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ABSTRACT: Previous research utilizing Cartoon Generative Adversarial Network (CartoonGAN) has encountered
limitations in managing intricate outlines and accurately representing lighting effects, particularly in complex scenes
requiring detailed shading and contrast. This paper presents a novel Enhanced Pixel Integration (EPI) technique
designed to improve the visual quality of images generated by CartoonGAN. Rather than modifying the core model, the
EPI approach employs post-processing adjustments that enhance images without significant computational overhead.
In this method, images produced by CartoonGAN are converted from Red-Green-Blue (RGB) to Hue-Saturation-
Value (HSV) format, allowing for precise adjustments in hue, saturation, and brightness, thereby improving color
fidelity. Specific correction values are applied to fine-tune colors, ensuring they closely match the original input while
maintaining the characteristic, stylized effect of CartoonGAN. The corrected images are blended with the originals
to retain aesthetic appeal and visual distinctiveness, resulting in improved color accuracy and overall coherence.
Experimental results demonstrate that EPI significantly increases similarity to original input images compared to the
standard CartoonGAN model, achieving a 40.14% enhancement in visual similarity in Learned Perceptual Image Patch
Similarity (LPIPS), a 30.21% improvement in structural consistency in Structural Similarity Index Measure (SSIM),
and an 11.81% reduction in pixel-level error in Mean Squared Error (MSE). By addressing limitations present in the
traditional CartoonGAN pipeline, EPI offers practical enhancements for creative applications, particularly within media
and design fields where visual fidelity and artistic style preservation are critical. These improvements align with the
goals of Fog and Edge Computing, which also seek to enhance processing efficiency and application performance
in sensitive industries such as healthcare, logistics, and education. This research not only resolves key deficiencies in
existing CartoonGAN models but also expands its potential applications in image-based content creation, bridging gaps
between technical constraints and creative demands. Future studies may explore the adaptability of EPI across various
datasets and artistic styles, potentially broadening its impact on visual transformation tasks.

KEYWORDS: CartoonGAN; enhanced pixel integration (EPI); image quality enhancement; post-processing; HSV
color adjustment; visual fidelity; fog computing; edge computing; creative applications; technical advancements

1 Introduction
Computer vision research is continuously advancing at the forefront of technological development,

with innovative techniques such as deep neural networks and generative adversarial networks (GANs)
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enabling various visual effects, including high-resolution image generation, image style transfer, and the
implementation of virtual reality (VR) and augmented reality (AR) experiences [1,2]. This research goes
beyond simple image processing, contributing to the creation of new technologies and services by leveraging
images and visual information across diverse fields [3]. In particular, AI generation technologies demonstrate
innovative potential in visual content creation, such as webtoon background production, allowing creators
to easily produce more diverse and creative works while providing users with richer and more engaging
content [4]. One such technology, CartoonGAN, combines the words “cartoon” and “generation,” providing
a capability to automatically transform images into cartoon styles using computer vision and artificial
intelligence [5]. This technology is designed for artistic expression, enabling users to create unique and
creative visual content by converting real images into cartoon styles [6]. However, CartoonGAN still faces
significant challenges in representing complex outlines and lighting, which can negatively impact the quality
of the final images [7]. For instance, the clear and distinct outlines and natural Dlighting effects required for
cartoon styles are often not adequately rendered, leading to results that may fall short of user expectations [8].

To address these issues, this paper introduces a novel technique called EPI aimed at significantly
improving the output quality of existing CartoonGAN images. EPI applies post-processing adjustments to
the original images after the CartoonGAN operation, allowing for a more natural and realistic transformation
of lighting while preserving the cartoon style. Currently, CartoonGAN models such as Hayao, Hosoda,
Paprika, and Shinkai generate diverse images through distinct visual styles and themes, yet limitations remain
in maintaining color consistency and realistic lighting effects due to restrictions within the original model
structures [9,10]. To overcome these limitations, this study proposes EPI as an innovative solution to enhance
visual consistency and detail in the generated images. Through EPI, we aim to deliver cartoon images that
are not only visually compelling but also maintain high-quality visual coherence by applying post-processing
techniques instead of directly modifying the original model structures [11].

The core objective of this research is to apply EPI as a post-processing method on CartoonGAN outputs
to produce cartoon images that are natural and of high quality. By leveraging post-processing, this approach
preserves the stylistic strengths of the existing models while adjusting finer details to elevate the visual
completion of the images. This provides creators with high-quality visual content, thereby promoting and
enriching image-based creative activities [12]. Moreover, since EPI operates without altering the underlying
model structures, it ensures the visual consistency and quality of generated images while retaining the
original model’s intended aesthetic.

Furthermore, this study considers the potential for EPI’s application across various datasets and styles,
aiming to propose a methodological flexibility that could prove beneficial across multiple creative and applied
domains in the future. By enabling adaptability to diverse styles, EPI not only opens new opportunities
for enhancing cartoon images but also holds the promise of expanding into various content creation,
educational, and applied fields, presenting valuable possibilities for broad utilization [13]. Through actual
experiments, this paper demonstrates that the proposed method achieves improvements of approximately
40.14% in LPIPS, 30.21% in SSIM, and a reduction of 11.81% in MSE, thereby validating its effectiveness.

This paper is structured as follows. Section 2 presents the background research on CartoonGAN to
date. Section 3 discusses the proposed method. Section 4 covers the selection of image similarity evaluation
tools and related background research. Section 5 details the experiment and results. Finally, Section 6 offers
discussion and Section 7 suggests conclusion and directions for future research.
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2 Current Directions and Limitations of CartoonGAN

2.1 Challenges of Existing CartoonGAN Models
CartoonGAN, a GAN model specifically designed for anime-style image transformation, offers a unique

approach that differentiates it from general image-to-image transformation models like CycleGAN. While
CycleGAN employs cycle-consistency loss to enable bidirectional transformations between two domains,
CartoonGAN focuses on learning the distinctive features of anime styles, achieving higher style consistency.
However, previous studies have pointed out ongoing challenges with CartoonGAN, particularly in terms
of color distortion and inaccurate lighting representation, which affect the quality and realism of the
transformed images. These challenges often arise from the model’s loss functions and style transformation
techniques, which may fail to adequately preserve the visual consistency of the original image, especially
when dealing with images containing complex outlines or intricate details [14–16].

CartoonGAN tends to overemphasize certain colors and lighting elements during the style transfer
process, sometimes compromising the visual coherence of the original image. For example, in the case of the
Hayao style, intense primary colors often cause white areas to shift toward a green hue, distorting the original
color balance. This issue primarily stems from the loss functions, which drive CartoonGAN to overlearn
specific style characteristics [17,18].

2.2 Comparison with Other Image Transformation Models
CycleGAN and Pix2Pix are similar image-to-image transformation models, each with distinct strengths

and applications. CycleGAN leverages cycle-consistency loss, allowing transformations between domains
even in the absence of paired training data. This flexibility is advantageous for applications involving tran-
sitions between artistic styles and photographic domains. However, while CycleGAN excels in maintaining
overall structural consistency, it lacks precision in color adjustment and lighting accuracy for specific style
details. This limitation is particularly evident in transformations that require the nuanced details of anime-
style rendering [16]. Pix2Pix, based on supervised learning, performs well in scenarios where paired data is
available, supporting clear and specific transformations. The model employs alpha masks for color separation
and boundary processing, reducing color bleeding and enhancing texture consistency when transitioning
from sketches to colored images. However, Pix2Pix’s reliance on paired datasets limits its generalizability
across diverse anime styles, and its emphasis on strong stylistic elements may lead to color and lighting
inaccuracies. While Pix2Pix is suitable for transformations with distinct boundaries, it encounters challenges
in preserving natural lighting and original colors.

In summary, both CycleGAN and Pix2Pix are optimized for specific image transformation tasks, yet they
face limitations in meeting the detailed requirements of anime-style transformations, such as precise color
correction and lighting consistency. These limitations suggest the need for additional approaches to balance
style transfer with structural preservation, making post-processing techniques like EPI in CartoonGAN a
promising solution.

2.3 Research on Addressing Color and Lighting Distortions
To address issues with color distortion and lighting in style transfer, various loss functions and network

structures have been developed. Johnson et al. (2016) introduced Perceptual Loss to retain high-level
visual features during transformations, which enhances style and structural consistency by minimizing
differences in feature maps extracted from pre-trained neural networks, rather than relying solely on pixel
differences [16]. Zhu et al. (2017) introduced Cycle Consistency Loss, which ensures that a bidirectional
image transformation maintains coherence. This loss function is based on the principle that the transformed
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image should resemble the original when reversed, preserving structural and textural fidelity, and has
been instrumental in reducing distortion in models like CartoonGAN [16,19]. Additional models like
Pix2PixHD have incorporated multi-scale loss functions to enhance color and lighting representation in
high-resolution transformations, focusing on refining intricate details and minimizing texture distortion.
These advancements provide foundational methods for improving style transfer processes and serve as a
basis for EPI’s post-processing approach to overcoming limitations in existing models.

In summary, both CycleGAN and Pix2Pix are optimized for specific image transformation tasks, yet
they face limitations.

2.4 Contribution of this Study
This study introduces EPI as a post-processing technique to address the color and lighting inaccuracies

found in CartoonGAN outputs. EPI offers a novel approach to improving image quality without modifying
the training structure of the original model, enhancing both the visual consistency and detailed quality of
the transformed images. By doing so, it sets a new standard in anime-style transformations.

EPI directly addresses the limitations identified in prior studies, particularly by enhancing color fidelity
and lighting accuracy. The technique supports future applications in diverse anime styles and aims to expand
into new domains where precise color and lighting are crucial [15,16,18].

3 Method

3.1 Enhanced Pixel Algorithm (EPI) for Improved Color Consistency in CartoonGAN Outputs
In response to persistent color inconsistency and distortion observed in CartoonGAN outputs, this

study presents the EPI as an effective post-processing solution. Rather than altering the existing Car-
toonGAN architecture, EPI operates as an additional layer of refinement, specifically designed to enhance
color consistency by accurately adjusting color tones and preserving the original image’s visual details.
When recreating a particular anime style, CartoonGAN often encounters issues with excessive emphasis
or distortion of certain colors; EPI was designed as a post-processing technique to correct these color
discrepancies. EPI calculates the color difference between the CartoonGAN-generated image and the
original image and applies a correction factor if this difference exceeds a specified threshold, thereby helping
to maintain color consistency [19]. For an overview of the model structure used in this process, refer to the
model structure illustrated in Fig. 1.

Figure 1: The architecture of the Enhanced Pixel Integration (EPI)
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The EPI method offers a post-processing solution designed to address the common challenges of color
inconsistency and distortion in CartoonGAN outputs, without requiring changes to the CartoonGAN model
itself. Acting as an independent refinement layer, EPI selectively enhances color fidelity while preserving the
distinctive style of CartoonGAN-generated images. To achieve this, EPI first converts RGB images into HSV
color space, enabling precise adjustments to the hue, saturation, and value channels individually. By focusing
on HSV adjustments, EPI aligns the original image’s natural color tones with the stylized CartoonGAN
colors, which often exhibit distortion, especially in the red and green channels. Distinct correction values
are applied to these channels to improve color alignment with the original.

After these targeted adjustments, EPI introduces a blending process, merging the corrected and original
images in a specified ratio. This method maintains CartoonGAN’s vivid stylistic elements while reducing
color discrepancies, resulting in greater visual harmony with the original image. The final image is then
converted back to RGB color space for compatibility across various display systems. A primary advantage
of EPI is its ability to operate solely as a post-processing step, eliminating the need for modifications to the
CartoonGAN model or additional training. This efficiency keeps the original model intact and minimizes
system complexity, making EPI especially suited for real-time processing or applications with limited
computational resources. By offering a streamlined, non-invasive approach to enhance color consistency,
EPI significantly broadens the practical applications of CartoonGAN outputs. Its distinct capabilities add
substantial value to creative workflows across digital art, animation, and video editing, meeting high visual
quality demands without compromising stylistic integrity.

3.2 Color Space Conversion to HSV
The first step in the EPI method is to convert images from the RGB color space to the HSV (Hue,

Saturation, Value) color space. This conversion is essential for effectively addressing the color distortion
issues that occur in images generated by CartoonGAN. In the RGB color space, the red, green, and blue
channels are interrelated, which means that adjusting specific color attributes can inadvertently affect other
color components [20,21]. For instance, reducing the red channel in RGB can also alter the brightness and
saturation of the affected color, making it challenging to precisely manage exaggerated colors or unwanted
color shifts in CartoonGAN outputs [22]. For this reason, it is difficult to make isolated color adjustments
in the RGB color space. Fig. 2 demonstrates the effectiveness of HSV over RGB color space in R channel
reduction, showing that HSV adjustments preserve overall visual consistency while RGB adjustments cause
unintended changes in brightness and saturation.

The conversion process from RGB to HSV involves the following formulas [21]:
H(Hue): Represents the type of color, expressed as an angle between 0○ and 360○. For example, red

(0○), green (120○), and blue (240○).
S (Saturation): Indicates the purity of the color, with values ranging from 0 to 1 (or 0% to 100%). Higher

values correspond to more vivid colors, while lower values indicate more grayish tones.
V(Value): Describes the brightness of the color, ranging from 0 to 1 (or 0% to 100%). A value closer to

0 represents darker shades, while a value closer to 1 indicates brighter shades.

H = {60○ × G − B
max −min

+ 0○ i f = R 60○ × B − R
max −min

+ 120○ i f = G 60○ × R −G
max −min

+ 240○ i f = B (1)

S = {0 i f = 0 max −min
max

i f ≠ 0

V = (R, G , B)
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Figure 2: Comparison of HSV and RGB outputs after R channel reduction

These equations allow EPI to convert RGB values into separate hue, saturation, and value components,
facilitating isolated adjustments. By working in HSV, EPI can accurately compare the original image’s natural
color tones with the stylized colors in CartoonGAN outputs, particularly addressing color distortions in
the red and green channels. The HSV color space overcomes these limitations by separating color into
three independent elements [21]. Hue represents the color itself (e.g., red, blue, green) and allows for the
selective adjustment of specific colors without influencing brightness or saturation. Saturation indicates
the intensity of the color, enabling the independent adjustment of color vividness, while Value represents
brightness, allowing control over how light or dark a color appears [12,23]. These properties make the HSV
color space ideal for adjusting individual color components, which is especially useful when isolating specific
color corrections. By converting images to the HSV color space, EPI can more precisely address common
color distortions in CartoonGAN outputs. CartoonGAN transformations often lead to overemphasis or
misrepresentation of certain colors, particularly red and green [22]. In such cases, EPI adjusts the tone of
specific colors in the Hue channel, effectively reducing excessive color distortions without altering the image’s
brightness or saturation. Additionally, when saturation becomes overly high, resulting in unnatural colors,
EPI uses the Saturation channel to reduce vividness, producing a visually smoother and more natural final
image [22,23]. By utilizing separate channels in the HSV color space, EPI provides detailed control over color
distortions, significantly improving the visual quality of the final output.

Converting to the HSV color space plays a crucial role in maintaining both color consistency and
accuracy in CartoonGAN outputs [10,21]. In the RGB color space, making isolated color adjustments is
challenging, whereas the HSV space allows for independent channel adjustments to resolve color distortions.
This process enables EPI to retain the stylistic effects of CartoonGAN while achieving color accuracy close
to the original image, resulting in a final output that appears more natural and visually cohesive [12].
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3.3 Algorithm Workflow of the Proposed EPI Method
Fig. 3 presents the workflow of the proposed EPI method, which is organized into four key stages:

Preprocessing, Pixel Integration, Training Phase, and Output Generation. Each stage is designed to opti-
mize the image enhancement process while ensuring computational efficiency and visual quality. In the
Preprocessing stage, input images are normalized, and data augmentation techniques are applied to improve
robustness against variations in input quality. This process standardizes the data and increases its diversity,
enabling the model to generalize effectively. The Pixel Integration stage introduces an adaptive weight
calculation process, which dynamically computes weights for neighboring pixels. This step is followed by
pixel fusion, where local pixel values are integrated to preserve fine details and enhance spatial consistency
in the generated outputs. During the Training Phase, the model optimizes its performance through iterative
steps that include loss calculation, backpropagation, and parameter updates. The loss calculation combines
perceptual loss, adversarial loss, and pixel-level loss to balance image quality, realism, and structural
accuracy. Backpropagation and parameter updates further refine the model to minimize errors and improve
visual output.

Figure 3: EPI algorithm workflow

Finally, in the Output Generation stage, the algorithm produces enhanced images with improved visual
quality, demonstrating higher structural consistency and reduced artifacts.

To further clarify the implementation details of the proposed EPI method, Algorithm 1 provides the
pseudocode for the entire process.
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Algorithm 1: Enhanced Pixel Integration (EPI) for GANs
1: Input:
2: Iin put—Input image
3: G—Generator network
4: D—Discriminator network
5: α, β, γ—Loss weights
6: N e pochs—Number of training epochs
7: O ptimG , O ptimD—Optimizers for generator and discriminator
8: Output:
9: Iout put—Enhanced output image
10: Preprocessing:
11: Normalize I in put
12: Augment I in put (rotation, scaling, flipping)
13: 2Initialize network parameters:
14: θG ← Random weights for G
15: θ D ← Random weights for D
16: For each epoch in N e pochs do:
17: For each mini-batch {Ire al} do:
18: // Step 1: Generate image
19: I f ake ← G(I in put)
20: // Step 2: Pixel Integration
21: For each pixel P in I f ake do:
22: Calculate adaptive weight W(P) based on local similarity:
23: W (P) = e x pe x p(−∥P i−P j∥2)

∑k e x pe x p(−∥P i−P j∥2)
24: Perform pixel fusion:
25: P f used = Σ(W(P) ⋅ Pne i g hbors)
26: Update
27: I f ake ← P f used // Step 3: Calculate losses
28: Ladv = −E [log log (D (Ire al))] − E [log log (1 − D (I f ake))]

29: Lperce ptual = ∣∣Φ (Ire al) −Φ (I f ake)∣∣
2

30: Lpi x e l = ∥Ire al − I f ake∥2

31: Ltotal ← αLadv + βLperce ptual + γLpi x e l
32: // Step 4: Update generator
33: O ptimG .ste p (∇θ G Ltotal)
34: // Step 5: Update discriminator
35: LD = −E [log log (D (Ire al))] − E [log log (1 − D (I f ake))]
36: O ptimD .ste p(∇θ D LD)
37: End for
38: End for
39: Output:
40: Iout put ← G(I in put)
41: Return Iout put
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The proposed algorithm begins with input preprocessing, where input images are normalized and
augmented to enhance data diversity. Initial weights for the generator (G) and discriminator (D) in the GAN
framework are also set. During the training loop, the algorithm generates fake images for each epoch and
batch, applying pixel integration with adaptive weight calculations to improve image quality. Next, the loss
calculation step optimizes performance by combining perceptual loss, adversarial loss, and pixel-level loss
to enhance both structural consistency and visual quality. In the optimization and update phase, the weights
of the generator and discriminator are updated using backpropagation and an optimizer to minimize errors.
Finally, the algorithm produces enhanced images as outputs, demonstrating improved visual quality and
artifact reduction.

This pseudocode outlines the key computational steps involved in the algorithm, including preprocess-
ing, pixel integration, and training phases. It highlights how the model dynamically integrates pixel values,
optimizes loss functions, and updates parameters to generate high-quality outputs.

3.4 Correction Factor Application and Color Blending
The Correction Factor Application and Color Blending stage of the EPI method addresses significant

color discrepancies between the original image and the CartoonGAN-transformed image by applying
corrective adjustments and blending techniques [11,14,17]. After converting the image to the HSV color space,
EPI calculates the color difference D between the CartoonGAN-generated image IG AN and the original image
Ior i g inal in the HSV space. This difference D is calculated as [21]:

HG AN : The hue (H) component of the HSV color space for the image generated by the GAN model.
SG AN : The saturation (S) component of the HSV color space for the image generated by the GAN model.
VG AN : The value (V) component of the HSV color space for the image generated by the GAN model.
Hor i g inal : The hue (H) component of the HSV color space for the original input image.
Sor i g inal : The saturation (S) component of the HSV color space for the original input image.
Vor i g inal : The value (V) component of the HSV color space for the original input image.
D: The total HSV distance metric, which quantifies the difference between the GAN-generated image

and the original image based on their hue. Saturation, and value components.

D = ∣HG AN −Hor i g inal ∣ + ∣SG AN − Sor i g inal ∣ + ∣VG AN − Vor i g inal ∣ (2)

where H, S and V represent the hue, saturation, and value channels, respectively.
To detect excessive color differences, EPI applies a threshold T = 50. If D exceeds T , indicating

substantial color distortion, a correction factor C is applied to adjust the values in these regions. The corrected
hue, saturation, and value channels Hcorrec ted , Scorrec ted , Vcorrec ted corrected are computed as [24]:

Hcorrec ted : The corrected hue (H) component of the HSV color space after adjustment.
Scorrec ted : The corrected saturation (S) component of the HSV color space after adjustment.
Vcorrec ted : The corrected value (V) component of the HSV color space after adjustment.
HG AN , SG AN , VG AN : The hue, saturation, and value components of the HSV color space for the GAN-

generated image.
C: A correction factor or weight controlling the influence of the difference between the original and

GAN-generated components during adjustment.



344 Comput Mater Contin. 2025;83(1)

Hcorrec ted = HG AN + C ⋅ (Hor i g inal −HG AN) (3)

Scorrec ted = SG AN + C ⋅ (Sor i g inal − SG AN)

Vcorrec ted = VG AN + C ⋅ (Vor i g inal − VG AN)

where C is the correction factor, typically set based on the color intensity requirements of the output image.
After the correction factors are applied, EPI blends the adjusted CartoonGAN image Icorrec ted with

the original image Ior i g inal at a specific blending ratio α (typically between 0.5 and 0.7) to maintain the
stylistic features of the CartoonGAN while enhancing color accuracy. The final blended image I f inal in HSV
is calculated as follows [25]:

I f inal : The final output image after blending the corrected and original images.
Icorrec ted : The corrected image derived from the GAN-generated image after HSV-based adjustments.
Ior i g inal : The original input image used as a reference for blending.
α: A blending coefficient (0 ≤ α ≤ 1) that controls the contribution of the corrected and original images

to the final output. A higher α emphasizes the corrected image, while a lower α favors the original image.

I f inal = α ⋅ Icorrec ted + (1 − α) ⋅ Ior i g inal (4)

Finally, the blended image I f inal is converted back to the RGB color space, making it compatible
with various color systems and display standards [12,13,21]. This process helps balance the artistic style of
CartoonGAN with the color fidelity of the original image, producing visually cohesive outputs that retain
both accuracy and stylistic appeal.

3.5 Computational Efficiency and Real-Time Applicability
The EPI method is designed with a focus on high-speed processing and resource optimization, allowing

it to perform efficiently in real-time applications and resource-limited environments. EPI applies post-
processing without requiring modifications to the original CartoonGAN model or additional training. This
means that color correction is performed only after CartoonGAN has transformed the image, eliminating
the need for further model retraining or computationally intensive operations. This design improves color
consistency without altering the structure or complexity of the existing model, allowing EPI to be seamlessly
integrated into current systems [26,27].

EPI achieves high efficiency by relying on simple color calculations and a threshold-based selective
correction process, rather than complex deep neural network computations. EPI analyzes the color dif-
ferences between the CartoonGAN-generated image and the original image, applying correction factors
only to regions that exceed a specific threshold. This selective correction approach minimizes unnecessary
computations by focusing corrections on the necessary areas, conserving system resources in the process. As
a result, EPI provides high-quality color correction while maintaining processing speed and demonstrates
significant resource-saving effects, particularly in high-resolution images [20,28]. This lightweight approach
enables stable performance across various image resolutions and transformation styles, achieving both speed
and quality through optimized processing [29].

The lightweight structure of EPI expands its applicability in fields requiring real-time processing, such
as video processing, interactive graphics, and digital art generation platforms. For instance, it can maintain
consistent color expression within video frames at high processing speeds, and in interactive graphic
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environments, users can quickly adjust color styles as desired. High speed and responsiveness are essential
in real-time applications, and a similar approach is also employed in real-time models like YOLOv3 [27].
Thanks to these characteristics, EPI meets the low latency and high throughput requirements of real-time
systems, enhancing user experience in creative applications.

Furthermore, EPI can provide high-quality stylized outputs in environments with limited hardware
resources, making it effective for lightweight platforms such as mobile devices or embedded systems. In these
settings, the efficiency of lightweight models operates similarly to cost-saving techniques commonly used
in deep networks [26], establishing EPI as a lightweight post-processing technique capable of maintaining
real-time performance without complex computations. By delivering high-quality results across various
resolutions and visual styles, EPI serves as an optimal solution for creative applications that demand both
real-time performance and efficiency in image transformation tasks [28].

In converting images from RGB to HSV, EPI allows for independent channel adjustments to control hue,
saturation, and brightness without affecting other color components. This separation is crucial for precise
color correction, as seen in digital art applications or video processing, where maintaining color fidelity and
balance is essential. RGB to HSV conversion enables EPI to isolate adjustments, addressing color distortions
in specific channels without disturbing the overall color balance of the image [30].

In conclusion, EPI offers a solution that combines computational efficiency with real-time processing
capabilities, making it ideal for creative applications that require fast, stylized results while maintaining color
consistency. This approach demonstrates the potential to expand the usability of CartoonGAN across digital
media fields, fulfilling the high demands for both visual quality and efficiency.

4 Image Similarity Evaluation Tools
In this section, we delve into various image similarity evaluation tools, including LPIPS, SSIM, and

MSE each chosen for their unique ability to assess the visual and structural fidelity between generated
and reference images. These tools play a pivotal role in this study by providing quantitative measures that
capture not only pixel-level but also perceptual differences, aligning closely with human visual assessment.
Accurate similarity evaluation is essential in this research for validating the proposed model’s performance
and confirming the quality of generated outputs relative to the original images.

Each of these metrics—LPIPS, SSIM, and MSE—has been extensively tested and validated in previous
studies and remains highly regarded in the fields of image synthesis and quality assessment. The use of these
evaluation models in this study ensures reliable and consistent results, adding credibility to the comparative
analysis. This section, therefore, serves to contextualize the application of these metrics, offering a robust
framework for measuring the visual authenticity of generated images against established standards in image
quality evaluation.

To provide a concise summary, Table 1 below outlines the key characteristics, advantages, and limitations
of each image similarity evaluation tool used in this study. This table serves as a quick reference, comple-
menting the detailed explanations provided in this section and highlighting the rationale for selecting these
specific metrics.
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Table 1: Image similarity evaluation metrics

Metric Definition Calculation method Strengths Limitations
LPIPS Visual similarity

evaluation
L2 distance

calculation between
features

Reflects human
perception, evaluates

high/low level features

High computational
cost, dependent on
network structure

SSIM Structural
similarity
evaluation

Combines
brightness, contrast,
and structure [31,32]

Reflects structural
information, similar to

human perception

Lacks sensitivity to
color/texture

changes
MSE Pixel-difference-

based
evaluation

Average of pixel
error values

Simple, fast,
resource-efficient

Does not reflect
structural/perceptual

information

5 Experiment and Results

5.1 Experimental Setup and Preparation
The experiments in this study were conducted using the Google Colab environment, leveraging high-

performance computer specifications to ensure efficient data processing and experimental speed. The system
specifications included an i9-14900KF CPU and an NVIDIA GeForce RTX 4070 SUPER GPU, providing
an optimal environment for handling high-resolution image processing and complex neural network
computations. Google Colab’s stable computational resources and GPU acceleration capabilities make it
well-suited for image generation and quality assessment tasks involving large datasets.

The Stanford Dogs dataset was utilized in this experiment, as it comprises a diverse set of dog breed
images that are suitable for evaluating the performance of style transformation models. In this study, the
Hayao style CartoonGAN model was applied to the input images, adding an animation effect to each,
allowing for a thorough assessment of the visual quality of transformed images. The proposed EPI technique
was implemented as a post-processing step in the CartoonGAN model to correct color distortions and
enhance overall image quality.

For quantitative analysis of experimental results, various similarity evaluation metrics, including LPIPS,
SSIM, and MSE, were used. These metrics provided a multidimensional assessment of the similarity between
the original and transformed images, with the results summarized in Table 1. Table 1 presents the similarity
scores between images generated solely by the CartoonGAN model and those processed with the additional
EPI technique, allowing for a quantitative confirmation of the performance improvements offered by the
proposed method.

5.2 Quantitative Comparison Using LPIPS, SSIM, and MSE Metrics
In this study, the performance of the proposed model was comprehensively evaluated using LPIPS,

SSIM, and MSE metrics. Each metric plays a crucial role in image quality assessment and is designed to verify
performance from multiple perspectives.

Table S1 presents a quantitative comparison of the similarity error rates between the original image
and the generated outputs using LPIPS, SSIM, and MSE metrics. The existing CartoonGAN method yields
average similarity error rates of 0.416, 0.619, and 98.74 for LPIPS, SSIM, and MSE, respectively, establishing
a baseline measurement for image fidelity. In contrast, the proposed EPI method demonstrates significant
improvement across all metrics, achieving similarity error rates of 0.249, 0.806, and 87.08 for LPIPS, SSIM,
and MSE, respectively.
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The differences in error rates between the CartoonGAN and EPI methods are notable, with EPI
showing an improvement of approximately 0.167 in LPIPS, 0.187 in SSIM, and 11.66 in MSE. These results
emphasize that EPI, as a post-processing approach, more effectively preserves the original image’s colors
and structural features, while minimizing visual discrepancies. By reducing color distortions and enhancing
color consistency, EPI not only elevates the visual quality of the generated images but also maintains a closer
alignment with the original image’s details.

First, LPIPS measures the perceptual similarity between images by mimicking human visual per-
ception. Lower values indicate higher visual similarity to the original image, making it a key metric for
quantitatively evaluating the visual quality of a model. SSIM assesses structural similarity by analyzing
brightness, contrast, and structural information within an image. Scores closer to 1 signify better structural
consistency and preservation of fine details. Lastly, MSE evaluates the mean squared error at the pixel
level, with lower values representing better reconstruction quality and reduced noise. These three metrics
complement each other, allowing for a reliable and multidimensional assessment of the proposed method’s
performance. Experimental results demonstrated that the EPI-GAN model achieved approximately a 40%
reduction in LPIPS values compared to the baseline CartoonGAN, indicating a significant improvement
in visual similarity. This highlights the effectiveness of the proposed pixel integration method in reducing
boundary distortions and enabling smoother color transitions, resulting in more natural and visually stable
outputs. In the SSIM evaluation, the EPI-GAN achieved a high similarity score of 0.806, confirming its
superior structural preservation performance and a substantial improvement in the reproduction of fine
details. The enhancement in structural similarity is closely linked to better restoration performance in
high-frequency regions and improved retention of intricate features. Additionally, the MSE values for the
EPI-GAN model were approximately 30% lower than those of the baseline, indicating enhanced pixel-level
accuracy and noise reduction capabilities. This improvement demonstrates the model’s ability to faithfully
reproduce subtle features and details, ensuring visual consistency through accurate restoration of colors
and textures. These results highlight the proposed EPI-GAN model’s capability to overcome the limitations
of existing approaches while efficiently generating high-quality outputs. Such performance improvements
emphasize the practicality and scalability of the proposed model. Specifically, it can be effectively applied
to tasks requiring high-quality visual outputs, including animation, virtual reality, augmented reality, and
mobile graphics. Furthermore, the EPI-GAN maintains the structure of the baseline CartoonGAN without
introducing additional complexity, making it suitable for deployment in resource-constrained environments.

This section provides a quantitative analysis using LPIPS, SSIM, and MSE metrics, while Section 5.3
will explore the visual transformations introduced by EPI through graphical comparisons. Together, these
analyses demonstrate that the EPI method offers a robust solution for retaining original image characteristics,
delivering enhanced accuracy and reduced distortion compared to the baseline model.

5.3 Visual Comparison of Results
In this study, 6 images were randomly selected from a dataset of 350 images to compare RGB channel

values at the same pixel location. This comparison focuses on analyzing the differences between the output
images generated solely using the CartoonGAN method and those produced by applying the proposed EPI
method. For each image, we visualized the changes in R, G, and B channel values at the same pixel through
tables and graphs, allowing a detailed evaluation of how well the CartoonGAN and EPI methods preserve
the original image’s color information.

Table 2 organizes the R, G, and B channel values of the original image, the output from the existing
CartoonGAN method, and the output from the proposed EPI method, with the final column showing the
difference between the values for the CartoonGAN and EPI outputs. This provides insight into how effectively
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the EPI method preserves the color information of the original image and enhances visual quality at the same
pixel location.

Table 2: Color analysis of result image

Data image name Input
(Original)

Conventional
method

Proposed
method

R

Bernese_mountain_dog_n02107683_5155 253 44 109
Chihuahua_n02085620_1271 44 190 111

English_setter_n02100735_8318 244 47 120
Siberian_husky_n02110185_7117 167 191 187

West_Highland_white_terrier_n02098286_4011 49 219 106
wire-haired_fox_terrier_n02095314_157 85 179 103

G

Bernese_mountain_dog_n02107683_5155 255 49 115
Chihuahua_n02085620_1271 32 66 63

English_setter_n02100735_8318 249 47 122
Siberian_husky_n02110185_7117 169 140 164

West_Highland_white_terrier_n02098286_4011 40 143 72
wire-haired_fox_terrier_n02095314_157 49 55 45

B

Bernese_mountain_dog_n02107683_5155 254 29 105
Chihuahua_n02085620_1271 20 28 27

English_setter_n02100735_8318 252 23 108
Siberian_husky_n02110185_7117 182 109 132

West_Highland_white_terrier_n02098286_4011 45 81 37
wire-haired_fox_terrier_n02095314_157 27 45 33

Fig. 4 visually represents the data presented in Table 2. In each graph, the blue bars indicate the values of
the original image, the yellow bars represent the values of the image generated using the existing method, and
the red bars show the channel-wise values of the image generated using the proposed method. In all images,
the distance between the blue bars and the red bars is observed to be smaller than the distance between the
blue bars and the yellow bars. This indicates that the proposed method in this study represents the colors of
the original image more closely compared to the existing method.

The proposed method demonstrates a significant improvement in image similarity compared to the
conventional method. The average values for the conventional method are LPIPS: 0.416, SSIM: 0.619, and
MSE: 98.74, while the proposed method achieves average values of LPIPS: 0.249, SSIM: 0.806, and MSE:
87.08.

Among the metrics used to evaluate image similarity, LPIPS and MSE indicate higher similarity when
their values are lower, while SSIM indicates higher similarity when its value is higher. Based on this evalua-
tion, the proposed method shows a 0.167 reduction in LPIPS and an 11.66 reduction in MSE, demonstrating
an improvement in similarity. Additionally, SSIM increases by 0.187, indicating that the proposed method
better preserves the structural similarity of the images compared to the conventional method.

Therefore, the proposed method effectively enhances the visual quality and similarity of the gener-
ated images compared to the conventional method, contributing to a significant improvement in overall
image fidelity.
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Figure 4: (Continued)
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Figure 4: Channel-wise color analysis of input, proposed method, and conventional method

Experimental results demonstrate that the proposed algorithm operates stably on images with resolu-
tions up to 1024 × 1024. Further optimization techniques, such as model quantization and dynamic graph
processing, are expected to enable efficient processing of even higher resolutions. This analysis confirms that
the EPI algorithm maintains computational and memory efficiency while delivering practical scalability for
high-resolution image processing. These showed that the EPI-GAN model achieved approximately a 40%
reduction in LPIPS values compared to the baseline CartoonGAN, indicating a significant improvement
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in visual similarity. This demonstrates that the proposed pixel integration technique effectively reduces
boundary distortions and enables smoother color transitions. In addition, the SSIM evaluation recorded a
high similarity score of 0.806, reflecting superior structural preservation performance and approximately
30% improvement in detail reproduction compared to the baseline model. Lastly, the MSE values were
approximately 11% lower than those of the baseline model, confirming enhanced pixel-level accuracy
and noise reduction capabilities. Notably, the model demonstrated improved restoration quality in high-
frequency regions, effectively reproducing intricate details.

6 Discussion
The core innovation of this study is the application of EPI to optimize the outputs of CartoonGAN.

Unlike conventional approaches that rely solely on convolutional layers, EPI integrates local pixel infor-
mation to improve spatial consistency. This contributes to reducing artifacts in low-texture regions and
enhancing edge sharpness.

The application of EPI demonstrated significant improvements across multiple evaluation metrics,
including LPIPS, SSIM, and MSE. Specifically, LPIPS showed a 40.14% enhancement in visual similarity,
while SSIM indicated a 30.21% improvement in structural consistency. The MSE metric revealed a 11.81%
reduction in pixel-level error, suggesting more accurate color restoration, reflecting a closer alignment of
high-level feature distributions with the original image [15,16,18]. These outcomes highlight the effectiveness
of EPI in addressing specific color distortions, particularly in the red and green channels, through precise
corrections in the HSV color space. By employing selective adjustments and blending processes, EPI retained
the stylized elements of CartoonGAN outputs while enhancing visual quality [21,22]. Additionally, EPI’s
simple calculation approach allowed it to deliver high-quality results while maintaining computational
efficiency, making it suitable for a wide range of applications [11,27].

However, EPI has certain limitations. As a post-processing method, it focuses on correcting color and
lighting inconsistencies but does not address the structural biases or stylistic limitations of the original
CartoonGAN model. Moreover, since EPI relies on the quality of CartoonGAN outputs, integrating EPI
with the generation model could further enhance its effectiveness by addressing both structural and
stylistic issues [16,18]. EPI’s computational efficiency makes it a practical solution for real-time processing
and resource-constrained environments. Its lightweight design makes it particularly suitable for mobile
applications, gaming, and interactive media, where immediate color adjustments are critical for enhancing
user experience [20,26].

The EPI method is highly effective in animation production and game development, ensuring high-
quality visual outputs while preserving structural details in complex style transfer tasks [33,34]. This makes
it particularly suitable for environments requiring high-resolution graphics. Additionally, in immersive
environments such as Virtual Reality (VR) and Augmented Reality (AR), where visual quality and processing
speed are critical, the proposed approach demonstrates compatibility with real-time rendering systems,
enabling clearer and more natural visual effects for AR filters and VR content [35,36]. Furthermore,
the EPI-based CartoonGAN is designed to maintain high output quality even in resource-constrained
environments, making it a practical solution for mobile games and lightweight applications that demand fast
processing without compromising visual performance [37,38]. Relevant references have also been included
to reinforce the importance of visual quality improvements and computational efficiency in these application
areas [27,39].

The proposed EPI method is designed based on the assumption that input images maintain sufficient
structural consistency. This assumption ensures that the local pixel patterns utilized in the reconstruction
process remain intact, enabling effective quality enhancement. Additionally, it is assumed that the training
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dataset provides stylistic diversity, allowing CartoonGAN to generalize effectively across different styles and
structures [6]. Furthermore, the model is developed with the expectation that modern GPU hardware or
equivalent computational resources are available to handle high-resolution image processing efficiently [1].

Nonetheless, the method has several limitations. It may struggle with input images that contain severe
distortions or low resolution, as EPI heavily relies on local pixel patterns for reconstruction [25]. While the
model demonstrates stable performance on moderately sized datasets, scaling to extremely large datasets or
ultra-high-resolution inputs may require further optimization [1]. Additionally, the method depends on the
quality of the input image and training data, potentially reducing generalization performance when style or
content varies significantly [24].

To address these limitations, future work will focus on integrating adaptive scaling techniques and
noise reduction mechanisms [21] to improve the robustness of the method in handling distorted and low-
resolution inputs. These enhancements are expected to strengthen the model’s scalability and stability,
expanding its applicability across a wider range of scenarios.

Previous studies have primarily focused on reducing training complexity or optimizing network depth
as strategies for improving image quality [1,6]. However, this study takes a different approach by integrating
pixel-level enhancement techniques, EPI, into the GAN architecture, enabling simultaneous improvements
in visual quality and computational efficiency.

In particular, the proposed EPI method introduces a novel fusion strategy that prioritizes spatial
consistency, effectively addressing issues such as boundary distortions and loss of fine details commonly
observed in conventional convolution-based approaches [25,31]. This distinctive approach achieves both
enhanced visual quality and reduced computational overhead, making it highly practical for real-world
applications [18,21].

Unlike previous studies that primarily focused on reducing training complexity or optimizing net-
work depth [1,6], this study distinguishes itself by integrating pixel-level enhancement techniques into
the GAN architecture. In particular, the proposed EPI method introduces a novel fusion strategy that
prioritizes spatial consistency, achieving superior performance compared to conventional convolution-based
approaches [18,25]. This distinction is especially noteworthy as it effectively addresses both visual quality and
computational overhead, making it highly practical for real-world applications [21,31].

The time and space complexity of the proposed EPI algorithm are critical factors for evaluating
its performance and scalability. The time complexity is analyzed in two main stages. First, convolution
operations performed by the generator (G) and discriminator (D) in the GAN process image features with
a computational complexity of O (n2 ⋅ k2 ⋅ cin ⋅ cout)). Second, the pixel integration stage calculates adaptive
weights and evaluates similarity with neighboring pixels, resulting in a complexity of O (n2 ⋅ k2 ⋅ cin ⋅ cout).
Second, the pixel integration stage calculates adaptive weights and evaluates similarity with neighboring
pixels, resulting in a complexity of O (n2 ⋅ N). Here, n represents the image resolution, k is the kernel
size, cin and cout are the input and output channel sizes, and N is the number of neighboring pixels
considered. Combining these stages, the overall time complexity is approximated as O (n2), indicating that
the computational cost increases quadratically with image resolution.

The space complexity is analyzed for both training and inference phases. During training, memory is
required to store intermediate results, gradients, weights, and biases, resulting in a complexity of O(n2 ⋅ d ⋅
cout), where d represents the network depth. In the inference phase, memory requirements are reduced as
only single-image processing is needed, resulting in a fixed memory usage of O(k2 ⋅ cin ⋅ cout).
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7 Conclusion
Although the EPI method builds upon existing pixel manipulation techniques, it has been specifically

adapted for GAN models in this study. Unlike prior approaches, EPI dynamically integrates pixel values
based on GAN-generated outputs, incorporating algorithmic enhancements to improve spatial consistency
and visual quality. This adjustment ensures superior performance in reducing artifacts and enhancing edge
sharpness, distinguishing it from traditional convolution-based methods.

A key feature of the proposed method is its ability to perform color correction through the adjustment
of Red/Green channels, supported by HSV color space transformations. This process not only achieves visual
improvements but also provides quantifiable performance gains, as demonstrated by the following evaluation
metrics:
• LPIPS: 40.14% enhancement in visual similarity [15,16]
• SSIM: 30.21% improvement in structural consistency [18,20]
• MSE: 11.81% reduction in pixel-level error [11,28]

These quantitative results validate the effectiveness of the proposed EPI method, reinforcing its ability to
balance visual quality with computational efficiency. The improvements achieved highlight the practicality
of this approach for applications requiring high-quality visual outputs, such as animation, virtual reality, and
mobile graphics.

Also, these improvements validate EPI’s ability to enhance image quality without modifying the
existing CartoonGAN structure or introducing additional complexity. Furthermore, EPI’s adaptability
suggests potential applications for other style-transfer models, extending its relevance to various creative
domains [26,28].

7.1 Future Research Directions
Future research could explore several directions to expand the applicability of EPI. One potential

avenue is to integrate EPI directly into CartoonGAN’s architecture, creating a hybrid system that not only
corrects color distortions but also addresses structural inconsistencies. Such an integrated system could
simultaneously enhance style and structural quality, maximizing EPI’s effectiveness. Another promising
direction involves leveraging EPI-corrected CartoonGAN outputs for generating stylized 3D models. By
using these enhanced outputs as high-quality textures or references, new opportunities could arise in
animation, virtual reality, and game development, where stylized yet detailed 3D models are increasingly in
demand [14,15,18].

Additionally, EPI could be applied to the preservation of cultural heritage. Its ability to maintain color
accuracy and fine detail in high-resolution images makes it ideal for creating digital replicas of artifacts
and historical structures. These replicas could support virtual exhibitions and digital archives, preserving
invaluable cultural assets for future generations [19,22]. In the field of medical simulation, EPI’s capacity to
reproduce accurate colors and textures could significantly improve the realism of training environments,
facilitating advanced education and practice for healthcare professionals [20,23].

In the context of animation and video production, EPI can streamline the stylization process by
ensuring consistent color expression across frames while maintaining high quality. This capability can reduce
production time and improve the visual quality of animated content, benefiting creative workflows and
accelerating delivery timelines [12,21].

In conclusion, EPI demonstrates its versatility beyond simple image quality enhancements, showing
potential for applications across diverse fields such as 3D modeling, cultural preservation, medical simu-
lation, and media production. Future research should focus on extending EPI’s capabilities and exploring
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its integration into these areas to establish it as a standard for high-quality image processing in various
industries [10,11].
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