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ABSTRACT: The task of student action recognition in the classroom is to precisely capture and analyze the actions
of students in classroom videos, providing a foundation for realizing intelligent and accurate teaching. However, the
complex nature of the classroom environment has added challenges and difficulties in the process of student action
recognition. In this research article, with regard to the circumstances where students are prone to be occluded and
classroom computing resources are restricted in real classroom scenarios, a lightweight multi-modal fusion action
recognition approach is put forward. This proposed method is capable of enhancing the accuracy of student action
recognition while concurrently diminishing the number of parameters of the model and the Computation Amount,
thereby achieving a more efficient and accurate recognition performance. In the feature extraction stage, this method
fuses the keypoint heatmap with the RGB (Red-Green-Blue color model) image. In order to fully utilize the unique
information of different modalities for feature complementarity, a Feature Fusion Module (FFE) is introduced. The FFE
encodes and fuses the unique features of the two modalities during the feature extraction process. This fusion strategy
not only achieves fusion and complementarity between modalities, but also improves the overall model performance.
Furthermore, to reduce the computational load and parameter scale of the model, we use keypoint information to crop
RGB images. At the same time, the first three networks of the lightweight feature extraction network X3D are used
to extract dual-branch features. These methods significantly reduce the computational load and parameter scale. The
number of parameters of the model is 1.40 million, and the computation amount is 5.04 billion floating-point operations
per second (GFLOPs), achieving an efficient lightweight design. In the Student Classroom Action Dataset (SCAD),
the accuracy of the model is 88.36%. In NTU RGB+D 60 (Nanyang Technological University Red-Green-Blue-Depth
dataset with 60 categories), the accuracies on X-Sub (The people in the training set are different from those in the test set)
and X-View (The perspectives of the training set and the test set are different) are 95.76% and 98.82%, respectively. On
the NTU RGB+D 120 dataset (Nanyang Technological University Red-Green-Blue-Depth dataset with 120 categories),
the accuracies on X-Sub and X-Set (the perspectives of the training set and the test set are different) are 91.97% and
93.45%, respectively. The model has achieved a balance in terms of accuracy, computation amount, and the number
of parameters.
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1 Introduction
With the rapid advancement of deep learning technology, the domain of student classroom action

recognition has experienced swift development. Nowadays, this technology is gradually integrating into
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practical application scenarios such as intelligent education, learning behavior analysis, and online teaching
monitoring, showing its great potential in the education field. The core task of student classroom behavior
recognition is to accurately identify and classify the classroom behaviors of students presented in the
videos. This allows for an accurate evaluation of students’ behaviors, offers data to enhance educational
tactics, and advances the scientific development of educational research. Through this technology, teachers
and educational administrators can have a deeper understanding of students’ learning habits, interaction
patterns, and learning outcomes, thereby providing more personalized and precise teaching guidance.

Traditionally, action recognition mostly adopts a single-modal strategy, that is, it relies on a single data
source, such as RGB video frames or human keypoint data for action recognition. However, in the face of
the intricate and variable classroom environment, these single-modal approaches invariably exhibit certain
limitations. Although the methods based on RGB video frames can intuitively reflect the scene appearance
and context information [1–4], their recognition performance is extremely vulnerable to external factors such
as changes in lighting conditions and interference from occlusions; while the methods based on keypoint [5–
8], although they show strong robustness in responding to environmental changes, in scenarios that require
recognition relying on appearance features, their accuracy is often not satisfactory.

In order to overcome these limitations of single-modal methods, multimodal action recognition
methods have gradually come into the spotlight of research [9–12] and have shown significant advantages. By
fusing multi-source information such as RGB video frames and keypoint data, multimodal methods can not
only effectively capture rich visual appearance features and scene context information, but also use human
skeleton information to reduce the negative impact of occlusion and background changes on recognition
performance, thereby significantly improving the accuracy and robustness of action recognition. However,
while multimodal methods achieve high-precision recognition, they also have the disadvantages of high
computational costs and high resource consumption. This poses a non-negligible challenge for practical
applications, especially in the resource-constrained classroom environment.

In view of the background described above, this article proposes an innovative lightweight multimodal
student action recognition method, aiming to fully utilize the respective advantages of the RGB image
modality and the keypoint modality to improve recognition accuracy. At the same time, it focuses on
addressing the computational efficiency problem faced by multimodal methods in practical applications.
This method achieves the goal of significantly reducing model complexity and computational resource
consumption while ensuring recognition accuracy by constructing a dual-branch model based on RGB
images and keypoint data and optimizing the network architecture and algorithm design. In the model, the
RGB image branch focuses on extracting visual features, while the keypoint branch uses the human skeleton
heatmap for accurate action recognition. In addition, we have also designed an efficient multimodal feature
encoding and fusion module to fully utilize the unique complementary information of the two modalities to
generate a more comprehensive and rich action representation. Specifically, our main contributions can be
summarized as follows: (1) We propose a lightweight multimodal action recognition method that takes RGB
information and keypoint heatmaps generated based on the keypoint as input. This method includes a feature
extraction network with a bidirectional fusion module, which can simultaneously process information from
different modalities and effectively fuse them together. (2) We design a Feature Encoding Fusion Module
(FFE). After multi-modal information is fused through multiple layers of convolution, the unique features
of each modality may be lost. To fully utilize the unique information of these two modalities, we designed
a feature encoding fusion module to fuse the early feature information of the modalities. (3) To explore
the application of multimodal action recognition technology in the field of education, we have carefully
constructed a Student Classroom Action Dataset (SCAD). This dataset covers six common action categories
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for students in the classroom and contains more than 10,000 data samples, providing data support for
subsequent research.

The structure of this article is as follows: Section 2 presents the related work, specifically, action
recognition based on RGB images, action recognition based on keypoint, and action recognition based on
multimodal fusion. Section 3 elaborates on the lightweight classroom student action recognition method
proposed in this article. Section 4 details some experiments conducted in this article. Section 5 concludes
the paper and provides some future research directions.

2 Related Work

2.1 Action Recognition Based on RGB Images
Currently, action recognition based on RGB images is a highly regarded field, aiming to utilize visual

information, especially color image data, to recognize different human actions. In action recognition based
on RGB images, it is usually necessary to use the color image sequence captured by the camera to extract
the key information about human motion. Then, action recognition is performed by analyzing and under-
standing the spatiotemporal features contained in these dynamic images. Tran et al. [1] pioneered an efficient
three-dimensional convolutional architecture specifically designed for accurately extracting spatiotemporal
features in video data. Compared with the two-dimensional convolutional network, it shows significant
advantages in handling video tasks. Through the use of a deep three-dimensional convolutional network,
the spatiotemporal information in the video can be captured more accurately. Lin et al. [13] proposed an
innovative temporal shift module, which realizes the efficient exchange of inter-frame information by shifting
the channels in the temporal dimension. This design enables TSM to achieve a performance level comparable
to that of the 3D convolutional network while maintaining the computation amount of the 2D convolutional
network. Feichtenhofer [14] achieves excellent performance by multi-dimensional expansion of the tiny 2D
image classification architecture, including space, time, width, and depth. And by adopting a method of
gradually expanding the network, focusing on the expansion of only one dimension at a time, a good balance
between accuracy and complexity is achieved, maintaining high accuracy while being extremely lightweight
in terms of network width and parameters. Li et al. [15] integrated the advantages of 3D convolution and
the spatiotemporal self-attention mechanism to achieve a balance between computational efficiency and
accuracy. Through a unique relation aggregator, local and global token affinities are learned in the shallow
and deep layers respectively, effectively handling the spatiotemporal redundancy and complex dependencies
between video frames and achieving a balance between computational cost and accuracy.

In conclusion, the action recognition method based on RGB images uses technologies such as 3D
convolution, which can efficiently process temporal and spatial information simultaneously and performs
well in accurately capturing image details for action recognition. However, because the image itself is easily
interfered by complex background factors such as lighting and occlusion, especially in specific environments
such as classrooms, the recognition accuracy of this kind of method may be affected to some extent.

2.2 Action Recognition Based on Keypoint
Action recognition based on keypoint is a popular research direction in the field of computer vision.

This method captures the keypoint and skeletal structure of the human body, and uses deep learning
and other algorithms to process and analyze the keypoint data, thereby achieving the recognition and
classification of human actions. Compared with the traditional action recognition methods based on RGB
images or videos, action recognition based on keypoint is not affected by environmental factors such as
lighting and background, and has higher accuracy and robustness. Yan et al. [16] proposed a deep learning
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network specifically for processing spatiotemporal data. It combines the advantages of graph convolution
and spatiotemporal convolution, and can capture the spatiotemporal correlation features in the input graph
structure data. The node features are extracted through the graph convolution layer. and the temporal
dynamics and spatial correlation of the keypoint data are captured through the spatiotemporal convolution
layer. Shi et al. [5] designed a two-stream adaptive graph convolutional network, which solves the problem
of the fixed and inflexible graph topology structure in the traditional GCN method. It uses a data-driven
approach to learn the topology of the graph, which can not only be learned uniformly to adapt to the global
characteristics, but also be learned separately for each sample to capture the subtle differences, thereby
enhancing the flexibility and versatility of the model. In addition, a two-stream framework is designed
to simultaneously process first-order and second-order information, effectively improving the recognition
accuracy. Chen et al. [7] proposed an innovative graph convolutional network CTR-GCN, which realizes the
dynamic and effective modeling of the channel topology by introducing the channel topology refinement
graph convolution, thereby being able to accurately capture the complex spatiotemporal correlations in the
keypoint actions. Different from the traditional GCN, CTR-GCN breaks the limitation that all channels share
the same set of topological structures. By refining the training topological structure, the upper limit of the
model’s ability is further improved. Zhao et al. [17] designed an innovative part-based graph convolutional
network. The main idea is to finely divide the skeleton graph into four subgraphs, and these subgraphs
share keypoint. Compared with the model using the entire skeleton graph, this model has a significant
improvement in recognition performance.

In conclusion, the keypoint-based method shows strong robustness in dealing with background factors
such as lighting and occlusion. With the effective use of keypoint, it can more accurately capture the temporal
information of actions. However, when this method recognizes some actions, its recognition accuracy
decreases due to the neglect of the specific details in the image.

2.3 Action Recognition Based on Multimodal Fusion
Recently, action recognition techniques that fuse features of different modalities have received

widespread attention. Traditional methods that rely only on single-modal features, such as RGB images or
only keypoint data, often struggle to achieve the desired recognition accuracy in action recognition tasks
due to their inherent limitations. In contrast, multimodal methods can effectively utilize the advantages
of each modality by fusing features of different modalities, significantly improving recognition accuracy.
Multimodal methods can simultaneously consider multiple modality information such as RGB images and
keypoint data, and more comprehensively describe the characteristics of actions through complementarity
and enhancement. Vaezi Joze et al. [9] proposed an MMTM module that can be conveniently embedded
in the feature hierarchy to achieve modal fusion. It can utilize information from multiple modalities to
accurately recalibrate channel features inside CNN and complete the fusion of feature modalities in the
convolutional layers of different spatial dimensions. Guo et al. [18] designed an innovative bidirectional
synchronous cross-spatial attention fusion model, and at the same time introduced a novel motion-oriented
human pose representation method, Limb Flow Field (LFF). This method effectively alleviates the temporal
ambiguity of human poses during the recognition process, thereby improving the accuracy and robustness
of action recognition. Duan et al. [19] used 3D heat maps as the basic representation of human keypoint.
Compared with the traditional GCN method, it shows a higher efficiency in spatiotemporal feature learning.
It not only captures the dynamic changes of human actions more accurately, but also significantly enhances
the resistance to keypoint estimation noise, improving the robustness of the model. At the same time,
PoseC3D can fuse the spatiotemporal information of the keypoint heat map and the visual data in the
video frame to achieve a more comprehensive and accurate recognition of human actions. Shah et al. [10]
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proposed an action recognition method based on multiview videos, which adopts a supervised contrastive
learning framework and uses multi-view data to learn view-robust feature embeddings. By improving the
contrastive loss and increasing the synchronous view positive samples to improve the model performance,
and innovatively using the classifier probability to guide the selection of hard negative samples to enhance the
feature discrimination, this method shows stronger domain generalization ability compared to the standard
supervised training of synthetic multiview data.

In conclusion, the multimodal-based recognition methods can significantly improve the recognition
accuracy by virtue of their ability to integrate different modality information. However, in practical applica-
tions, more computational resources are required to process multiple modality information simultaneously,
which to some extent increases the difficulty of practical applications and the burden on system resources.
Therefore, the model constructed in this study has fully exploited the strength of RGB images to capture
details and the advantage that keypoints are less affected by background interference. Meanwhile, the model
has been designed to be lightweight, enabling it to connect with the actual classroom needs more effectively
and provide strong support and guarantee for classroom teaching.

3 Method
In this section, we will elaborate on our research method. The model architecture we propose consists

of two main branches: the RGB branch and the keypoint branch. Both branches are dedicated to performing
action recognition by learning the temporal and spatial information of human actions. By fusing the outputs
of these two branches, our network can more comprehensively understand and recognize various complex
human actions.

3.1 Overall Model Structure
The model structure, as illustrated in Fig. 1, comprises two branches. During the feature extraction stage,

the features of different branches are fused, and then the fused features are transmitted to two classification
heads for action recognition. We use RGB image data and joint data as the inputs of two different modalities.
First, in order to reduce the influence of irrelevant areas in the video image, we use the keypoint as the
guiding information to crop the video image. By calculating the maximum and minimum coordinates
of the keypoint in the horizontal and vertical directions in each frame, the actual coverage area of the
character’s actions is determined, thereby retaining the key action information and significantly reducing the
unnecessary background area. This process not only improves the recognition accuracy but also reduces the
computational cost. For each keypoint, a two-dimensional Gaussian Map is generated with its coordinate
as the center. Its intensity is set by the confidence of the keypoint, and its spatial distribution is determined
by the Gaussian function. After all the Gaussian Maps of the keypoint are superimposed, a complete pose
heatmap is formed, which not only reflects the positions of the keypoint but also includes their confidence
information. Then, the cropped video image and the keypoint heatmap are input into the feature extraction
network together for in-depth feature extraction. During the feature extraction process, the fusion between
modalities is realized through lateral connection to fully integrate the information of the two modalities.
Then, the extracted features are sent to the first classifier for action recognition. At the same time, in order
to make more comprehensive use of the unique information of the two modalities, we introduce the FFE
module. This module fuses and encodes the modal information in the middle layer of the feature extraction
network to capture rich spatiotemporal features. The fused features processed by the FFE module are input
into the second classifier. Finally, the decision results of the two classifiers are combined through the fusion
strategy to obtain a more accurate and comprehensive action recognition result.
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Figure 1: Lightweight multimodal action recognition model structure

3.2 Multimodal Feature Extraction
To improve the model’s computational efficiency and reduce the number of parameters, the model first

utilizes the first three layers of the X3D network to extract features from the RGB modality and the keypoint
modality. Meanwhile, a feature-layer fusion strategy is introduced during the feature extraction process.
This strategy is implemented before the feature extraction in the second and third layers, aiming to more
effectively integrate information from different modalities. The schematic diagram of fusion visualization is
presented in Fig. 2. The fusion operation is carried out through addition and is divided into the following
two steps: Step 1: For the RGB feature map, a convolutional operation is used to resize it to the same size as
the keypoint feature map. Then, it is added to the feature map of the keypoint modality. Simultaneously, a
copy of the keypoint feature map that has not been fused with the RGB feature map is reserved. Step 2: A
de-convolution operation is performed on the keypoint feature map that has not been fused with the RGB
feature map, rendering its size identical to that of the RGB feature map. Subsequently, the keypoint feature
map is incorporated into the RGB branch for fusion.

Figure 2: Modal fusion visualization diagram
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3.3 Feature Fusion Encoding Module
Although additive fusion of the RGB modality and the keypoint modality can improve the recognition

accuracy to a certain extent, with the progression of multilayer convolutional fusion, the unique features
of each modality are highly likely to be gradually lost during this process. To make full use of the unique
information of these two modalities, we have designed a Feature Fusion Encoding Module (FFE). The core
idea of this module is to retain more unique information of each modality by capturing and fusing the
shallow features of the RGB modality and the keypoint modality output from the second layer of the feature
extraction network. Specifically, it can be divided into three steps: Step 1: Obtain the features of the RGB
image modality and the keypoint modality output from the second layer of the feature extraction network,
and concatenate them in the Channels dimension as the input of the FFE module. Step 2: Inside the module,
an encoder is used to encode the input features. Inter-modality fusion is achieved by reducing the number of
Channels. Step 3: A decoder is used to restore the encoded feature map to the original number of Channels
for subsequent operations. In addition, to further enhance the fusion effect, we have introduced a residual
connection in the decoder part to preserve more original information. The design of this Feature Fusion
Encoding Module enables the fusion of the two modalities while retaining the unique information of the
RGB and keypoint modalities.

4 Experiments

4.1 SCAD Dataset
Within the constructed Student Classroom Action Dataset (SCAD), we have meticulously collected and

labeled six principal student action categories in the classroom, namely, Raising hands, Standing up, Turning
back, Listening, Reading, and Taking notes. Each category corresponds to a typical student action, as shown
in Fig. 3. Raising hands records the body language when students try to attract the teacher’s attention or
request to speak. The number of samples in this category in the dataset may reflects the students’ active
participation and the frequency of their questions. Standing up includes all instances of students getting
up from their seats, which may be for answering questions, moving to the blackboard, or participating
in classroom activities. The amount of data in this category can reveal the classroom activity level and
the students’ participation in the course content. Turning back records the action of students changing
the direction of their sitting position in the classroom, which may indicate their communication with
classmates. Listening represents the focused action that students show when the teacher is lecturing, and it
corresponds to the main action mode of students in regular teaching activities. Reading captures the situation
where students Reading textbooks, extracurricular books, or other text materials. The amount of data for
the Reading action can provide clues about students’ self-study habits. Taking notes reflects the action of
students Taking notes when Listening or Reading. The data distribution of this category may show students’
preferences for information recording and organization. Among these six categories, the data volume of each
category is shown in Fig. 4, where there are 1404 data for Raising hands, 1829 data for Standing up, 1918 data
for Turning back, 1798 data for Listening, 1869 data for Reading, and 1873 data for Taking notes.
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Figure 3: Sample of SCAD dataset

Figure 4: SCAD dataset category data volume
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4.2 Experimental Analysis
To thoroughly and comprehensively evaluate the effectiveness of our proposed method, tests were

conducted on the NTU RGB+D 60 dataset and the NTU RGB+D 120 dataset. The NTU RGB+D 60 dataset
contains more than 50,000 video samples, covering 60 different action categories. Each sample contains data
in four modalities: RGB video, depth map sequence, 3D skeleton data, and infrared (IR) video. The resolution
of RGB videos is 1920 × 1080. Such high-resolution videos can capture more detailed information and help
improve the accuracy of action recognition. The NTU RGB+D 120 dataset is expanded to 120 categories on
the basis of the NTU RGB+D 60 dataset, and the number of samples is expanded to more than 100,000. In
addition, to further verify the performance of our method in the classroom, we also conducted experiments
on the student action dataset SCAD. To evaluate the performance of the algorithm, we evaluated the accuracy
as well as the number of parameters and the computation amount of the model.

4.2.1 NTU RGB+D Comparative Experiment
To evaluate the performance of the proposed action recognition method in the public dataset, we

performed detailed experiments on the NTU RGB+D 60 dataset and the NTU RGB+D 120 dataset and
compared it with existing methods. The experimental results of the NTU RGB+D 60 dataset are shown
in Table 1. In the X-Sub test set, our method achieved a Top-1 accuracy rate of 95.76%, while on the X-View
test set, the accuracy rate was 98.82%. The experimental results of the NTU RGB+D 120 dataset are shown
in Table 2. In the X-Sub test set, our method achieved a Top-1 accuracy rate of 91.97%, while on the X-Set test
set, the accuracy rate was 93.45%, exceeding other compared methods, showing the accuracy and efficiency
of our method.

Table 1: Comparison of Top-1 accuracy on NTU RGB+D 60 dataset

Methods K R X-Sub X-View
ST-LSTM [20] ✓ - 69.2% 77.7%

View-invariant [21] ✓ - 80.0% 87.2%
STGCN [16] ✓ - 81.5% 88.3%
2s-AGCN [5] ✓ - 88.5% 95.1%
DGNN [22] ✓ - 89.9% 96.11%

MS-G3D [23] ✓ - 91.5% 96.2%
CTR-GCN [7] ✓ - 92.4% 96.8%

C3D [1] - ✓ 63.5% 70.3%
HybridNet [24] - ✓ 86.5% 88.5%

Glimpse clouds [25] - ✓ 86.6% 93.2%
STAR-Transformer [26] ✓ ✓ 92.0% 96.5%

TSMF [27] ✓ ✓ 92.5% 97.4%
ViewCon [10] ✓ ✓ 93.7% 98.9%
PoseC3D [19] ✓ ✓ 94.1% 97.1%

Our ✓ ✓ 95.76% 98.82%



1110 Comput Mater Contin. 2025;83(1)

Table 2: Comparison of Top-1 accuracy on NTU RGB+D 120 dataset

Methods K R X-Sub X-Set
ST-LSTM [20] ✓ - 58.2% 60.9%

GCA-LSTM [28] ✓ - 58.3% 59.2%
STGCN [16] ✓ - 83.5% 85.2%
2s-AGCN [5] ✓ - 84.2% 86.0%
MS-G3D [23] ✓ - 86.9% 88.4%
CTR-GCN [7] ✓ - 88.9% 90.6%
ViewCon [10] - ✓ 85.6% 87.5%
DVANet [29] - ✓ 91.6% 90.4%

VT-BPAN [30] ✓ ✓ 86.3% 88.2%
TSMF [27] ✓ ✓ 87.0% 89.1%

VPN++ +3D Pose [31] ✓ ✓ 90.7% 92.5%
STAR-Transformer [26] ✓ ✓ 90.3% 92.7%

Our ✓ ✓ 91.97% 93.45%

4.2.2 Accuracy, Parameter Number and Computation Amount Evaluation on the SCAD Dataset
To evaluate the performance of the proposed action recognition method in the classroom environment,

we performed experiments on the self-constructed dataset and compared it with several existing advanced
methods. These methods include methods based on skeletal data, methods based on RGB images, and
multimodal PoseC3D. Our experiment aims to evaluate the performance of each method on three key
metrics: Action Recognition Accuracy (Accuracy), Number of Model Parameters (params), and Computa-
tion Amount (GFLOPs). We use Acc, P, and G to represent these metrics, respectively. The experimental
results are shown in Table 3. Our method achieved a Top-1 accuracy of 88.36%, exceeding other comparison
methods. In addition, the number of our model parameters is only 1.40 M, and the computation amount is
5.04 GFLOPs, showing high computational efficiency. Compared with the methods based on skeletal data,
our method not only has a significant improvement in accuracy, but also reduces the number of model
parameters while maintaining a low computation amount. For example, the accuracy of MS-G3D is relatively
low, and the computation amount is 6.8 GFLOPs, which is higher than our method. When compared with
the methods based on RGB data, our method also shows better performance. Especially when compared
with TimesFormer, which uses a large number of parameters and has a high computation amount, our
method significantly reduces the requirements for the number of parameters and computation amount while
maintaining a similar or even higher accuracy.

Table 3: Performance comparison on the SCAD dataset

Methods K R Acc P(M) G
2s-AGCN [5] ✓ - 80.58% 4.4 3.5
STGCN [16] ✓ - 82.40% 3.8 3.1

CTR-GCN [7] ✓ - 82.85% 1.436 1.95
MS-G3D [23] ✓ - 83.69% 2.95 6.8

C3D [1] - ✓ 85.62% 78.4 38.5
R2plusld [32] - ✓ 82.67% 63.8 53.1

(Continued)
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Table 3 (continued)

Methods K R Acc P(M) G
SlowFast [33] - ✓ 86.60% 34.47 66.1

TimesFormer [34] - ✓ 87.76% 86.11 141
PoseC3D [19] ✓ ✓ 87.75% 36.0 58.25

Our ✓ ✓ 88.36% 1.40 5.04

4.2.3 Ablation Experiment
In this study, we designed a series of ablation experiments to evaluate the impact of different input

modalities and their combinations on the performance of the video action recognition model. The exper-
imental results are shown in Table 4. The method using RGB images alone generally performs better on
the three datasets than the method using only poses. This may be because RGB images provide richer
environmental and texture information. However, the experiment shows that fusing pose and RGB data can
further improve the accuracy of the model. It is worth noting that when the model uses only single-frame
RGB and single-frame pose data, the performance drops significantly, which emphasizes the importance
of multi-frame data in capturing the dynamic characteristics of actions. We also compared removing the
FFE module and using the Cat to concatenate the feature maps to replace the FFE module. In comparison,
our complete model, by comprehensively using multi-frame data and the FFE module, shows the best
performance on all datasets. This further confirms the key role of the multimodal fusion method in
improving the accuracy and robustness of video action recognition.

Table 4: Performance comparison on the SCAD dataset

Methods SCAD X-Sub X-View
Only Pose 79.12% 90.75% 94.99%
Only RGB 87.39% 94.60% 98.39%

Our (w/o FFE) 87.59% 95.15% 98.42%
Our (w/o FFE+Cat) 87.92% 95.62% 98.43%

Our (1 frame) 85.72% 65.81% 61.71%
Our 88.36% 95.76% 98.82%

4.2.4 Visualization Analysis
To verify the performance of our multimodal method in capturing key actions, we used the Gradient-

weighted Class Activation Mapping (Grad-CAM) method to conduct an in-depth visualization analysis of
the model on the NTU RGB+D dataset and the SCAD dataset. As shown in Fig. 5, the method that only
relies on keypoint information appears to have a relatively broad focus range and lacks a clear focus; while
the method that uses RGB images alone has a more concentrated area of attention, but it may miss other
information that is crucial for action recognition. In contrast, our multimodal method fuses the areas of
concern of both, not only precisely focusing on the important areas of the key actions, but also taking into
account other secondary areas that contribute to the recognition, thereby achieving a more comprehensive
and accurate action recognition. In Fig. 6, we show some recognition cases. After analysis, we found that the
keypoint-based method has better recognition accuracy for actions with large amplitudes, while the RGB
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image-based method is more superior in recognizing subtle actions. Our method combines the advantages
of both, so the recognition accuracy is higher. In addition, we also present the cases where the algorithm
makes mistakes. We analyzed these errors and believe that the reason may be the interference caused by
other secondary actions when the person in the video is performing the main action.

Figure 5: Data set attention visualization chart
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Figure 6: Recognition case demonstration

5 Conclusion
This article proposes a lightweight classroom student action recognition method based on multimodal

feature fusion and complementarity. This method fuses RGB image information and keypoint data and
effectively integrates the unique information of the two modalities through the Feature Fusion Encoding
(FFE) module, significantly enhancing the accuracy of action recognition and the computational efficiency
of the model. Experimental results demonstrate that on the self-constructed SCAD dataset, our method
achieves an accuracy rate of 88.36%, exceeding other comparison methods. On the public datasets NTU



1114 Comput Mater Contin. 2025;83(1)

RGB+D 60 and NTU RGB+D 120, our method also outperforms other comparison methods. In addition, the
number of parameters of our model is 1.40 M, and the computational cost is 5.04 GFLOPs. Compared with
other methods with similar accuracy, it has a significant advantage in terms of model complexity and exhibits
higher resource utilization efficiency. Moreover, we have also constructed a student classroom action dataset
covering a variety of student classroom action categories, laying a solid foundation for further research.
In future research, introducing large-scale models and implementing specific lightweight improvement
strategies for these large-scale models can be considered. Meanwhile, the range of action categories in the
classroom can be further expanded.
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