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ABSTRACT: The blockchain-based audiovisual transmission systems were built to create a distributed and flexible
smart transport system (STS). This system lets customers, video creators, and service providers directly connect with
each other. Blockchain-based STS devices need a lot of computer power to change different video feed quality and forms
into different versions and structures that meet the needs of different users. On the other hand, existing blockchains can’t
support live streaming because they take too long to process and don’t have enough computer power. Large amounts
of video data being sent and analyzed put too much stress on networks for vehicles. A video surveillance method
is suggested in this paper to improve the performance of the blockchain system’s data and lower the latency across
the multiple access edge computing (MEC) system. The integration of MEC and blockchain for video surveillance in
autonomous vehicles (IMEC-BVS) framework has been proposed. To deal with this problem, the joint optimization
problem is shown using the actor-critical asynchronous advantage (ACAA) method and deep reinforcement training
as a Markov Choice Progression (MCP). Simulation results show that the suggested method quickly converges and
improves the performance of MEC and blockchain when used together for video surveillance in self-driving cars
compared to other methods.
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1 Introduction to Blockchain and MEC
As online services become more prevalent, mobile devices on wireless connections are growing expo-

nentially. Seventy-nine percent of worldwide mobile data traffic will be mobile video transmission by 2022,
as per a study made by Cisco. Over the past decade, flowing audiovisual platforms like Netflix and YouTube
have been increasingly prevalent as the need for multimedia applications has grown. Various drawbacks are
associated with video streaming services, including limited profits for video providers, hefty subscriptions,
and low privacy for consumers [1]. On top of that, video streams have to be transformed into multiple
bitrate versions to fulfill varied user needs owing to various policies and changing system circumstances.
Numerous duplicates of audiovisual records with varying data rates are kept on the centralized servers,
incurring enormous expenses in video collection and internet use.

Blockchain has recently been presented and deployed as a viable decentralized alternative in various
distributed settings. These decentralized, innovative, contract-based communications in communal or
isolated peer-to-peer (P2P) networks may be accessed by anybody in the system [2]. VideoCoin, Flixxo, and
others can construct decentralized, distributed video streaming networks using blockchain solutions.
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With blockchain-based streaming media, video providers (VP), listeners, and network operators (NOs)
can all trade videos without the involvement of a third entity. The streaming video procedures may be self-
organized as a bonus by employing a consensus protocol.

Blockchain-based video systems cannot transcode videos owing to their limited computing require-
ments [3]. MEC, which delivers computing performance to the edges of the STS system, is a potential solution
to enable content delivery facilities to consumers [4]. Servers outfitted with MEC deliver reduced delay
services to consumers and free up network bandwidth and storage expenses. According to [5], an MEC-
based architecture enables an MEC server to translate the bitrate form of the audiovisual data following link
conditions and operator demands. A video bitrate adaption method is proposed in [6], considering wireless
channel circumstances. Incorporating blockchains and MECs might have substantial advantages and be an
excellent idea for this exciting field. Progress has been made on MEC and distributed ledger to make the
most of both technologies’ strengths and weaknesses.

In recent years, deep reinforcement learning (DRL) has become a powerful technique for solving
resource allocation issues in wireless communications and networking with the aid of Artificial Intelligence
(AI) [7]. The DRL-based methods have lower computational complexity than the standard optimization
methods and can maximize the resources with low complexity in communication systems [8]. Using the
MEC platform for video surveillance, throughput can be improved and reduced latency in blockchain-
enabled autonomous vehicles. The study aims to contribute to the following points:

• This paper presents a unique video surveillance architecture for blockchain-enabled STS with the
MEC system, in which philosophical transactions have been used to provide safe data gathering
and processing.

• Video unloading and resource allocation have been defined as an MCP to improve operational through-
put and reduce the delay of the MEC system. It is characterized as a normalized transaction throughput
and aggregated delay.

• An ACAA-based DRL method is further presented, centered on a distributed management system with
reduced complexity.

The remaining sections of the document are organized as follows. Section 2 explores related works on
video surveillance in MEC and Blockchain. The integration of MEC and blockchain for video surveillance in
autonomous vehicles is proposed in Section 3 of STS. Section 4 consists of the analysis and findings obtained
from the proposed model. Finally, the conclusion and possible studies have been outlined in Section 5.

2 Related Works on MEC, Blockchain, and STS
MEC for blockchain has been introduced by Wu et al. in [9], and commercial computational supply

management teams based on Stackelberg game theory have been proposed. This method allows smartphone
nodes (miners) to outsource their mining tasks to an edge computing network operator (ECNO). An
allocation strategy for deep learning (DL) resources in mobile blockchain networks is proposed by Guo
et al. [10] to optimize the income of the ECNO. However, these works are inappropriate for video streaming
because they use a proof-of-work (PoW) procedure to achieve agreement in the blockchain system—data
mining and block harmonization among all members affected by increased costs and extended delays.

Guo et al. [11] examine the agreement proliferation issue in Proof-of-Stake (PoS) public blockchains to
overcome this challenge. Blockchain users and miners are modeled using machine learning models. Nguyen
et al. [12] propose an enhanced Decentralized Proof of Stake (DPoS) consensus mechanism featuring a two-
step lenient safety protocol (miner selection and segment validation) to facilitate car information sharing
in blockchain-enabled Internet of Vehicles (IoV). Kang et al. [13] propose a systematic information-sharing
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method for efficient information loading and dissemination, devoid of endorsement, utilizing collaborative
blockchain and a consensus mechanism for in-vehicle processing and connectivity.

Game theory is a versatile and valuable instrument for analyzing the interactions and cooperative
processes among various nodes and participants within systems. Xiong et al. [14] investigate the interplay
among network service operators, subsidized information facility providers, and mobile users within a
structured multiple Stackelberg control framework in edge buffering platforms. Various applications of
Stackelberg’s game have been examined, including resource allocation in portable fog computing envi-
ronments, simulated reserve management in wireless transmission networks, and computational supply
distribution in fog networks [15,16]. They portray prospecting as a cooperative game among miners. Miners
establish a consortium to maximize their computing capacity and gain a regular income.

To optimize the income of the ECNO and the usefulness of the blockchain, Misra et al. [17] model
the mining procedure as the Stackelberg game. This is not the first time Stackelberg’s activities have been
used to mimic reserve distribution and blockchain-based withdrawal processes. MEC now supports video
transcoding as a practical method for delivering ad-hoc video streaming services. Using MEC and other
technologies, we have explored several challenges related to video transcoding and delivery. It is proposed
by Singh et al. [18] to strengthen the streaming service in information-centric heterogeneous networks by
leveraging wireless virtualization techniques.

MEC, buffering, and software defined networks (SDN) have been considered by several researchers.
Challenges in combined adaptive audiovisual frequency and circulation engineering have been examined.
Nguyen et al. [19] proposed a blockchain-based framework to improve situational awareness in autonomous
vehicles. This system facilitates secure data sharing among vehicles and edge devices, ensuring real-time
communication for critical decision-making. The decentralized nature of blockchain enhances trust and data
integrity while reducing the risks of tampering and unauthorized access.

Another notable contribution comes from Wang et al. [20], who explored edge computing for dis-
tributed video analytics in autonomous vehicles. Their study demonstrated how combining blockchain with
edge nodes can improve data processing speeds and reduce latency. This synergy enables real-time anomaly
detection and event prediction, which is critical for advanced surveillance tasks.

Wiseman [21] highlights the potential of reducing image color resolution and optimizing quantization
tables to significantly decrease data size, thereby enhancing communication efficiency. This approach aligns
with previous studies that emphasize the importance of video data in conveying dynamic information, such
as vehicle movement and speed, which static images cannot adequately represent.

Due to the high transaction throughput required by the blockchain system, this work aims at lowering
the latency of video analytics applications using MEC systems and boosting the operational throughput of the
blockchain. Markov decision process represents a combined audiovisual offloading and reserve distribution
challenge. To solve this challenge, the DRL technique is utilized in this study. Also, the critical control
components have been distributed to solve various computational issues.

3 Integration of MEC and Blockchain for Video Surveillance in Autonomous Vehicles
A video surveillance framework using MEC for STS has been introduced. The smart contract for video

analytics is then described. The combination of Ethereum with edge devices can safeguard STS critical
information systems and protect private information in the infrastructure and services. The overall model
is presented for video unloading criteria in STS circumstances, which comprise STS systems that create
interactions, the MEC scheme that supports video surveillance, and the blockchain scheme that interacts
with the event.
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3.1 The Architecture of Video Surveillance
Fig. 1 depicts the framework for integrating MEC and blockchain for video surveillance in autonomous

vehicles. MEC is used to unload video surveillance tasks from the STS, which has two aspects: a vehicle
node with the camera and a Road Segments (RS) node with MEC. Cameras mounted on vehicle nodes can
initiate audiovisual errands, wrap them into video blocks, and convey them to RS nodes through vehicular
systems. MEC with RS node allows for sophisticated video analytics. It also ensures video retention on
RS and information processing across nearby vehicles. For STS’s perception and decision-making, cameras
are an appealing sensor choice. Numerous contemporary professional driving support systems depend
on cameras for carriageway and pedestrian identification, for example. In real-time, video analytics in
STS may be performed using edge computing due to its extensive data volume, computation needs, and
latency constraints.

Figure 1: Framework for the integration of MEC and blockchain for video surveillance in autonomous vehicles

3.2 System Model for STS
A blockchain-activated STS network using blockchain has been examined. The core of the coverage

area is placed within the STS networks with a single macro-cell base station (BS). Various RSs are spread
across the BS, and wired connections link all RSs. Assume a system without interruption, wherein users
employ coherent bandwidth to communicate information. Let the RS set be marked N = {1, 2, . . ., N}.



Comput Mater Contin. 2025;83(1) 1243

Therefore, P = {1, 2, . . ., P}, is indicated for the set of vehicles where n vehicles are provided with their
respective RS n.

The blockchain nodes consist of all RSs in the blockchain system. These units have two characteristics:
regular nodes and nodes of consensus. The blockchain system broadly addresses operations from the MEC
network, i.e., the video download of data records. Blockchain technology requires two stages to accomplish
its functions. One is the production of blocks, while the other is the according procedure. Normal nodes
transmit and absorb register information solely, whereas agreement nodes create transactions and execute
the consensus protocol. It has to be noted that L consensus nodes are chosen by a particular practice
from N. Let L = {1, 2, . . ., L}, mark the agreement cluster. The reverse link produces a video bottleneck
in vehicular communications. MEC servers have resource constraints that restrict download scaling.
Vehicle-to-internet communication supports cellular system uplink communication when automobiles
communicate RS visual information.

There is a need to enhance connectivity and computer abilities. Thus, reverse link MEC is taken into
account in this research. Backhaul MEC will be examined in future studies because of the length constraint of
this paper. Edge buffering is also crucial for on-demand cellular network video streaming. Video surveillance
requests in automotive cyberspace have been considered, and the key responsibilities are video decryption,
pre-processing, and entity recognition. Therefore, connectivity and processing capabilities were examined
to maximize the blockchain platform’s transaction performance and reduce the MEC platform’s delay. MEC-
based RSs are used in video analysis platform tasks.

Fig. 2 shows the methodology of video surveillance in STS. As illustrated in Fig. 2, many modules allow
the video analysis process to be considered and explained.

Figure 2: Methodology of video surveillance in STS
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1. Video deciphering: It is the decoding procedure or the decompression of encoded video instantaneously.
The codec may extract and unwind the multimedia broadcasting in a sequential sequence constructed
on the real-time streaming protocol (RTSP) or the real-time messaging protocol (RTMP). As a result,
AVS, H.264/AVC, and H.265/HEVC are among the most commonly utilized video coding standards.

2. Initial processing: the correction procedure is a non-uniform modification of brightness or colors and
amplitude. Because of the poor contrast and blurring of the picture, lens correction and enhanced
picture should improve the quality of the video sequences.

3. Object Recognition: Instances of semantic entities of a specific class need to be detected, which
are essential in achieving independent navigation. STS’s significant objects are automobiles, football,
cycling, and road signs. Accordingly, a single-phase method comprised of deep learning (DL) based
object recognition methodologies has been used. The classes include regional integration, spatial
pyramid pooling network (SPP-Net), and regional proposition networks (RPN). The solitary technique
model consists of a single screen detector (SSD).

4. Track objects: The status of one or more things must be estimated over runtime via sensor readings. The
follow-up of other drivers is essential for autonomous vehicles. Object detection comprises four phases:
function retrieval, navigation model, look-up framework, and online updating. Object detection and
tracking approaches include generating, discriminating, and deep learning models.

5. Feature dissection: A tag consisting of a set of classes must be assigned to each image pixel. The division
of pictures into semantic areas allows cars to comprehend their atmosphere so that autonomous vehicles
may be securely included in our current roadways.

6. Stereo Phonic: The method of getting knowledge from inactive 2D pictures taken from a laser scanner
is stereo prediction.

7. Visual Drift: It can offer important scene information and act as an interface to specific activities,
including movement estimate and surveillance.

For the unburdening mission of video surveillance applications using MEC, the transmission of data
from intelligent vehicles to road segments is given as follows:

S = BW × log [1 + Po(m)G(m)
δ + PjG j(m)

] (1)

S is defined as the transmission of data from intelligent vehicles to road segments. Specifically, S
quantifies the amount of data transmitted during the video surveillance process, measured in bits. This
data includes video frames, metadata, and other relevant information necessary for effective surveillance
and analysis.

The calculation of S is based on the available bandwidth (denoted as BW) and the signal-to-noise ratio,
which influences the quality and reliability of the data transmission. The equation reflects how these factors
interact to determine the maximum data rate that can be achieved in the communication channel.

Let Po(m) and G(m) depict the transmission energy and gain of the channel. There are p vehicles and
n RSs for a period of m. δ is the power of the interfering signal. The transmission bandwidth is given by
BW . PjG j(m) is the sum of all interfering signals.

The latency to download the video information (Eo) is given by

Eo = ∅J/S (2)

where ∅J is the volume of video information in bits received from the road segments, S is data transmission
from intelligent vehicles to road segments for the unburdening mission of video surveillance applications
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using MEC. The power consumed for the information of video data from the autonomous vehicle to RS is
given by

Do = Po(m)Eo (3)

Eo is the latency to download the video information. Po(m) is the transmission energy of the channel.
It would incur the computing resources to carry out the video surveillance work on the MEC server p. The
processing latency that MEC server p performs on the autonomous vehicle n is therefore determined by the
following equation:

Ed = ∅JY/F0 (4)

The number of computational resources needed for evaluating a bit of the video data may be determined
using F = {F0} in cycles/s to signify the processor frequency required by the nth MEC server. Y denotes
calculation intensity for video surveillance (in cycles/bit).

The power consumed for video surveillance using the MEC server is given by

Dd = L × (F2
o) × Ed (5)

L is the effectiveness of power consumption of the dispensation unit. F0 represents the processor
frequency needed by the nth MEC server. Ed is the processing latency MEC server p performs on the
autonomous vehicle.

The total transmission latency is given by

E = Eo + Ed = ∅J/S +∅JY/F0 (6)

Therefore, the completion of the video surveillance task by the nth MEC server is given as the total delay
in transmission and processing latency. The actual power consumption is provided by

D = Do + Dd = [Po(m)Eo] + [L × (F2
o) × Ed] (7)

Eo is the video information delayed in being downloaded Po(m) is the channel energy transfer. L is
the efficiency of the unit’s electricity usage. An nth MEC server requires CPU-cycle frequency, F0. Ed is the
autonomous vehicle delay performed by the MEC server p.

3.3 Blockchain Process
Blockchains can possess three characteristics of a scalability trilemma law: (1) versatility, (2) safety, and

(3) decentralization.
The three key features of blockchain have been depicted in Fig. 3. Each of these features has been

explained in detail as follows.

3.3.1 Versatility
It defines the network infrastructure, including how many nodes the network can handle, the number

of transactions the network can take, etc. Operations to the blockchain network have been recorded. Based
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on the suggested timetable approach, a block producer is selected, and a block producer is then generated by
gathering, verifying, and packing operations. The operational throughput ∂ can be specified by

∂ = {[TC

TU ] /U
J} (8)

where TC be the segment size. The segment interval and the transaction size are denoted by U J and
TU , respectively. The segment size can thus be increased or the time interval reduced to enhance the
information flow. However, additional variables like delay, safety, and decentralization impact the scalability
of blockchain systems.

Figure 3: Features of blockchain

3.3.2 Safety
Safety refers to the amount of blockchain’s defensiveness against exterior assaults and the platform’s

resilience to manipulation. A blockchain system contains various attack vectors, including dual expenditure
attacks, wormhole attacks, DDoS (Distributed Denial of Service) assaults, and 51 percent assaults. The
number of evil verifiers k should thus be constrained by the following restrictions to guarantee the safety of
smart contracts:

k < K , where K = ⌊(L − 1)/2⌋ (9)

K is the number of evil nodes that is maximally acceptable.

3.3.3 Redistribution
Redistribution refers to the extent of authority, dominance, and value diversity of the blockchain.

All activities and blocks are disseminated, validated, recorded, and decentralized across all stakeholders
in a private blockchain, ensuring that the whole structure is unchangeable, robust, and durable. At the
same time, more than 1/2 of the computer resources stay fair. When blockchain is used in STS settings,
scaling becomes a big problem. Firstly, by boosting segment size or lowering block intervals, the transaction
output may be enhanced. Second, the reduction in the break of the block enforces a more substantial
restriction on the latency. The segment size and periodic modification or the choice of block manufacturers
and consensus methods should thus be carried out carefully to bring blockchain sustainability up to a
standard level.

3.4 Process Flow of Contract in Blockchain for STS
Fig. 4 depicts the process flow of contracts in blockchain. An intelligent contract is an agreement of

conscience, autonomous, and manipulative programs. A centralized repository with the interoperability
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and security of blockchain expertise proficient in audiovisual surveillance in low-cost STS situations has
been given. Fig. 4 shows the STS blockchain topology, with data stock and sharing records included in
the transaction data. The interactions created as STS environments are presented in Fig. 4 with intelligent
contracts for data storage and share procedures. The blockchain network has to accomplish two stages: (1)
Transaction bundling and segment generation and (2) segment registration with agreement q.

Figure 4: The process flow of contract in blockchain for STS

3.5 Markov Chain Process (MCP)
The problem of video download and the allocation of resources is presented as a discrete decision-

making process by Markov to maximize system rewards. Two primary types of DRL techniques are
generally available, including worth-based and regulation-based. The ACAA technique approaches temporal
differences using a distinct memory structure to reflect an active policy irrespective of the value. Actor-Critics
want to use all the exceptional items based on both weight and procedure while simultaneously removing all
their inconveniences.

ACAA has been employed in discontinuous and ongoing activity spaces faster and more resilient than
conventional methods. The method focuses primarily on the simultaneous formation of several players with
universal characteristics. The ACAA uses several actors and reviewers to break down the reliance of the data
on multiple threads of a CPU (Central Processing Unit). This increases convergence in training considerably
and enables DRL agents to train for CPUs quickly. This problem is solved by using the ACAA algorithm.

Fig. 5 shows the mediator and atmosphere in DRL for the proposed IMEC-BVS framework. The DRL
method can resolve synchronous policy decisions by optimizing the reward function in the unknown
environment. The resource apportionment issue based on DRL may be stated as an MCP, as seen in Fig. 5.
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Figure 5: Mediator and atmosphere in DRL for proposed IMEC-BVS framework

The MCP is well-defined by three factors: [T (m), B (m), Q (m), S (m)], where T (m) is the system state
set, B (m) is the structure accomplishment set, Q (m) is the probabilities for the status transition and S (m)
is the function for recompense. The objective of learning is to create a strategy that optimizes the benefits
predicted. Network entities can make observations using the DRL methods and get the optimal policy on
location with the least or without sharing of information.

This work aims to maximize the operation output of the distributed ledger and reduce the delay of
MEC systems, which are based on video analytics apps within an STS. The MEC system’s overall latency
comprises queuing delay and computer latency, which are defined by E. As stated in equations for Eo and Ed,
the volume of the data is utilized to estimate the delay and calculate the computational latency. The magnitude
of information and processor frequency have also been used. The output may be defined by network capacity,
segment interval, and average transaction size in the blockchain network. In STS systems, vehicles generally
anticipate being finalized in a short period, and the Stay to Final (STF) meets the limitation. Therefore, the
resource assignment issue defines data quantity, processing capacity, and delay for video surveillance tasks.
Then the combined objective function has been formulated as follows:

∞
maxB(m)F [

∞

∑
m=0
( α1 ∂

α1+1) × α2E(m)] (10a)

Given that GT 1∶
N
∑
n=1

Po(m) × (∅J/S) > Fmin (10b)

GT 2∶U STF < τ < U J (10c)

infinity sign (∞) in Eq. (10a) indicates that the summation is evaluated over an infinite series, representing
the cumulative effect of the system’s performance over an indefinite time horizon. F and Fmin summate
overall MEC server computing capability and minimum energy consumption. ∅J is the volume of video
information in bits received from the road segments, and S is the transmission of data from intelligent
vehicles to road segments. N is the number of RS in STS using MEC. Po(m) is the transmission energy of the
channel. Transaction size is given by U J , and the STF period is denoted as U STF . τ is the segment interval.
The recompense function can, therefore, be stated as follows:

S(m) =
⎧⎪⎪⎨⎪⎪⎩

α1∂/(α1 + 1) × α2E , i f GT1 ∩GT2
0, otherwise

(11)
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where α1 refers to a weight factor in which the goal function is combined into the same, and α2 is a charting
factor in assuring the objective function in the same grade. Operational throughput is given by ∂, and E
denotes the overall latency of the proposed IMEC-BVS framework.

4 Results and Discussion for the Proposed IMEC-BVS Framework
The effectiveness of the suggested method has been tested in this section under various parameter set-

tings. Simulations that use a Python-based simulator are carried out with TensorFlow. Different interventions
have been examined to check the performance of the proposed algorithm: (1) Conventional Deep Q-Network
(DQN) method: A standard DQN approach creates a DNN (Deep Neural Networks) to identify and assess
behaviors that eventually lead to extrapolation. (2) Suggested approach with Static Segment Size (SSS): The
block size generated by the block provider will be the same. (3) Suggested approach with Static Segment
Period (SSP): The producing frequency of segments is equal.

The simulation parameters used in this work have been summarized in Table 1. The proposed IMEC-
BVS framework, comprising 15 RS units and 120 autonomous vehicles, is assessed in this study. The CPU
has a 64 G memory for Intel Core i5-8400. TensorFlow 1.10.0 and Python 3.6 on Ubuntu 18.04.2 LTS are the
programming environments employed.

Table 1: Simulation parameters used in the proposed IMEC-BVS framework

Parameter Value
Minimum energy consumption Fmin 1 J

Duration of video sequence M 2.5 s
Video size ∅J 250 bytes

Channel bandwidth BW 1.3 MHz
Power of interfering signal δ −180 dBm

Calculation intensity for video surveillance Y 500 bit/Hz
Segment size T C 10 MB

Transaction size TU 150 KB
α1 , α2 0.85, 0.02

Fig. 6 compares throughput (%) and computational resources (F0) for the proposed IMEC-BVS
framework. When the computational resources of MEC grow for all techniques, the average throughput
drops, as seen in the graph. Further, the suggested approach provides greater throughput under the same
processing power of MEC, while the conventional DQN method obtains the minimum throughput value.
The throughput of the proposed IMEC-BVS framework with SSS is higher than that of the approach with
SSP for all deals of computational resources. As a result, the blockchain network has fewer computer
resources available, whereas the MEC system has more computing resources available to execute the video
unloading job.

A comparison among throughput (%) and STF threshold for the proposed IMEC-BVS framework has
been depicted in Fig. 7. The figure shows the effect of the STF threshold on the average transaction rate.

As the threshold of the STF is increased, the average throughput improves for all methods. It is possible
to produce more transactions due to the reduced latency limitation. The proposed IMEC-BVS method with
SSS has a maximum throughput of 63%. The proposed approach with SSP has a maximum throughput
of 60%, which is less than that obtained in the SSS approach. The DQN method has the most negligible
throughput value of 38% at an STF threshold of 14.
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Figure 6: Comparison of throughput (%) and computational resources (F0) for the proposed IMEC-BVS framework

Figure 7: Comparison of throughput (%) and STF threshold for the proposed IMEC-BVS framework

Fig. 8 compares the mean recompense value among the proposed approach (with SSS and SSP) and
the existing DQN approach. As seen in Fig. 8a, transaction size significantly influences averaging rewards.
The average compensation falls for all techniques as the average transaction size increases. As the mean
transaction size increases, so does the throughput, and the two are strongly associated. In addition, the
suggested method yields the most significant mean compensation relative to the baseline methods, indicating
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it is the most effective. Fig. 8b compares the mean value of recompense vs. the number of autonomous
vehicles for various approaches. With the rising number of autonomous cars, the average incentive rises.
Moreover, the proposed method with SSS can achieve higher compensation than the proposed approach
with SSP and existing approaches.
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Figure 8: (a) Mean value of recompense vs. transaction size (TU); (b) Mean value of recompense vs. the number of
autonomous vehicles

Using different weight factors, the influence of processor frequency on average reward is explored
(see Table 2a). The total compensation increases as α1 increases. Further, it can be noticed that the mean
compensation for a given α1 increases with processor frequency as a function of α1. A comparison among
various methods on the mean value of recompense for varying segment intervals (UJ) is given in Table 2b.
As the maximum segment interval UJ for all approaches is increased, the mean compensation drops for all
methods. This is attributed to the fact that, as the segment interval increases, throughput reduces.
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Table 2: (a) Effect of various parameter values (α) on the mean value of recompense for varying processor frequency;
(b) Comparison among various methods on the mean value of recompense for varying segment intervals (UJ)

(a)

Processor frequency (GHz) The mean value of recompense

α1 = 0.15 α1 = 0.45 α1 = 0.85
1 100 300 510

1.5 150 360 530
2 200 400 540

2.5 250 420 550

(b)

Segment interval UJ(min) The mean value of recompense

DQN The proposed method
with SSS

The proposed method
with SSP

0.2 7200 9100 6200
0.4 5800 6300 4500
0.6 5200 5800 2100
0.8 5200 5100 2100
1.0 5180 5100 2100

Fig. 9 depicts the assessment of segment size (TC) vs. the mean value of compensation using the
proposed IMEC-BVS framework. Except for SSS, the mean value of compensation increases with the increase
in the segment size. The reward value is the maximum for the proposed approach with SSP than SSS and
DQN. This is due to the STF limitation. As a result, the optimum number of transactions in a segment is
limited to a maximum of 11.

Figure 9: Comparison of the segment size (T C) vs. the mean value of recompense using the proposed IMEC-BVS
framework
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A combined optimization issue has been developed to optimize the operational throughput of the
blockchain process and reduce the delay of the MEC system. An excellent convergence efficiency has been
provided by the proposed IMEC-BVS method. For video surveillance applications in STS scenarios, the
framework justifies using the decentralized approach with blockchain.

5 Conclusion and Future Work
For video surveillance in autonomous cars, the integration of MEC with blockchain technology has

been suggested. As a result, the joint optimization issue has been modeled as MCP. The ACAA method
has also been utilized to unravel the problem. The effectiveness of the suggested algorithm has been tested
using a variety of inputs. For all values of computing resources, the proposed IMEC-BVS architecture with
SSS has a greater throughput than the method with SSP. The average incentive increases as the number of
autonomous automobiles increases. A decrease in the mean compensation is observed for all techniques
when the maximum segment interval UJ increases. An additional benefit is that a suggested strategy with
SSS can result in greater average rewards than a proposal with SSP or existing alternatives. With SSP, the
maximum throughput is 60 percent. Throughput and convergence performance are improved compared to
the baseline method. In the future, we will incorporate compression methods into our work.

The presented work has certain limitations and shortcomings.
Limitations: The proposed method may face challenges in scaling to a large number of autonomous

vehicles. While the algorithm shows effectiveness for various inputs, performance could degrade as the
network size grows significantly, particularly in environments with a high density of autonomous vehicles.
Another limitation is the optimization of computing resources that may not be fully applicable in real-world
settings where resources like processing power and memory are limited. Shortcomings: The current work
mentions throughput and incentive as key performance indicators, but other important metrics such as
energy efficiency, security (other than throughput), and fault tolerance are not explored in depth. These
factors are crucial in autonomous driving systems and might limit the system’s practicality, which will be
explored in the future.
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