size, capture detailed features, medium-range features, and long-range contextual information,
respectively. By concatenating features extracted from these multi-scale pooling layers, the CSPM module
generates a feature map rich in scale information, incorporating both detailed local information and
comprehensive global context. Additionally, by integrating multiple convolutional layers of varying sizes, the
module further refines and enhances complex image features. When the feature maps from both branches
are reassembled, the CSPM module produces a richer feature representation, ultimately improving object
detection performance.

The process is described by the following formula:

G1 , G2 = Group(Xinput) (1)
Fconv1 = Conv1×1(G1) (2)
Fconv2 = Conv1×1 (Conv3×3 (Conv1×1(G2))) (3)
Pk=i =MaxPool2Dk=i(Fconv2)(i = 3, 5, 9) (4)
Foutput = Conv1×1 (Concat (Conv3×3 (Conv1×1 (Concat (Pk=3, Pk=5, Pk=9))) , Fconv1)) (5)

In the formula, G1 , G2 represent the grouped input features Xinput, where G1 is used to extract local
features Fconv1, and G2 undergoes multiple convolution layers to generate deep features Fconv2. Then, Fconv2
is processed through max-pooling operations with different kernel sizes (k = 3, 5, 9) to produce multi-
scale features Pk=3, Pk=5, Pk=9. Finally, the multi-scale features are fused with local features and passed
through a 1 × 1 convolution to generate the final output Foutput. This process combines local and multi-
scale information, enhancing the model’s detection capability. Applied to the cervical cell detection, the
CSPM module effectively captures both local and global cell features during the feature extraction stage
by integrating multiple convolutional and multi-level pooling layers, thereby improving the accuracy and
reliability of abnormal cervical cell detection.

3.2 Multi-Scale Fusion Attention
Given the significant variation in the sizes, shapes, and orientations of cervical abnormal cells, an

effective detection approach must handle diverse features. This study introduces the multi-scale feature
fusion attention module (MSFA), which enhances detection by employing multi-branch depthwise convolu-
tions and attention mechanisms. Strip depthwise convolutions address irregularly shaped cells, while spatial
attention mechanisms improve abnormal cell localization. These designs enhance MSFF-Net’s adaptability
to diverse clinical imaging conditions. As illustrated in Fig. 2b, the MSFA module is primarily composed of
the following components:

First, a Depthwise Convolution (Dconv 5 × 5) [25] is employed to decrease the parameter count while
aggregating local information. Next, multi-branch depthwise convolution kernels of different sizes [26] are
employed to capture feature information in various directions (horizontal and vertical). Since the three
detection heads are primarily designed for detecting targets of three different sizes, the MSFA used in front
of each detection head also utilizes multi-branch depthwise convolutions of varying sizes. Then, a 1 × 1
convolution is applied to model the relationships between different channels. The attention weights are
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applied to each channel of the original feature map, generating an attention-weighted map that highlights
relevant channels and suppresses irrelevant ones.

Additionally, inspired by the feature of spatial attention [27], thisThe module improves abnormal cell
localization accuracy. MaxPool and AvgPool are applied to extract local and maximal features, respectively,
creating features at different contextual scales. The features are then combined along the channel axis to
create a feature map that incorporates multi-scale contextual information, which is processed by a 7 × 7
convolution to generate spatial attention weights. The obtained spatial attention weights are applied to the
feature map, adjusting the importance of each spatial location. This enhances key features and diminishes
less important ones.

The process is described by the following formula:

Mc(F) = Conv1×1 (
3
∑
i=0

Scal ei(DConv5×5(F))) (6)

Scal ei = DConvk j × 1 (DConv1×k j) (i ∈ {1, 2, 3}, j ∈ {1, 2, 3}) (7)

F′ = Mc(F) ⊗ F (8)
Ms = σ (Conv7×7 ([Avgpool(F′); Maxpool(F′)])) (9)
F′′ = Ms(F′) ⊗ F′ (10)

F represents the input features, F′′ is the final output.⊗ denotes the element-wise matrix multiplication
operation. DConv represents Depthwise Convolution. Scal ei , i ∈ {1, 2, 3} denotes the i-th branch of the
multi-branch depthwise convolution stage in the figure. Here DConvk j×1 and Dconv1×k j represent d(k j × 1)
and d(1 × k j), indicating the sizes of the strip depthwise convolution kernels used in this study. Since the
MSFF-Net proposed in this study has three detection heads, each is used to detect targets larger than 8 × 8,
16 × 16, 32 × 32. Thus, each kernel size in the multi-branch depthwise convolution of the MSFA in front of
the three detection heads differs, adjusted according to the target sizes of the corresponding detection heads.
In each branch, this study employs two strip depthwise convolutions to approximate standard depthwise
convolutions. On one hand, this approach significantly reduces computational load and parameter count,
thereby enhancing the model’s training and inference speed. On the other hand, since cervical lesion cells
often exhibit irregular shapes and sizes, the directional kernel design of strip depthwise convolutions is more
suitable for adapting to these characteristics.

3.3 Bounding Box Loss
The environment of cervical cells is relatively complex, often accompanied by phenomena such as cell

adhesion, overlap, and obstruction. When the detection targets overlap, CIoU considers only the overlapping
area of the bounding boxes [28], which can result in an IoU value close to 1 while neglecting the relative
position and shape differences of the bounding boxes. This situation can mislead the detection network,
making it difficult to accurately distinguish overlapping targets. To tackle this problem, this study improves
the original bounding box loss function.

Zhang et al. analyzed the process of bounding box regression and proposed the Inner-IoU [29] method
that calculates the IoU loss through auxiliary bounding boxes. On this basis, this study further optimizes the
CIoU loss function and forms the Inner-CIoU loss function. The method, when dealing with overlapping
cervical cells, comprehensively takes into account the relative positions and size differences of the bounding
boxes. It not only focuses on the overlapping areas but also captures the positional information between cells
with blurred boundaries, thus helping the model handle boundary ambiguity more effectively. The size of the
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auxiliary bounding box in Inner-IoU can be controlled by the scale factor ratio. The ratio is a scaling factor,
and when the ratio is 1, the size of the auxiliary bounding box is equal to the actual bounding box. In this
study, the ratio is set to 0.7. Its calculation method is shown in Eq. (17).

bg t
l = x g t

c −
w g t × ratio

2
, bg t

r = x g t
c +

w g t × ratio
2

(11)

bg t
t = yg t

c −
hg t × ratio

2
, bg t

b = yg t
c +

hg t × ratio
2

(12)

bl = xc −
w × ratio

2
, br = xc +

w × ratio
2

(13)

bt = yc −
h × ratio

2
, bb = yc +

h × ratio
2

(14)

inter = (min(bg t
r , br) −max(bg t

l , bl)) × (min(bg t
b , bb) −max(bg t

t , bt)) (15)
union = (w g t × hg t) × (ratio)2 + (w × h) × (ratio)2 − inter (16)

IoUinner =
inter
union

(17)

Unlike the conventional IoU loss, when the ratio is below 1, the auxiliary bounding box is smaller than
the actual one, limiting the effective regression range. However, its larger gradient accelerates convergence
for high IoU samples. When the ratio exceeds 1, the larger auxiliary bounding box expands the regression
range, aiding low IoU regression. The Inner-CIoU loss function is expressed as:

LInner−CIoU = 1 − IoUinner +
ρ2(b, bg t)

c2 + αϑ (18)

α = ϑ
(1 − IoU) + ϑ

(19)

ϑ = 4
π2 (arctan w g t

hg t − arctan w
h
)

2

(20)

where α is the weight function, ϑ is used to measure the aspect ratio. Inner-CIoU not only introduces the
auxiliary bounding box but also takes into account the center point distance and the aspect ratio of the
bounding box.

4 Experiments
To verify the effectiveness of the proposed method, mean Average Precision (mAP) is utilized as the

primary evaluation metric, and comparative experiments alongside ablation studies are conducted on the
Comparison Detector dataset. In this study, YOLOv8 serves as the baseline network, with accuracy assessed
on the cervical cell dataset based on the proposed approach. The comparative experiments demonstrate that
the proposed method surpasses existing techniques in both segmentation accuracy and parameter efficiency
for abnormal cell detection tasks. Furthermore, the ablation studies indicate that the CSPM and MSFA
modules, as integral components of the network, consistently enhance detection performance and prove
effective in the context of cervical cell images. As a reliable metric for evaluating detection quality, mAP
further corroborates the effectiveness of the proposed approach.
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4.1 Implementation Details and Evaluation Metrics
In this experiment, the input images are of resolution 640 × 640 and undergo data augmentation to

enhance performance. The training uses the SGD optimizer with a momentum of 0.937, an initial learning
rate of 0.01, a batch size of 16, and a weight decay of 0.0005. The total training duration is set to 100 epochs.
Detection accuracy is evaluated using the mAP metric, where the precision and recall for 11 categories are
first calculated during the mAP computation process.

Precision = TP
TP + FP

(21)

Recall = TP
TP + FN

(22)

In formulas Eqs. (21) and (22), TP represents the number of correctly detected lesion cells, FP represents
the number of incorrectly detected lesion cells, and FN represents the number of missed lesion cells. The
average precision (AP) for each category is calculated as follows:

AP = ∫
1

0
P(R) dR (23)

mAP = ∑
m
i=1 APi

m
(24)

Finally, the mAP is obtained by summing the AP values of all categories and taking the average. In
addition, “params” is used as an evaluation metric to measure the complexity and training difficulty of the
model, with these factors directly impacting the model’s performance and training efficiency.

4.2 Datasets
This study evaluates the proposed MSFF-Net on two datasets used for cervical cell lesion detection.
Comparison detector: This publicly available cervical cytology image dataset, sourced from [11], is

intended for detecting cervical lesions. The dataset consists of 7,410 cervical microscopic images, which were
extracted from whole-slide images (WSI) captured with the Pannoramic WSI II digital slide scanner. The
specimens were processed using the Papsmear (Pap) staining method. The dataset is divided into a training
set with 6,666 images and a test set with 744 images. All images were annotated by experienced pathologists.
The cell dataset includes 11 categories: ASCUS (atypical squamous cells of undetermined significance),
LSIL (low-grade squamous intraepithelial lesions), ASCH (atypical squamous cells, cannot exclude high-
grade squamous intraepithelial lesion), HSIL (high-grade squamous intraepithelial lesions), SCC (squamous
cell carcinoma), TRICH (trichomonas), CAND (candida), AGC (atypical glandular cells), FLORA(flora),
HERPS (herpes), and ACTIN(actinomyces), as detailed in Table 1. Some example images are shown in Fig. 3.
The dataset presents challenges due to the large variety of cell types, imbalanced class distribution, and
complex backgrounds. To accurately detect the lesion cells, the detection model needs to have strong feature
extraction and generalization capabilities.

Table 1: The lesion categories in the dataset and the corresponding number of annotation boxes

Lesion type Train Test Total
ASCUS 1835 222 2057
ASCH 3891 410 4301

(Continued)
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Table 1 (continued)

Lesion type Train Test Total
HSIL 26,305 2823 29,128
LSIL 1466 173 1639

ACTIN 144 18 162
SCC 1991 229 2290
AGC 4989 668 5657

TRICH 4977 481 5453
CAND 336 27 363
FLORA 127 24 151
HERPS 272 37 309
Total 46,333 5112 51,445

Figure 3: Cervical cell/clumps at different stages of lesions

DCCL: The dataset, jointly released by Huawei Cloud and KingMed Diagnostics, includes 933 positive
cases and 234 normal cases. Annotations for some cervical epithelial cells were performed by six experienced
pathologists. The dataset consists of a total of 6301 images, with 3343 for training, 1193 for validation, and
1765 for testing. It is primarily used for semi-supervised learning [10]. The labels in the dataset include six
lesion types: ASCUS, LSIL, HSIL, ASCH, SCC, and AGC, along with one false-positive label: NILM.

4.3 Comparison Experiments
This study compares the proposed MSFF-Net abnormal cell detection method with currently available

cervical abnormal cell detection methods, as well as some general detectors. Table 2 shows the detection
results of various networks, with experimental results from the original studies.

The experimental results demonstrate that MSFF-Net network demonstrates superior detection per-
formance on the Comparison detector dataset. From the data in the table, the following can be observed:
(1) Based on YOLOv8, the proposed approach enhances detection accuracy, validating the effectiveness
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of the MSFF-Net. (2) Compared to the best existing models, the performance of the proposed method
surpasses others while significantly reducing the number of parameters, proving the superiority of the
proposed approach.

Table 2: Comparison of MSFF-Net experimental results with other methods on the Comparison detector dataset

Method mAP@0.5(%) mAP@0.5:0.95(%) Params(M)
Faster R-CNN 57.8 30.1 41.17
RetinaNet [9] 52.9 – 36.31
Comparison
detector [11]

48.8 – –

* Faster R-CNN [30] 61.6 – 41.17
YOLOv7 60.6 33.0 34.84

* YOLOv5 [31] 62.2 – –
YOLOv10 [32] 60.9 34.5 19.1

YOLOv8m (Baseline) 60.6 34.2 25.8
MSFF-Net 63.2 36.4 26.8

Note: *represents the improved methods from the cited papers. Bold values represent the best results.

In addition to objective metrics, the detection results of two instances from the dataset are visual-
ized in Fig. 4. The results show that the proposed MSFF-Net demonstrates better detection performance
compared to YOLOv8.

Figure 4: Visualization of detection results for two instances from the Comparison detector, labeled as (a) and (b). In
group (a), the baseline YOLOv8 detection missed an HSIL cell, resulting in a false negative. Additionally, background
errors occurred, with two normal cells incorrectly detected as HSIL cells. The proposed MSFF-Net avoided both the
background errors and the missed detection. In group (b), the baseline YOLOv8 detection resulted in two background
errors, which were corrected using the proposed MSFF-Net
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This study also uses heat map to visualize some of the outputs of YOLOv8 and MSFF-Net. The heat map
for two instances from the dataset are shown in the Fig. 5. YOLOv8’s attention is relatively scattered, with
some focus on the background. In contrast, MSFF-Net demonstrates strong attention to all abnormal cells.
This is demonstrated in Fig. 5a and b, respectively. This suggests that in detecting cervical abnormal cells,
MSFF-Net can better highlights the features of the abnormal cells.

Figure 5: Presents heat map visualizations for two examples. (a) and (b) show the visualization results of the first
example using YOLOv8 and MSFF-Net, respectively. In (a), while YOLOv8 demonstrates good focus on abnormal
cells, its accuracy is lower compared to MSFF-Net, and its attention covers a wider area. (c) and (d) show the second
example’s detection results using YOLOv8 and MSFF-Net, respectively. In (c), issues such as dispersed attention lead
to misdetection, while in (d), MSFF-Net resolves this problem, providing more precise localization for the two ASCH
abnormal cells

To further validate the method’s effectiveness presented in this study, it is also applied to the DCCL
dataset. The experimental results of the method proposed in this study compared to other model methods are
shown in Table 3. The accuracy achieved using the MSFF-Net network is higher than that of other methods.
However, the accuracy remains low, which is due to the incomplete labeling of the DCCL dataset limits the
learnable features, making it more suited for semi-supervised learning.

Table 3: A comparison of detection performance between MSFF-Net and leading detection models on the DCCL dataset
(evaluation metric: mAP@0.5(%))

Model Fine-Grained Coarse-Grained

ASCUS LSIL ASCH HSIL SCC AGC Total
Faster R-CNN 21.01 20.46 14.1 10.73 10.41 25.71 17.1

Retina-Net 18.71 19.89 11.86 10.08 12.67 22.39 15.93
MSFF-Net 26.5 20.8 21.7 21.5 9.79 11.8 18.5

Note: Bold values represent the best results.

4.4 Ablation Experiments
Effects of Network Components: To assess the impact of the improvement strategies proposed in this

study, Ablation experiments were performed on the baseline model using the Comparison Detector dataset
to evaluate the effects of various methods in MSFF-Net. The comparison results are presented in Table 4.

Table 4: Ablation experiments: the impact of each module on the detection performance for the cervical cell dataset

Base CSPM MSFA Inner-CIoU mAP@0.5(%) mAP@0.5:0.95(%)
✓ 60.6 34.2

(Continued)
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Table 4 (continued)

Base CSPM MSFA Inner-CIoU mAP@0.5(%) mAP@0.5:0.95(%)
✓ ✓ 61.8 34.9
✓ ✓ 62.4 36.0
✓ ✓ 61.3 34.2
✓ ✓ ✓ 62.8 36.2
✓ ✓ ✓ 62.0 34.8
✓ ✓ ✓ 62.6 36.0
✓ ✓ ✓ ✓ 63.2 36.4

Note: ✓ indicates the inclusion of the corresponding module in the ablation experiment. Bold values represent the
best results.

Cross-Scale Pooling Model Experiments: By adding CSPM, we observed a 1.2% increase in mAP. From
the generated heat map (Fig. 6), it can be seen that before adding CSPM (Fig. 6a), the model’s attention was
more scattered, with some focus on background regions or irrelevant cells, making it difficult to accurately
locate lesion cells. After incorporating CSPM (Fig. 6b), the model’s attention became significantly more
concentrated on abnormal cells and their related regions, demonstrating the module’s enhancement in
feature extraction and modeling cell interactions.

Figure 6: (a) Shows the heat map generated before adding CSPM, while (b) shows the heat map generated after adding
CSPM

CSPM divides the feature map into two parts: one for simple feature extraction and the other for multi-
scale pooling to capture both local and global information, combining detailed features with contextual
information. Multi-scale pooling helps capture features of cells with varying sizes, while cross-cell context
integration enhances the modeling of relationships between abnormal cells and surrounding normal cells,
enabling more precise differentiation between target cells and background cells. The comparison in the heat
map clearly shows that the CSPM module effectively addresses insufficient feature interaction between cells
and reduces background interference, significantly improving the accuracy of lesion cell detection.

Multi-Scale Fusion Attention Experiments: The original YOLOv8 baseline model tends to overlook
smaller cells in the dataset, such as ASCH and HSIL. To validate the effectiveness of MSFA, a comparison was
conducted to evaluate detection performance before and after integrating MSFA. As shown in Table 5, after
incorporating MSFA, the detection performance for smaller cell categories like ASCH and HSIL improved,
while the detection performance for larger cell clusters like CAND also showed significant improvement.
The MSFA module enhances the model’s ability to handle targets of varying sizes by utilizing multi-branch
depthwise convolution to extract multi-scale features, where smaller kernels capture fine details for small
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targets, and larger kernels extract global information for larger targets. Additionally, Avgpool and Maxpool
are employed to integrate both local and global contextual information, further strengthening the model’s
perception of objects of different sizes. Finally, spatial and channel attention weighting highlights the target
regions while suppressing background interference.

Table 5: Comparison of mAP@0.5(%) for smaller and larger size targets, The ASCH, HSIL, and TRICH categories in
the dataset are relatively small in size, while the CAND and AGC clusters are relatively large in size

Model Smaller size Larger size

ASCH HSIL TRICH CAND AGC
YOLOv8 0.258 0.548 0.658 0.751 0.705

YOLOv8m+MSFA 0.270 0.560 0.672 0.869 0.710

Note: Bold values represent the best results.

5 Conclusion
This study addresses the significant inter-class differences, minimal intra-class variation, and consider-

able size variability present in cervical cytology images by proposing MSFF-Net. This approach emulates the
diagnostic behavior of pathologists, who reference the characteristics of surrounding cells when identifying
abnormalities, thereby enhancing feature interactions among cells. The proposed method outperforms
existing state-of-the-art deep learning techniques, offering a reliable and efficient tool for cervical cancer
screening. In clinical practice, MSFF-Net demonstrates significant advantages, such as improving diagnostic
consistency, reducing reliance on highly experienced pathologists, and accelerating the identification of
abnormal cervical cells. It is particularly beneficial in resource-constrained clinical settings, where access
to skilled pathologists and advanced diagnostic tools is limited, helping to enhance screening coverage
and facilitate early detection. Furthermore, MSFF-Net’s ability to integrate local and global contextual
features ensures robustness across varied clinical workflows and imaging conditions. However, its clinical
implementation may face challenges, such as dependency on high-quality annotated datasets for training and
variability in performance across different imaging systems or patient populations. Future work should focus
on improving dataset diversity and fine-tuning the model to maintain consistent performance in diverse
clinical environments, thereby maximizing its clinical utility.
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