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ABSTRACT: As lithium-ion batteries become increasingly prevalent in electric scooters, vehicles, mobile devices, and
energy storage systems, accurate estimation of remaining battery capacity is crucial for optimizing system performance
and reliability. Unlike traditional methods that rely on static alternating internal resistance (SAIR) measurements in
an open-circuit state, this study presents a real-time state of charge (SOC) estimation method combining dynamic
alternating internal resistance (DAIR) with artificial neural networks (ANN). The system simultaneously measures
electrochemical impedance ∣Z∣ at various frequencies, discharge C-rate, and battery surface temperature during the
discharge process, using these parameters for ANN training. The ANN, leveraging its superior nonlinear system
modeling capabilities, effectively captures the complex nonlinear relationships between AC impedance and SOC
through iterative training. Compared to other machine learning approaches, the proposed ANN features a simpler
architecture and lower computational overhead, making it more suitable for integration into battery management
system (BMS) microcontrollers. In tests conducted with Samsung batteries using lithium cobalt oxide cathode material,
the method achieved an overall average error of merely 0.42% in self-validation, with mean absolute errors (MAE)
for individual SOCs not exceeding 1%. Secondary validation demonstrated an overall average error of 1.24%, with
MAE for individual SOCs below 2.5%. This integrated DAIR-ANN approach not only provides enhanced estimation
accuracy but also simplifies computational requirements, offering a more effective solution for battery management in
practical applications.

KEYWORDS: Lithium-ion batteries; state of charge (SOC); dynamic AC impedance; artificial neural network (ANN)

1 Introduction
With the rapid advancement of energy systems, electric vehicles (EVs), and mobile devices, lithium-ion

batteries have become integral to modern technology. Ensuring their safe and effective use necessitates the
implementation of a battery management system (BMS), which typically focuses on two critical parameters:
state of health (SOH) and state of charge (SOC) [1–5]. Among these, SOC plays a pivotal role in influencing
user experience, particularly in applications like EVs, where the accuracy of SOC estimation directly
impacts the perceived driving range. Inaccurate SOC estimations can lead to range anxiety, undermining
consumer confidence and impeding the adoption of EVs. While various SOC estimation methods have been
developed, each with unique strengths and limitations, their suitability depends on the specific application.
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For instance, SOC estimation for emergency lighting systems—primarily used during power outages—
prioritizes simplicity and speed over precision, given their constant connection to mains charging. In
contrast, applications like EVs demand higher precision to optimize performance and user satisfaction,
underscoring the importance of selecting the appropriate method for each use case.

In recent years, Dynamic Electrochemical Impedance Spectroscopy (DEIS) has achieved significant
advances in battery monitoring and diagnostics. Unlike traditional electrochemical impedance spectroscopy
(EIS), DEIS enables real-time monitoring during battery operation, providing a novel research tool for
performance evaluation and fault diagnosis. Reference [6] introduced an innovative DEIS method capable
of continuous single-frequency impedance measurements during charge/discharge cycles, demonstrating
smaller charge transfer resistance compared to steady-state EIS across a wide state-of-charge range, estab-
lishing a crucial foundation for DEIS applications. In fundamental theoretical research, several innovative
works have advanced DEIS technology. Reference [7] employed the Doyle-Fuller-Newman pseudo-two-
dimensional model to investigate DEIS applications during lithium-ion battery charging and discharging.
The study compared brute force time domain calculation with fast-computing time-separated methods,
validating the rigorous correctness of the time-separated approach and revealing DEIS signals’ selective
sensitivity to interfacial processes, providing theoretical basis for real-time diagnostics and electrode control.
Reference [8] developed a simplified time-frequency physicochemical model, identifying 24 parameters with
varying sensitivity through parameter sensitivity analysis, offering crucial guidance for parameter identi-
fication and advanced battery management system development. Innovation in measurement techniques
represents another significant direction in DEIS research. Reference [9] proposed an online real-time EIS
measurement method based on closed-loop control of power converters, achieving faster measurements
under consistent battery operating conditions while improving output voltage control and eliminating
added perturbation ripple. Reference [10] developed a fast broadband EIS method using the local rational
method (LRM), effectively compensating for transient effects and eliminating traditional long waiting times,
demonstrating superior performance over nonparametric techniques like local polynomial methods in
experimental tests. Reference [11] introduced a rapid EIS measurement method based on large square
wave excitation signals, achieving microsecond-level response times, establishing new technical pathways
for real-time online impedance monitoring. Reference [12] integrated impedance measurement algorithms
into high-power battery chargers, implementing AC current ripple injection, signal transformation, and
impedance calculation, providing novel approaches for charging current optimization and reactive current-
voltage assessment.

Battery state estimation represents a crucial application domain for DEIS technology. Reference [13]
innovatively introduced fractional calculus methods into EIS-based impedance models for SOC estimation,
proposing new model identification methods. Reference [14] combined EIS with machine learning tech-
niques to develop a flexible, customizable measurement method, significantly reducing measurement time
while maintaining high SOC estimation accuracy. Reference [15] enhanced estimation accuracy and compu-
tational efficiency through simplified electrochemical models, eliminating solution-phase and solid-phase
lithium-ion diffusion models while extracting key frequency features and considering ambient temperature
effects. Reference [16] achieved SOC estimation errors within 2% through a multi-level PI observer approach
with dynamic battery model parameter adjustment under compound dynamic stress testing. Reference [17]
further integrated impedance spectrum detection into battery management systems, controlling AE within
5.4% under various charging and discharging conditions, significantly improving estimation accuracy.
DEIS technology demonstrates unique advantages in battery health diagnostics. Reference [18] evaluated
lithium-ion battery aging behavior during charging using DEIS, identifying film resistance as a critical
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aging indicator, particularly significant at elevated temperatures, providing important insights into bat-
tery degradation mechanisms. Reference [19] developed a DEIS-based real-time lithium plating detection
method, effectively identifying lithium plating phenomena during charging through monitoring impedance
real and imaginary components, validated through voltage relaxation profiles and current interruption
methods. Significant progress has also been achieved in model development. Reference [20] proposed a novel
dynamic modeling approach based on EIS data, characterized by simplicity, accuracy, and clear physical
interpretation, effectively addressing limitations of traditional time-domain methods. Reference [21] ana-
lyzed relationships between equivalent circuit elements and impedance spectra of commercial lithium-ion
polymer batteries under varying SOC, SOH, and internal temperature conditions, quantifying dependencies
between impedance variables and state parameters using curve fitting techniques and Pearson correlation
matrices, providing crucial foundations for developing impedance-based real-time battery management
systems. These research advances demonstrate DEIS technology’s extensive potential in battery monitor-
ing, diagnostics, and management. Particularly, breakthrough progress in measurement techniques, state
estimation, and health diagnostics provides robust support for improving battery system reliability and
safety. However, key challenges remain for future research, including enhancing model accuracy, optimizing
computational efficiency, and better integrating DEIS technology into practical applications.

Lithium-ion batteries play an increasingly critical role in modern energy management, making the
accurate assessment of their performance a key research focus. Many studies have explored methods combin-
ing dynamic AC impedance (DAI) and artificial intelligence (AI) for battery state estimation. For instance,
Reference [22] proposed a state of health (SOH) estimation model based on voltage, current, and temperature
profiles during charging, leveraging artificial neural networks (ANNs) to achieve high accuracy under
various conditions. Similarly, Reference [23] focused on estimating capacity fade in electric vehicles, utilizing
ANNs to enhance the accuracy of state of charge (SOC) estimation, thereby extending battery lifespan and
improving reliability. In addition, Reference [24] investigated the application of ANNs in real-time power
estimation for electric vehicles, highlighting the advantages of data-driven models. Significant progress
has also been made in combining impedance spectroscopy with deep learning techniques. For example,
Reference [25] introduced a multi-frequency electrical impedance spectroscopy (EIS) technique integrated
with ANN to estimate SOC, optimizing the model by adjusting the number of neurons in the hidden layer
and substantially reducing estimation errors. Meanwhile, Reference [26] analyzed the relationship between
impedance spectra and equivalent circuit model parameters, proposing a capacity estimation method based
on deep Gaussian process regression, validated under various temperature conditions for broad applicability.
Furthermore, Reference [27] employed transfer learning techniques to address data scarcity, training deep
neural networks (DNNs) on EIS measurements at different temperatures, achieving exceptional estimation
accuracy. For applications involving retired batteries, Reference [28] proposed a rapid capacity estimation
method combining low-frequency EIS and Gaussian process regression, extracting health indicators (HIs)
to significantly shorten detection time and improve accuracy. Similarly, Reference [29] utilized feature-
matching-based transfer learning to validate the method across various battery types, reducing testing costs
and time while maintaining estimation accuracy. Novel model architectures and algorithms have also been
explored. For instance, Reference [30] developed a hybrid multi-layer deep neural network (HMDNN) that
demonstrated high SOC estimation accuracy in electric vehicle datasets, while Reference [31] introduced a
Transformer-based architecture which achieved exceptional SOC estimation performance under complex
multi-physics conditions. Additionally, Reference [32] combined labeled and unlabeled data in a DNN
framework, leveraging time-dependent feature extraction to enhance model performance with limited data.
These studies collectively demonstrate that the integration of DAI and AI techniques provides a powerful
tool for lithium-ion battery state estimation, offering significant advancements in accuracy, efficiency, and
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versatility. This research aims to further explore the characteristics of DAI, integrating ANN methods for
real-time capacity estimation to deliver innovative solutions for lithium-ion battery management.

This study emphasizes the use of artificial neural networks (ANNs) for state estimation, given their
simplicity and potential for seamless integration into the microcontrollers of battery management systems
(BMS). Unlike traditional approaches that rely on static alternating internal resistance (SAIR), this paper
adopts dynamic alternating internal resistance (DAIR) as the key estimation parameter. DAIR is measured
during battery discharge, offering more immediate and accurate data, making it particularly suitable for real-
time applications. The nonlinear relationship between AC impedance and the state of charge (SOC) cannot be
effectively captured using conventional mathematical models. To address this, the proposed method employs
ANNs, which excel in handling nonlinear systems. Through iterative training with input data and target
values, ANNs identify optimal solutions for complex nonlinear relationships. In this study, dynamic AC
impedance is used as the primary input parameter, while SOC serves as the estimation target. This approach
not only enhances estimation accuracy but also simplifies computational demands, making it highly feasible
for future integration into resource-constrained microcontrollers within BMS applications. Compared to
traditional battery state estimation methods, the proposed approach combining DAIR and ANN offers
several significant advantages. While traditional SAIR measurement requires the battery to be in a static
state, making it impossible to reflect real-time state changes during operation, DAIR provides continuous
monitoring during the discharge process, offering more immediate and accurate data. Furthermore, although
other machine learning methods such as Gaussian process regression and deep learning models have
demonstrated excellent performance in battery state estimation, these approaches typically demand higher
computational resources and complex model architectures. The ANN method adopted in this study features
a simpler structure and lighter computational load, making it more suitable for integration into BMS
microcontrollers. However, this approach does have certain limitations, such as the requirement for large
amounts of high-quality training data and potential constraints in model generalization capability due to
the scope of training data. Nevertheless, in terms of practical applicability, this method maintains clear
advantages in accuracy, real-time performance, and system integration. By leveraging DAIR and ANN-based
modeling, this work aims to pave the way for more efficient and accurate battery management solutions in
real-world applications.

2 Dynamic and Static AC Impedance

2.1 System Architecture for AC Impedance Analysis
AC Impedance Analysis involves applying a small sinusoidal voltage or current perturbation to the

battery, from which the response current or voltage is obtained. Using ohm’s law, the AC impedance of the
battery can be calculated. Typically, a single-frequency perturbation is applied to the battery. By varying
the frequency and plotting the measured impedance as real and imaginary parts on a graph, where the
X-axis represents the real part impedance and the Y-axis represents the imaginary part impedance, the
electrochemical impedance spectrum (Nyquist plot) of the battery can be obtained, or presented as a Bode
plot with frequency on the X-axis. In this study, the BioLogic BCS-815 potentiostat/galvanostat was used in
conjunction with BT-Lab software for parameter settings, and the Architecture Diagram as shown in Fig. 1.
Depending on experimental requirements, the sinusoidal voltage or current amplitude and frequency range
applied to the battery perturbation can be adjusted. The BCS-815 module measures voltage, current, and
other information, which is then fed back to the BT-Lab software for analysis. Impedance values at various
frequencies are plotted as Nyquist plots to describe the battery’s electrochemical properties. AC impedance
measurements can be conducted using potentiostatic electrochemical Impedance Spectroscopy (PEIS) or
galvanostatic electrochemical impedance spectroscopy (GEIS) techniques. Both methods provide similar
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Nyquist plots under identical conditions, as illustrated in Fig. 2 for a battery tested at 25○C in an OCV
state. Based on these results, PEIS was chosen for impedance measurements in this study. BT-Lab performs
calculations on the perturbation voltage and response current as described in Eqs. (1) and (2). Eq. (1)
calculates impedance by dividing voltage by current, while Eq. (2) decomposes impedance Z into its real and
imaginary components.

Zn sin (2π fn t) =
Vam p sin (2π fn t)

Iam p sin (2π fn t − ϕn)
= Zn∠ϕn (1)

Zn∠ϕn = Rn ± jXn (2)

Figure 1: AC impedance analysis system architecture diagram

Figure 2: Comparison of PEIS and GEIS
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In Eq. (1), Vamp represents the amplitude of the perturbation voltage, and Iamp represents the amplitude
of the response current. Since both are sinusoidal waves, they each have a phase and exhibit a phase difference
ϕn . f n is the frequency of the sinusoidal wave, n is a constant that varies with different detection frequencies,
and Zn is the calculated impedance, which comprises the real part Rn and the imaginary part jXn as shown
in (2).

2.2 Battery Specifications
Experiments are conducted using Samsung ICR18650-26J batteries. Two batteries of the same type are

selected: one for training data and one for validation data. This setup assesses the feasibility and estimation
accuracy of this method across the same type of batteries.

The Samsung 18650 lithium-ion battery was selected for this study, with detailed specifications provided
in Table 1. To ensure that new batteries were used, a capacity learning process was first conducted. Batteries
with similar impedance characteristics were then selected for the experiments. From a batch of eight identical
batteries, two were chosen: one for use in the neural network dataset and the other for validation purposes.
All batteries were tested in a 25○C temperature chamber. The selection process involved charging at a constant
current of 0.5 C (CC mode) until the battery voltage reached 4.2 V, then switching to constant voltage
charging (CV mode) until the charging current dropped below 0.05 C. After a 1-h rest period, the battery
was discharged at 0.1 C (constant current discharge) to the rated cutoff voltage of 2.75 V. Following three
charge-discharge cycles, the battery underwent electrochemical impedance spectroscopy (EIS) analysis. The
initial capacity of each battery was determined by averaging the capacities discharged over the three cycles.
After completing the first three charge-discharge cycles, the batteries were fully charged using the CC/CV
method, rested for one hour, and then subjected to EIS analysis to complete the selection process.

Table 1: Specifications of samsung 18650 lithium-ion battery

Parameter Descriptions
Battery model ICR18650-26J

Chemistry LiCoO2
Nominal capacity Min. 2550 mAh*1 C = 2600 mA
Nominal voltage 3.63 V
Charge voltage 4.2 V

Discharge voltage 2.75 V
Maximum discharge current 5.2 A

Standard charging CC/CV, 1.3 A/4.2 V
Standard charging time 3 h
Charging temperature 0○C to 45○C

Discharging temperature −10○C to 60○C

2.3 SEIS and DEIS
EIS can be categorized into Static EIS (SEIS) and Dynamic EIS (DEIS). EIS measured during the battery’s

charge and discharge process is referred to as DEIS, while EIS measured at the OCV state is referred to as
SEIS. Typically, a battery returns to the OCV state approximately one hour after stopping charge or discharge.
Prior to collecting dynamic EIS, the initial battery screening was conducted under static conditions, meaning
SEIS measurements were taken after the battery had been at rest for more than one hour following the end of
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charge or discharge. This resulted in the acquisition of static Nyquist plots. The DEIS measurements in this
study were conducted in real-time during the discharge process. It is known that, due to the characteristics
of the battery, the voltage at the battery terminals during discharge and after resting for one hour to return
to the OCV state will differ at the same SOC.

Therefore, it can be inferred that the actual measured Nyquist plots of dynamic and static EIS at the
same SOC will differ, as shown in Fig. 3. The figure illustrates comparisons of dynamic and static Nyquist
plots at SOC levels of 90%, 50%, and 30%. From the figure, it is evident that there are significant differences
between dynamic and static EIS at the same SOC. The radius of the static EIS is larger than that of the dynamic
EIS, likely due to varying surface temperatures of the battery during dynamic conditions, which affect
the EIS measurements. During dynamic discharge, the battery’s surface temperature gradually increases,
whereas it remains relatively stable in static conditions. Temperature variations impact the battery’s internal
resistance and electrochemical reaction rates, resulting in notable differences between dynamic and static
EIS measurements.

Figure 3: Comparison of dynamic and static nyquist plots at SOC Levels of 90%, 50%, and 30%

During real-time discharge, as the C-rate increases, battery losses also increase, leading to a rise in
battery surface temperature. Fig. 4 illustrates dynamic Electrochemical Impedance Spectroscopy (EIS) of
lithium batteries discharged at different C-rates (0.2–1.2 C) to SOC equal to 60%. From Fig. 4, it is apparent
that all Nyquist plots differ at the same SOC. While dynamic EIS is more complex, static EIS requires a period
of rest before measurement, whereas dynamic EIS enables real-time measurement of battery electrochemical
characteristics during charge and discharge, providing more immediate SOC estimation. Therefore, for
employing dynamic EIS in SOC detection algorithms, discharge C-rate and battery surface temperature must
be included as input parameters for training neural network models.
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Figure 4: When SOC = 60%, (a) Nyquist comparison of different discharge C-rates. (b) Bode comparison of different
discharge C-rates

2.4 DEIS Experiment
Dynamic Electrochemical Impedance Spectroscopy (DEIS) refers to the AC impedance measured in

real-time conditions of a battery. Previous literature has noted that high-frequency DEIS is less discernible,
and low-frequency DEIS often exhibits disturbances in Nyquist plots, appearing as deviations from the ideal
45○ line characteristic of static conditions. Therefore, the measurement frequency range for DEIS avoids
both high and low-frequency regions. Considering these conditions, this study employed two SAMSUNG
batteries for measurement within a frequency range of 924 to 11 Hz. The process flowchart for DEIS collection
is depicted in Fig. 5. The subsequent sections will explain each step of the flowchart in detail:

CC/CV charging: CC at 0.5 C, CV at 4.2 V, cutoff current at 0.05 C (Initial cycle number i is equal to 1).
Step1. Rest: Rest 1 h.
Step2. SEIS measure: The paper adopts a sinusoidal voltage perturbation signal ranging from 0.1 Hz to

10 kHz with 6 points per decade and a 10 mV amplitude.
Step3. CC discharge: Discharge currents range from 0.2 to 1.8 C, in increments of 0.2 C, totaling 9

discharge C-rates.
Step4. Voltage termination check: Is the terminal voltage less than the cutoff voltage? If no, proceed to

step 6; if yes, proceed to step 7.
Step5. SOC determination: Is the SOC discharge greater than or equal to 5%? If no, return to step 4; if

yes, proceed to step 7.
Step6. DEIS measure: The paper adopts a sinusoidal voltage perturbation signal ranging from 0.1 Hz to

10 kHz with 6 points per decade and a 10 mV amplitude.
Step7. Cycle count (i) and voltage termination check: Is the cycle count (i) greater than or equal to 20?

Or is the terminal voltage less than or equal to the cutoff voltage? If no, return to step 4; if yes, terminate.



Comput Mater Contin. 2025;83(1) 831

Figure 5: EIS collection flowchart

2.5 Frequency Selection of the Magnitude of Impedance ∣Z∣
From the aforementioned experimental procedures, dynamic AC impedance of the battery at different

discharge C-rates from 95% to 0% SOC can be obtained. The results will be presented in Nyquist plots, as
shown in Fig. 6. The figure displays the Nyquist plot of a Battery 1 discharged at 0.2 C constant current.
From DEIS measurements, ∣Z∣, ϕn , Re, and Im of the battery can be determined across frequencies ranging
from 924 to 11 Hz. However, considering future hardware implementations focusing solely on voltage and
current for AC impedance detection, ∣Z∣ is easier to obtain compared to Re and Im, which require calculation
from phase angles. Therefore, this study focuses solely on ∣Z∣ for neural network training. Figs. 7 and 8
illustrate the variation of ∣Z∣ with SOC. Fig. 7 shows the ∣Z∣ variation with SOC at different C-rates for the
same Battery 1 across different frequencies. Fig. 8 presents the ∣Z∣ variation with SOC at the same C-rate
for Battery 1 and Battery 2 across different frequencies. From Fig. 7, it can be observed that there are no
significant differences in ∣Z∣ variation across different SOC levels at 924 Hz frequency. Figs. 7 and 8 also
show overlapping impedance regions at 123 Hz across similar C-rates and different batteries and frequencies.
Therefore, similar AC impedance points are removed. Hence, frequencies of 617, 412, 275, 184, and 123 Hz,
totaling five frequency points, are selected as input parameters for neural network training.
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Figure 6: SAMSUNG 0.2 C discharge Battery 1 using DEIS

Figure 7: Magnitude of ∣Z∣ obtained for each C-rate of Battery 1. (a) at f n_12 = 924 Hz; (b) at f n_11 = 617 Hz; (c) at f n_10
= 412 Hz; (d) at f n_9 = 275 Hz; (e) at f n_8 = 184 Hz; (f) at f n_7 = 123 Hz
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Figure 8: Magnitude of ∣Z∣ of Battery 1 and Battery 2. (a) at 0.2 C; (b) at 0.4 C; (c) at 0.6 C z; (d) at 0.8 C; (e) at 1.0 C;
(f) 1.2 C; (g) 1.4 C; (h) 1.6 C; (i) 1.8 C

3 Artificial Neural Network Establishment
Firstly, sequentially introduce the establishment and training process of the artificial ANN, as depicted

in Fig. 9. The detailed steps are explained as follows.

3.1 Database Establishment
During discharge, higher C-rates result in faster voltage reaching the cutoff voltage. Using Samsung

batteries discharged at 1.4 C as an example, they reach the cutoff voltage at SOC 15%. Therefore, subsequent
neural network estimations only consider SOC up to 15%. Additionally, SOC 100% under different discharge
currents always corresponds to fully charged states is not included in the estimation range. Experimental
battery data and neural network estimation ranges are summarized in Table 2. Battery 1 is used for training
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data, while Battery 2 validates experimental results. Both training and validation data include discharge C-
rates: 0.2–1.8 C (incremented by 0.2 C), impedance ∣Z∣ at 5 frequency points, and battery surface temperature
rise (ΔT). The neural network aims to estimate SOC from 95% to 15% in 5% increments. The neural network
input data is a matrix of [7 × 153], and the target SOC is a matrix of [1 × 153].

Figure 9: Flowchart of neural network establishment and training

Table 2: Neural network input data and target SOC

Battery manufacturer SAMSUNG
Discharge current (C-rate) 0.2–1.8 (interval 0.2)

Frequency of ∣Z∣ (Hz) 617, 412, 275, 184, 123
Battery Surface Temp. (○C) ΔT

SOC of Target (%) 95–15 (interval 5)

3.2 Backpropagation Neural Network Model
The neural network architecture selected for this study is illustrated in Fig. 10 and detailed in Table 3. A

feed-forward backpropagation neural network was employed with training function Trainlm and adaptive
learning function Learngdm. The input layer consists of 7 variables: discharge current C-rate, impedance ∣Z∣
at 5 different frequency points, and battery surface temperature rise (ΔT). The output layer predicts SOC.
The hidden layer comprises 25 to 30 neurons, utilizing the Tansig transfer function f 1 to introduce non-
linearity and scale inputs to a range of −1 to 1. Tansig limits and compresses input parameters before passing
them to the next layer of neurons. The output layer employs the Purelin transfer function as f 2, chosen
for its computational efficiency and ease of hardware implementation. The performance function used is
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Mean Squared Error (MSE). Among various backpropagation training methods, Trainlm was selected for its
efficiency and effectiveness in this study.

Figure 10: Neural network architecture for SAMSUNG battery

Table 3: MATLAB built-in neural network setup

Description Parameter
Network type Feed forward back propagation

Number of layers 2 layers
Input data ∣Z∣617Hz, ∣Z∣412Hz, ∣Z∣275Hz, ∣Z∣182Hz, ∣Z∣123Hz,C-rate, ΔT
Target data SOC

Neurons number of hidden layer 25–35
Transfer function of hidden layer Tansigmoid

Transfer function output layer Purelin
Training function Trainlm

Performance method Mean Square Error (MSE)
Adaption learning function Learngdm

3.3 Training the BPNN Model
Firstly, summarize the training data and the targeted estimated SOC values, along with the input and

output dimensions of the two batteries, as shown in Table 4. Next, linear regression was employed to assess
and analyze the results of the backpropagation neural network model used in this study. The coefficient of
determination R, closer to 1, indicates higher accuracy of the results, as shown in Table 5. Upon completion of
the backpropagation neural network training, the training convergence plot is obtained, depicted in Fig. 11,
From the plot, it is observed that Battery 1 achieves the optimal MSE of 0.74664 after 42 training iterations.
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Table 4: Input and output dimensions

Battery type SAMSUNG 18650-26J
Input dimensions [7 × 153]

Output dimensions [1 × 153]

Table 5: The linear regression analysis of ANN model

Data type Regression value R
Training data 0.99987

Validation data 0.99937
Testing data 0.99897

All data 0.99966

Figure 11: Convergence plot of neural network for Battery 1

3.4 Validate the BPNN Model
The validation approach in this study involves using the trained neural network to first perform self-

validation on Battery 1. If the trained network fails to achieve the expected estimated SOC values when
validating against the input training data, it indicates training failure and necessitates starting over from
scratch. The trained network is compared using Eqs. (3) and (4), and the network with the smallest overall
mean absolute error (MAE) value is used for validation on Battery 2. Initially, Battery 1 is used to complete
the backpropagation neural network training following the steps outlined above, followed by self-validation.
The number of hidden layer nodes influences the accuracy of the estimation; therefore, this study tests three
different numbers of neurons: 25, 30, and 35. The absolute error (AE) of the estimated SOC obtained from
self-validation is calculated, and the MAE across different C-rates is determined. The formulas for AE and
MAE are shown in Eqs. (3) and (4), respectively. Fig. 12 and Table 6 illustrate the MAE differences in SOC
estimation for Battery 1 using three different numbers of neurons in the hidden layer. From the figure and
table, it is evident that the overall MAE is best when the number of neurons is 30, with the smallest estimation
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errors observed across the SOC range from 95% to 15%. Consequently, the hidden layer in this study is set to
30 neurons. Apart from C-rate and temperature, which are essential inputs, the optimal design of the input
layer also requires selecting the five most discriminative frequency points of ∣Z∣. This selection is compared
with using 12 frequency points of ∣Z∣ and a single most discriminative frequency point of ∣Z∣. As shown
in Fig. 13 and Table 7 for Battery 1, the five selected frequency points of ∣Z∣ result in a lower MAE compared
to using a single frequency point or all 12 frequency points of ∣Z∣.

SOCAE = ∣SOCTrue − SOCEstimation∣ (3)

SOCMAE =
1
n

n
∑
i=1
∣SOCTruei − SOCEstimation i ∣ (4)

Figure 12: MAE for different numbers of neurons for Battery 1

Table 6: Mean absolute error for Battery 1 with different numbers of neurons

Number of neurons Maximum error Minimum error MAE
N = 25 1.97% 0.43% 1.11%
N = 30 0.75% 0.04% 0.42%
N = 35 4.89% 0.22% 1.35%
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Figure 13: Comparison of estimation errors with different impedance inputs for Battery 1

Table 7: Comparison of estimation errors of different input impedances for Battery 1

∣Z∣ Maximum error Minimum error MAE
Single frequency point 17.66% 0.65% 3.43%

In this paper 0.75% 0.04% 0.42%
All frequency points 1.83% 0.22% 0.81%

4 Experimental Results
The training and validation data for the neural network are obtained through electrochemical

impedance spectroscopy (EIS) analysis. Subsequently, the neural network is trained and validated. Battery
1 is used for self-validation to ensure that the trained network does not exhibit significant deviations when
tested against the training data. Battery 2 is used for validation to confirm the accuracy of the trained neural
network. Figs. 14 and 15 present the self-validation results and AE plots for Battery 1 across 0.2 to 1.8 C. Figs. 16
and 17 show the secondary validation results and AE plots for Battery 2 across the same range of 0.2 to 1.8
C. Fig. 18 and Table 8 compare the MAE results between Battery 1 and Battery 2.

Based on the experimental results, Battery 1, used as the training data for the neural network, exhibits
superior accuracy in self-validation. The overall estimated MAE for Battery 1 across 0.2 to 1.8 C ranges from a
best value of 0.04% to a worst value of 0.75%. Battery 2, serving as the secondary validation battery, shows an
overall estimated MAE ranging from a best value of 0.73% to a worst value of 2.48% across 0.2 to 1.8 C, with
the average overall estimated MAE being 0.82% higher compared to Battery 1. As indicated by the estimation
results, the trend across SOC from 95% to 15% demonstrates a significant degree of accuracy. Therefore, the
neural network architecture employed in this study effectively performs dynamic SOC estimation for the
battery.

a) The MAE for individual SOCs in the self-validated battery is less than 1%.
b) For a different battery of the same model under the same neural network, the MAE for individual SOCs

is less than 2.5%.
c) The overall average error in the self-validation is only 0.42%.
d) The overall average error for the secondary validation battery is 1.24%.
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Figure 14: Self-validation results of Battery 1 at different C-rates

Figure 15: AE of self-validation results for Battery 1 at different C-rates
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Figure 16: Self-validation results of Battery 2 at different C-rates

Figure 17: AE of self-validation results for Battery 2 at different C-rates
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Figure 18: Comparison of MAE between Battery 1 and Battery 2

Table 8: MAE error comparison for SAMSUNG Batteries 1 and 2

SOC target BAT1 MAE (%) BAT2 MAE (%) SOC target BAT1 MAE (%) BAT2 MAE (%)
95 0.58 2.48 50 0.51 1.26
90 0.71 1.52 45 0.10 1.31
85 0.62 1.25 40 0.75 0.82
80 0.75 0.92 35 0.42 1.00
75 0.49 1.60 30 0.28 0.87
70 0.37 1.64 25 0.18 1.14
65 0.60 1.60 20 0.04 0.78
60 0.44 0.94 15 0.04 0.73
55 0.21 1.21 AVG. 0.42 1.24

5 Conclusion
This paper presents a method for real-time SOC estimation of lithium-ion batteries using dynamic AC

impedance and an ANN. By measuring the electrochemical impedance ∣Z∣ at various frequencies, discharge
C-rate, and surface temperature of the battery in real-time during the discharge process, these data serve
as parameters for training the ANN. The use of dynamic AC impedance allows for real-time monitoring,
overcoming the limitations of traditional static AC impedance methods that require an open-circuit state
and cannot provide timely information.

Experimental results indicate that the impedance ∣Z∣ of the battery shows a consistent relationship with
SOC, leading to more accurate SOC estimations. For Samsung batteries using lithium cobalt oxide as the
cathode material, the method achieves an overall average error of only 0.42% in self-validation, with the
mean MAE for individual SOCs not exceeding 1%. In secondary validation, the overall average error is 1.24%,
with the MAE for individual SOCs below 2.5%.

However, several practical limitations must be noted. Measuring impedance at multiple frequencies in
dynamic conditions requires advanced hardware, which may increase system complexity and cost. Testing
was conducted at 25○C with limited discharge rates (0.2–1.8 C), leaving its performance under varied



842 Comput Mater Contin. 2025;83(1)

environmental and operational conditions unverified. Moreover, validation was based on two cells from the
same manufacturer, and further studies are needed to evaluate its generalizability across diverse battery types.

This method can be applied not only to electric vehicles, electric scooters, and mobile devices but
also effectively utilized in energy storage systems, significantly enhancing system operational efficiency and
reliability. The approach demonstrates the potential for improving battery management systems by providing
accurate and real-time SOC estimates.
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SOH State of health
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