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ABSTRACT: In the context of the diversity of smart terminals, the unity of the root of trust becomes complicated,
which not only affects the efficiency of trust propagation, but also poses a challenge to the security of the whole system. In
particular, the solidification of the root of trust in non-volatile memory (NVM) restricts the system’s dynamic updating
capability, which is an obvious disadvantage in a rapidly changing security environment. To address this issue, this
study proposes a novel approach to generate root security parameters using static random access memory (SRAM)
physical unclonable functions (PUFs). SRAM PUFs, as a security primitive, show great potential in lightweight security
solutions due to their inherent physical properties, low cost and scalability. However, the stability of SRAM PUFs
in harsh environments is a key issue. These environmental conditions include extreme temperatures, high humidity,
and strong electromagnetic radiation, all of which can affect the performance of SRAM PUFs. In order to ensure the
stability of root safety parameters under these conditions, this study proposes an integrated approach that covers not
only the acquisition of entropy sources, but also the implementation of algorithms and configuration management. In
addition, this study develops a series of reliability-enhancing algorithms, including adaptive parameter selection, data
preprocessing, auxiliary data generation, and error correction, which are essential for improving the performance of
SRAM PUFs in harsh environments. Based on these techniques, this study establishes six types of secure parameter
generation mechanisms, which not only improve the security of the system, but also enhance its adaptability in variable
environments. Through a series of experiments, we verify the effectiveness of the proposed method. Under 10 different
environmental conditions, our method is able to achieve full recovery of security data with an error rate of less than
25%, which proves the robustness and reliability of our method. These results not only provide strong evidence for the
stability of SRAM PUFs in practical applications, but also provide a new direction for future research in the field of
smart terminal security.
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1 Introduction
With the advent of the digital economy era, the emerging power grid as a key infrastructure has

shifted its intelligent terminal control from network centralisation to covering multiple links such as power
generation, power grid, load and energy storage [1–3]. This trend not only significantly increases the attack
surface of the power system, but also exacerbates the security risks, making smart terminals a vulnerable
point in the security defence of the new power system [4,5]. In this context, ensuring the security of
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parameters such as keys, random numbers and trust roots has become crucial, as they are the foundation for
protecting the security of terminal data.

SRAM Physical Unclonable Function (PUF), an emerging security technology, provides a lightweight
security solution for IoT devices due to its inherent randomness and non-replicability. SRAM PUF uses
the randomised initial values of SRAM memory cells as a security feature, which are determined during
the chip manufacturing process and are unique to each chip. This hardware-based security feature not only
provides strong resistance to attack, but also greatly reduces the need for computing and memory resources
by eliminating the need for additional key storage and complex cryptographic algorithms.

The diversity and heterogeneity of intelligent power terminals have increased the difficulty of unifying
the trust root, weakened trust propagation, and led to the problem of trust root solidification. These issues
have long hindered the establishment of trust between platform terminals, limited the dynamic updating of
security parameters, and caused significant management overhead in the transmission and application of
security parameters [6–8]. SRAM PUFs use small changes in the manufacturing process to create unique
‘fingerprints’, ensuring that these physical characteristics cannot be replicated or forged. However, the
response of SRAM PUFs is affected by environmental factors such as temperature and voltage, which leads to
unstable PUF extraction and inconsistent response reading over multiple reads, resulting in reliability issues.
For instance, if a cell has a SUP1 (probability of starting as 1) of 0.99, it has a BER of 0.01; similarly, if SUP0
(probability of starting as 0) is 0.99, the BER is 0.01. By averaging over all the cells, we obtain a BER of 0.045
(4.5%). Furthermore, environmental variations and the effects of ageing have been demonstrated to have an
impact on the reliability and uniformity of SRAM PUFs. Random variations in the manufacturing process
may cause deviations in the power data generated by the SRAM PUF at startup, which not only reduces
uniformity, but also prevents the power data from being duplicated due to device mismatches, thus worsening
the reliability of the SRAM PUF. Furthermore, the occurrence of ageing effects, such as bias temperature
instability (BTI) and hot carrier injection (HCI), has been demonstrated to modify the characteristics of
the SRAM cell, thereby affecting the PUF response. This, in turn, has been shown to lead to a long-term
degradation of the response, stability, and reliability of the SRAM PUF. Therefore, there is an urgent need
to improve the stability and repeatability of SRAM PUF response [9]. Although SRAM PUFs can provide
various secure root parameters, there is still a lack of a comprehensive and scalable root security architecture
in practical applications. This deficiency has led to the immaturity and limited use of SRAM PUFs in actual
products, coupled with a lack of resource and security constraint analysis, unified testing and evaluation
standards, and challenges in directly comparing different SRAM PUF implementation schemes, making it
difficult for application developers to evaluate the true performance of PUFs.

Regarding the above issues, this paper proposes a root security parameter generation mechanism based
on SRAM PUF, which is especially optimized for resource-constrained IoT devices. We have introduced an
innovative architecture covering entropy source acquisition, algorithm implementation and configuration
management. We have also proposed a series of algorithms to enhance reliability, such as adaptive parameter
selection, data pre-processing, auxiliary data generation, and error correction. On this basis, we have
established six types of security parameter generation mechanisms. The experimental results confirm that
our proposed method achieves complete recovery of secure data under 10 environmental conditions with an
error rate of less than 25%, demonstrating strong robustness and reliability. The specific research content of
this paper is as follows:

(1) Targeting diversified and differentiated application scenarios for security parameters, a four-layer
security parameter system covering entropy source acquisition, algorithm implementation, configura-
tion management, and functional service layers is designed. A hierarchical and modular SRAM-PUF
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SPG functional architecture is established to provide reconfigurable underlying security parameter
acquisition services for diverse security applications.

(2) Addressing the high reliability and adaptability requirements of security parameters, a series of
algorithms including stable feature search, state data preprocessing, auxiliary data generation, fuzzy
extraction, key derivation functions, and adaptive error correction coding algorithms are designed.
Each algorithm incorporates adaptive environmental parameters and configurable thresholds to
enhance the SRAM-PUF SPG’s capability to adapt to complex and changing environments.

(3) Targeting the productization and standardization requirements of power terminals, the paper designs
SRAM-PUF SPG-related algorithm invocation processes. It proposes collaborative application mecha-
nisms in the stages of initialization, registration authentication, key generation, and update recovery. By
coordinating these algorithms, the paper constructs SRAM-PUF SPG services that cover initialization,
authentication, key management, update and recovery processes.

2 Related Work
In 2002, Veiga et al. [10] first proposed SRAM PUF for key generation and identity authentication.

Guajardo et al. [11] in 2007 constructed PUF functionality using FPGA SRAM for third-party IP protection.
Maes et al. [12] introduced the Soft Decision Help Data Algorithm to reduce key generation overhead in
SRAM PUFs. Charles et al. [13] in 2014 classified PUFs into strong and weak types, with strong PUFs used
for authentication and supporting many challenge-response pairs (CRPs), while weak PUFs support limited
CRPs. Ruhrmair et al. [14] reviewed machine learning algorithms for modeling PUF functions and attack
requirements. In 2016, Ye et al. [15] demonstrated machine learning attacks against strong PUFs, allowing
cloning through monitored CRPs. Subsequent research by Zhang [16], Vijayakumar et al. [17–19], and others
focused on enhancing SRAM PUF resilience [20–22].

Two deployment modes have emerged for SRAM PUF [23,24]: one designates specific SRAM regions
for secure memory, while the other integrates SRAM storage with PUF functions to minimize area overhead.
However, Negative Bias Temperature Instability (NBTI) can cause unreliable startup values in SRAM used for
storage. Although error correcting codes (ECC) can mitigate this issue, they increase area overhead, which is
disadvantageous for resource-limited IoT devices. Qiu et al. [25] proposed using PUF response preprocessing
to reduce ECC area demands. Thus, the reliability issues of SRAM serving dual purposes as memory and
PUF highlight the need for preprocessing techniques to improve the performance of dual-purpose SRAM
PUF systems.

The above work did not take into account the environmental challenges faced by SRAM PUFs in
practical applications, such as extreme temperatures, high humidity, and strong electromagnetic radiation.
These environmental factors severely impact the stability and reliability of SRAM PUFs, resulting in existing
research failing to effectively address this bottleneck issue. In response, a methodology has been proposed
in the literature [26] to improve the reliability of SRAM PUFs by subjecting them to different operating
conditions and aging degradation, which is particularly important for IoT devices as they often operate
in changing environments. Furthermore, in the literature [27], SRAM PUFs are enhanced by introducing
XOR gates to improve their stability and reliability under different environmental conditions. Additionally,
although their work has made progress in protecting IP, there is still a lack of in-depth research on how to
achieve high reliability SRAM PUFs on resource-constrained IoT devices.
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3 SRAM PUF Security Parameter Generation Model
To develop a security parameter generation mechanism, this paper concentrates on designing the

functional architecture for generating security parameters in smart power terminals. It examines hard-
ware technologies and environmental requirements by using integrated smart terminals in distribution
substations as a case study. The paper proposes parameter extraction schemes tailored to diverse security
needs and evaluates the reliability, stability, and other characteristics of the extracted parameters. Addition-
ally, it provides both qualitative and quantitative assessments of the effectiveness of these parameters in
practical applications.

3.1 SRAM PUF Security Parameter Generation Function
Based on the metering and acquisition board MCU, this paper designs the functional framework for

SRAM PUF to generate security parameters. According to the properties of SRAM PUF, it generates six
categories of security parameters: key derivation seeds, authentication CRPs, true random numbers, trusted
measurement keys, root keys, and terminal unique identifiers. These parameters serve as foundational
security elements for functions such as terminal identity authentication, trusted computing, key negotiation
and authentication, and data encryption and decryption. The specific definitions of system parameters are
shown in Table 1.

Table 1: System parameters

Parameters Value
N Number of power on cycles.
M Challenge bits in stable bits
Ωk PUF measurement matrices
R Power-ons
T Temperature
V Voltage
I Current
E Electromagnetic radiation environmental condition
k Expansion factor
S Comprehensive vector
ϕ Original response sequence
l1 Sliding window of length
σ Set the standard deviation

(1) Challenge-Response Mechanism Selection
Considering security strength, space limitations, and the number of CRPs required, smart power

terminals aiming for enhanced security need to construct 270∼280 CRPs. If the challenge utilizes only the
SRAM unit’s addresses, the SRAM PUF would require a space of 128 EB~128 ZB to meet the security
requirements of generating a single set of security parameters. Therefore, this paper extends the challenge
space using combinations of SRAM unit addresses. Taking SRAM3 with the minimum storage space of 4 KB
as an example, the preprocessing stage was first constructed, and SRAM3 was powered on N times, and
SRAM3 units were extracted respectively to compare whether there were any changes in N arrays (N ×
32768). The unchanged bit was set as stable output bit and the changed bit was set as unstable output bit.
According to the typical values obtained by testing various chips and various processes, about 5% of SRAM3
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is unstable bit, so the stable bit of SRAM3 is about 31,129 bits. If M bit is selected as a challenge in the above
stable bit, CM

31129 is the number of CRPs of SRAM3.
Therefore, when M is 128, 256 and 512 bits, respectively, the number of CRPs in SRAM3 is approximately

21229, 22508 and 25017, exceeding the maximum security level requirement of 290 CRPs. Additionally, it has
been determined that the minimum storage requirement to securely accommodate 270∼280 CRPs is 3 KB.
Hence, any SRAM in the MCU can meet the requirements for enhanced security.

(2) Parameter Generation Functional Architecture
The security parameter generation of PUF is divided into a four-layer architecture, namely entropy

source acquisition layer, algorithm implementation layer, configuration management layer, and functional
service layer, as shown in Fig. 1:

Figure 1: Root security parameter generation functional architecture based on SRAM PUF

(1) Entropy Source Acquisition Layer
Responsible for extracting stability and randomness information from SRAM as entropy sources for

PUF security parameters. Additionally, considering factors such as storage overhead and time costs, an
exclusive SRAM PUF approach is used to generate high-security parameters such as root keys, key derivation
seeds, trust measurement keys, and authenticated CRPs. A non-exclusive SRAM PUF approach is employed
for generating parameters like true random numbers and device unique identifiers, while SRAM allocation
is based on parameter usage frequency and length requirements.
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(2) Algorithm Implementation Layer
Responsible for preprocessing extracted entropy source information through filtering, equalization,

quantization, etc. The layer then uses corresponding algorithms to convert this information into random
data, key data, and unique identifiers, validating their randomness, uniqueness, and stability.

(3) Configuration Management Layer
Manages PUF configuration information including challenge generation, response storage, and pro-

vides mechanisms for PUF reset functionalities such as key erasure and factory reset. Controls access
permissions to PUF configurations and interfaces, implementing necessary isolation and authoriza-
tion mechanisms.

(4) Functional Service Layer
High-level encapsulation of security parameter functionalities and provision of service interfaces to

external applications. Based on underlying PUF hardware, algorithms, and configuration management
infrastructure, this layer supplies security parameters such as identifiers, keys, random numbers, and
trust measurement keys for specific security services including device authentication, key negotiation, and
data encryption.

In summary, the algorithm implementation layer is the core of parameter generation functionality
design, directly influencing the overall security, reliability, and practicality of the system. Furthermore, the
layered design of parameter generation functionality facilitates future standardization and engineering of
PUF technology, enhancing modularity and scalability of terminal security functionalities.

3.2 SRAM PUF Security Parameter Generation Algorithms
This paper focuses on proposing design schemes for a series of algorithms within the algorithm imple-

mentation layer, including Stable Feature Search Algorithm, State Data Preprocessing Algorithm, Auxiliary
Data Generation Algorithm, Fuzzy Extraction Algorithm, Key Derivation Function, Error Correction Code
Algorithm, among others. The Random Number Postprocessing Algorithm, being relatively mature, is not
discussed here.

(1) Stable Feature Search Algorithm
To select high-stability and high-randomness feature positions from SRAM PUF challenges for gener-

ating SRAM PUF responses, it is necessary to perform multiple restarts of the smart power terminal. During
the registration phase of SRAM PUF functionality, repeated measurements and statistical analysis of SRAM
PUF responses are conducted to assess the stability and randomness indicators of each response position,
such as flip probability, Hamming distance, entropy, etc. Subsequently, all positions are sorted based on
comprehensive indicators, and positions of higher quality are selected as stable features. This algorithm relies
primarily on data collection, statistical computation, and feature selection.

During the data collection phase, assuming the smart power terminal is powered on m times, a set
configurable PUF measurement matrices Ωk = {R, T, V, ⋅ ⋅ ⋅ , I, E} is constructed. Here, R, T, V, I, E represent
matrices of responses across m power-ons, temperature, voltage, current, and electromagnetic radiation
environmental condition matrices, respectively. The matrix set can be expanded based on an expansion
factor k. During the indicator statistics phase, stability is assessed through indicators such as flip probability,
Hamming distance, and mutual information. In the feature selection phase, the comprehensive vector S is
sorted in descending order, a threshold t is set, and bit positions with values greater than t are considered
candidate features. The Stable Feature Search Algorithm (SFSA) is shown as Table 2.
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Table 2: Stable feature search algorithm

Algorithm: Stable Feature Search Algorithm
Input: Initial response matrix Rm×n , with dimensions n ×m
Output: Stability Assessment Metric S ( j)
Progress

For each bit position j from 1 to n,
1. calculate the flip probability P [ j]

count = 0
For each power-on instance i from 1 to m:
if R [i , j]! = R [i + 1, j]:

count+ = 1
P [ j] = count/(m − 1)

2. calculate the Hamming distance D ( j)
dis = 0
For each power-on instance i from 1 to m;

H (i , l) = sum (R [i , j] ⊕ R [l , j]), dis = dis +H [i , l]
D ( j) = dis/C (m, 2)

3. calculate the entropy
For matrix R [ j], count n0 of 0 and n1 of 1 among m measurements.
p0 = n0/m, p1 = n1/m, H ( j) = −p0 log2 p0 − p1 log2 p1

4. calculate the mutual information I ( j∣Δ)
Normalize parameters to obtain Δ = ω1T + ω2V + ω3I + ω4E
For each Δ:

count occurrences n2 over m measurements
p2 = n2/m, H (Δ) = −sum (p2 log2 p2)

count n0 of 0 and n1 of 1 among m measurements.
p0Δ = n0Δ/m, p1Δ = n1Δ/m
HΔ ( j∣Δ) = −p0Δ log2 p0Δ − p1Δ log2 p1Δ
H ( j∣Δ) = sum (pΔHΔ(j∣Δ)), I ( j∣Δ) = H ( j) −H ( j∣Δ)

5. calculate the auto-correlation coefficient r ( j)
add = 0, add_num = 0, add_den = 0
For 1 ≤ i ≤ m

add = add + R (i , j), μ [ j] = add/m
For retardation time tt ime : 1 ≤ i ≤ m − tt ime

add_num = add_num + (R (i , j) − μ ( j)) × (R (i + tt ime , j) − μ ( j))
add_den = add_den + (R (i , j) − μ ( j))2

R ( j, tt ime) = add_num/add_den
take the average of R ( j, tt ime) over different times tt ime to get R ( j)
normalize stability index S ( j)

return S ( j)
End
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The main advantage of the SFSA proposed in this paper is its comprehensive evaluation method. SFSA
effectively identifies feature bits with high stability by comprehensively assessing multiple feature indicators,
which enables the algorithm to identify feature bits that perform stably under multiple environmental
conditions. In contrast, as shown in Table 3, traditional methods may focus on a single metric, such as flip
probability or Hamming distance, which may lead to a lack of stability in complex environments. SFSA
improves the accuracy and robustness of feature selection by combining multiple metrics.

Table 3: Stable feature search algorithm

Feature SFSA Traditional
Stability assessment Combining multiple indicators Single indicator

Environmental adaptation High, adapted to complex
environments

Low, may fail in complex
environments

Accuracy High, reducing false selection of
features

Low, may misselect unstable
features

Robustness Strong against environmental
changes

Weak and vulnerable to
environmental changes

This paper proposes a composite algorithm for evaluating regional metrics of SRAM. By comprehen-
sively assessing multiple characteristic indicators, the algorithm effectively identifies bit positions with high
stability. Compared to traditional methods that evaluate individual bit positions, this algorithm considers
the correlated influences among SRAM units, thereby enhancing the accuracy and reliability of selection.
Additionally, the algorithm introduces dynamic updating and parameter adjustment to adapt to long-term
variations in SRAM characteristics, maintaining the stability of PUF responses.

(2) State Data Preprocessing Algorithm
Based on the stable feature bits selected above, the raw response signals collected after SRAM reg-

istration inevitably contain various high-frequency noises, such as thermal noise, radio frequency noise,
and power supply noise. These noises can cause short-term fluctuations and instability in the security
parameters generated, making noise reduction necessary. First, a mean filtering method is used to remove
high-frequency noises from the original response of the stable feature bits and extract low-frequency features.
Using a sliding window approach, the state data preprocessing algorithm (SDPA) for an original response
sequence ϕ of length n is shown as Table 4.

Table 4: SRAM unit filtering output algorithm

Algorithm: SRAM Unit Filtering Output Algorithm

Input: Original response sequence ϕ, with length n
Output: Filtered output sequence ϕ′
Progress:

choose an appropriate window length l1, where l1 = 2n + 1, n ∈ Z
For each position i in the original response sequence ϕ from 1 to n:

l e f t =max (1, i − l1/2), right =max (1, i + l1/2), sum = 0
For j from left to right

sum+ = φ [ j]
ϕ′ [i] = sum/l1

(Continued)
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Table 4 (continued)
return ϕ′

End

For the current position i, consider all SRAM cells within a sliding window of length l1 centered around
i. Compute their arithmetic mean as the filtered output ϕ(1) to smooth out noise using sliding average
filtering and extract the primary features of the PUF response. It’s important to note that when processing the
beginning and end segments of the response sequence, the sliding window may extend beyond the sequence
boundaries. For these boundary cases, zero-padding, mirroring, or special handling methods can ensure the
integrity and consistency of filtering process.

Due to potential variations in response distributions between different SRAM PUFs and the
same SRAM PUF under different environmental conditions, an adaptive quantization mechanism
is needed to adjust quantization thresholds dynamically, enhancing robustness. After powering the
SRAM m times, gather samples of the candidate ϕ(1) into set Φ = (ϕ(1)1 , ϕ(1)2 , ⋅ ⋅ ⋅ , ϕ(1)m ), with a sam-
ple mean μ denoted as (ϕ(1)1 + ϕ(1)2 + ⋅ ⋅ ⋅ + ϕ(1)m )/n. Based on this, set the standard deviation σ as√
((ϕ(1)1 − μ)

2
+ (ϕ(1)2 − μ)

2
+ ⋅ ⋅ ⋅ + (ϕ(1)m − μ)

2
) / (m − 1), and define upper and lower thresholds tu p =

μ + k1σ and tdown = μ − k2σ , where k1 and k2 are adjustable parameters. For each value ϕ(1)i in ϕ(1):

➢ Quantize as 1 if ϕ(1)i > tu p,
➢ Quantize as 0 if ϕ(1)i < tdow n ,

Otherwise, treat as an indeterminate state, discard, or mark as a random bit.
Through iterative algorithms, obtain the final bit sequence ϕ(2) after adaptive quantization.
Ideally, the response of an SRAM PUF should exhibit a uniform distribution of 0 and 1 s. This uniformity

maximizes randomness, making the response resistant to statistical attacks and cloning attempts. However,
in practice, responses may exhibit imbalance where the probabilities of 0 and 1 differ. This imbalance reduces
the randomness of the PUF response, making it susceptible to statistical attacks and predictions. Therefore,
it is necessary to perform balancing adjustments to equalize the proportions of 0 and 1 in the PUF response
as closely as possible. To achieve this, calculate the counts of 0 and 1 s in ϕ(2) as z1 and z2. If ∣z1 − z2∣ > k3 and
k3 is a configurable threshold, perform the following balancing process:

➢ If z1 > z2, randomly select u(u < ∣z1 − z2∣) 0 and flip them to 1.
➢ If z1 < z2, randomly select u(u < ∣p1 − p2∣) 1 and flip them to 0.

Through iterative algorithms, obtain the final balanced bit sequence ϕ(3). Due to the presence of
repetitive patterns in SRAM PUF responses, such as consecutive sequences of 0 or 1, or fixed bit combinations,
the randomness of the response is diminished, potentially becoming a security vulnerability. Therefore, it is
essential to detect and remove these repetitive patterns to enhance the security of SRAM PUFs as random
and key sources.

This paper proposes a state data preprocessing algorithm termed “noise filtering-adaptive quantization-
balance correction-repetitive pattern removal”. The four sub-algorithms mentioned can be organically
combined to comprehensively address various quality issues in PUF state data, such as noise interference,
response imbalance, and repetitive patterns. Compared to traditional single preprocessing methods, this
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algorithm offers a more comprehensive and systematic approach to improving the quality of PUF state data.
It provides a flexible, scalable, and hardware-friendly solution for state data preprocessing.

(3) Auxiliary Data Generation Algorithm
The Auxiliary Data Generation Algorithm (ADGA) iteratively applies the aforementioned state data

preprocessing algorithm to generate the response sequence Φ(4) = (ϕ(4)1 , ϕ(4)2 , ⋅ ⋅ ⋅ , ϕ(4)m ). The median
response ϕ(4)mid is selected as the reference response, which serves as the baseline for subsequent error
correction and auxiliary data generation.

(4) Adaptive Error Correcting Coding Algorithm
Traditional error correction schemes such as BCH codes and Reed-Solomon codes exhibit good error

correction capabilities but still have room for improvement in terms of implementation complexity and
resource overhead. In response to specific requirements and constraints of SRAM PUFs, innovatively
constructing efficient and lightweight error correcting coding algorithms is a crucial research direction. This
paper combines polynomial error correction codes with permutation mapping principles and proposes the
Adaptive Error Correcting Coding Algorithm (AECCA).

Polynomial codes, due to their simple algebraic structure, facilitate hardware implementation and
optimization, thereby reducing hardware resource overheads. The introduction of permutation mapping
mechanisms disrupts the positional correlation of PUF responses, enhancing the efficiency of error-
correcting codes and reducing the required redundancy. An adaptive coding strategy is employed that
dynamically adjusts coding parameters based on the actual quality of PUF responses, avoiding excessive
or insufficient encoding, and balancing error correction capability and coding overhead. Iterative decoding
algorithms effectively exploit the soft information of PUF responses to enhance decoding success rates.

(5) Fuzzy Extraction Algorithm
Fuzzy extraction algorithms enhance the fault tolerance and robustness of PUFs but are often limited to

academic prototypes. These prototypes usually focus on improving one or a few metrics, such as security or
reliability, without achieving a balanced optimization across multiple design dimensions. Consequently, they
often face practical challenges in real-world applications, failing to meet stringent deployment requirements.
Therefore, this paper proposes a comprehensive fuzzy extraction algorithm (FEA) that aims to balance and
optimize multiple dimensions effectively.

The fuzzy extractor algorithm in this paper adopts adaptive error correction coding, dynamically
adjusting coding strategies based on the noise characteristics of PUF responses to enhance coding response
stability. Introducing permutation increases randomness and unpredictability of coding responses, thereby
enhancing key security. A random matrix M generates auxiliary data AD, safeguarding AD confidential-
ity and integrity through randomization and hashing algorithms. Matrix projection extracts keys from
permutation-encoded responses, simplifying key management. Adaptive threshold quantization adjusts
quantization thresholds dynamically based on projection result distributions, improving key extraction
robustness. In auxiliary data reconstruction, integrity verification ensures consistency and reliability. Key
verification assesses key reconstruction success, enhancing system fault tolerance.

(6) Key Derivation Algorithm
The output of the fuzzy extractor serves as the initial key. Despite its stability and randomness, issues

such as inadequate uniformity in initial key distribution, varying application requirements, and risks of
key reuse attacks arise from direct initial key application, leading to security and compatibility concerns.
Therefore, a key derivation function is introduced post-fuzzy extractor to transform the initial key into
a final key tailored to diverse application needs. This Key Derivation Algorithm (KDA) incorporates
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mechanisms like multifactor integration, high-security hash functions, flexible parameter selection, and
hardware optimization to achieve secure key derivation, outlined as follows:

As shown in Table 5, in the key derivation algorithm, x [0] is used in the initialisation step to combine
the input parameters into a single input value for the subsequent key generation process. This ensures that the
key generation process takes into account all relevant security factors such as application context and user-
specific identifiers. Depending on the type of key, different key generation strategies are used. For session
keys and symmetric keys, we use a hash-based iterative process, which helps to increase the randomness and
complexity of the key. For asymmetric keys, we use Elliptic Curve Cryptography, which is a widely accepted
security method that provides strong security. Our approach considers not only key generation, but also key
security and application scenarios. By using the salt value and the number of iterations, we can resist rainbow
table attacks and brute force attacks. In addition, by using parallel computing, we can improve the efficiency
of key generation.

Table 5: Key derivation algorithm

Algorithm: Key Derivation Algorithm
Input: key ke y of length l7 generated by the fuzzy extractor, application identifier ID for the smart
power terminal APP_ID, length l8, session identifier SID, target key length l9, salt Sal t, iterations iter,
parallelism degree p, Key type type (0-session key, 1-asymmetric key, 2-symmetric key)
Output: target key
Progress:
1. Initialization, combine the key key, the salt value Salt, the application identifier APP_ID or the
session identifier SID into an initial input x [0] depending on the key type.

if type == 0 or type == 2:
x [0] = ke y ∣∣ Sal t ∣∣ ID ∣∣ int_u32 (n)

else
x [0] = ke y ∣∣ Sal t ∣∣ SID ∣∣ int_u32 (n)

2. key generation
if type == 0 or type == 2:

for i = 1 to iter:
divide x [i − 1] into p substrings: x [i − 1] = x [i − 1, 1] ∣∣ ⋅ ⋅ ⋅ ∣∣ x [i − 1, p]

for j = 1 to p:
y [i , j] = SM3 (x [i − 1, j])

x [i] = y [i , 1] ∣∣ ⋅ ⋅ ⋅ ∣∣ y [i , p]
output the first l9 bits of x [iter] as the session key

else
Select parameters a, b, p, where p > 2191, to generate elliptic curve y2 = x3 + ax + b mod p
randomly select base point G (xg , yg) and the order n of base point.
calculate d = ke y mod(2l9 − 1) and P = (xP, yP) = [d]G;
output the key pair (d , P), d is private key and P = (x , y) is the public key.

End

The key derivation algorithm is relatively simple, with its security relying mainly on the security of the
SM2 and SM3 algorithms. In addition, this algorithm incorporates multiple factors such as Salt, APP tags,
and utilizes adjustable parameters including iteration count, key length, Salt length, and parallelism. These
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parameters can be appropriately balanced according to the security requirements of the business. Adopting
multi-round hash iteration significantly enhances the security strength of derived keys, while leveraging
parallel computing to fully utilize multi-core MCU processing power can markedly improve the efficiency
and throughput of KDA execution.

3.3 SRAM PUF Security Parameter Generation Process
SRAM PUF generates various security parameters essential for cryptographic algorithms and security

protocols, categorized into six types: key parameters (root key, asymmetric key, symmetric key, session key),
identity parameters (device fingerprint, chip ID), and random numbers (random seed, CPRS).

The generation process starts with initial CRPs derived from SRAM’s physical characteristics. Stable
feature search algorithms sort stable and unstable output bits. Unstable bits provide entropy for random
seeds, which are refined by a random number post-processing algorithm. Stable bits are split, with some
forming CRPs for chip IDs and authentication, while others undergo state data preprocessing and adaptive
error correction to generate root keys. Data from multiple SRAM startups and adaptive error correction
outputs are processed by fuzzy extraction and key derivation algorithms to produce asymmetric, session, and
symmetric keys. This robust framework ensures the secure generation of vital cryptographic parameters.

Each algorithm within SRAM PUF is divided into four stages: initialization, registration authentication,
key generation, and update recovery. Each stage involves different algorithms and closely interacts with the
configuration management layer, as depicted in Fig. 2.

Figure 2: Phase division of SRAM-PUF SPG

During initialization, the service parameter configuration module provides initial parameters and val-
idates SRAM PUF initialization parameters. For registration authentication, it supplies challenge-response
management parameters, and algorithms for stable feature search, data preprocessing, and auxiliary data
generation create high-quality CRPs and error correction data. In key generation, algorithm parameters and
challenge-response management modules offer parameters for adaptive error correction coding and fuzzy
extraction, producing various keys. During update recovery, these modules use algorithms to recover critical
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parameters from auxiliary data. The configuration management layer oversees algorithm parameters, data
storage, and operations throughout SRAM PUF’s lifecycle.

4 Experimental Results and Analysis
To validate the effectiveness of the security parameter generation mechanism, this paper first constructs

a framework for integrating security parameters and sets up a testing environment using typical electric
power terminals to verify the functionality, performance, and security of the SRAM PUF security parameter
generation function.

4.1 SRAM PUF Security Parameter Generation Performance Verification
Based on the algorithm invocation process, this section presents the integrated architecture of multiple

SRAM PUF instances. Adopting a modular and parameterized design approach, clear interfaces and
configuration parameters are defined. The interface layer abstracts and encapsulates the details of underlying
algorithm implementations, and reusable IP libraries are developed for different PUF types and application
scenarios. These libraries provide unified application interfaces, enabling secure applications and developers
to access, configure, and operate PUFs flexibly, supporting customization and extension.

The Huada HC32F4A0 chip is selected as the MCU for the data acquisition board [28], the chip is
Cortex-M4 architecture, integrated FPU, MPU, DSP supporting SIMD instructions, the highest operating
frequency of 240 MHz, up to 300 DMIPS or 825 Coremarks computing performance, support for a wide
range of voltages (1.8–3.6 V), the device grade for industrial-grade (operating temperature of −40○C~105○C),
the chip contains 2 MB of Flash and 516 KB SRAM, 6 independent clock sources, 16 high-performance analog
peripherals, multiple timers, 142 GPIO, up to 32 communication interfaces. Flash and 516 KB of SRAM, 6
independent clock sources, 16 high-performance analog peripherals, multiple timers, 142 GPIOs, and up
to 32 communication interfaces. Security parameter functions, algorithms, and processes are developed
on it, followed by functional testing, performance testing, and algorithm security analysis. Due to space
constraints, the testing environment is built using the data acquisition board of a feeder intelligent integrated
terminal, using root key generation as an example for functional and performance testing.

(1) Reliability
Running the SRAM PUF program and executing operational instructions, the robustness and reliability

of PUF can be quantified through bit error rate, which is the number of different bits between multiple
responses divided by the code length.

High and low temperature equipment, relay protection devices, power failure simulators, EMC tests,
voltage surge simulators, and other equipment are used to test initial bit error rates and algorithm correction
rates for 2048-bit security parameters under ten physical indicators such as temperature, power supply
environment, frequency, voltage sag, and short-term interruption. During algorithm execution, disturbances
are randomly added to 2048 bits to calculate disturbance rate and bit error rate after algorithm correction.
Specific test results are shown as Table 6.
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Table 6: Experimental results

Indicators Initial result correction Disturbance result correction
Environment
temperature

Mains input

Frequency
change

Voltage sag
and

momentary
interruption

(Continued)
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Table 6 (continued)

Indicators Initial result correction Disturbance result correction
Power

frequency
magnetic field

immunity

Surge voltage SRAM PUF initial average error rate 5.18%;
SRAM PUF error rate after correction 0

SRAM PUF disturbance average error rate
24.9%; SRAM PUF error rate after correction 0

Surge
(impact)

immunity

Electrostatic
discharge

immunity test

Short-
duration

overcurrent

(Continued)
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Table 6 (continued)

Indicators Initial result correction Disturbance result correction
Short-

duration
overvoltage

(2) Timeliness
As shown in Fig. 3, Fifty tests were conducted on a laptop, and the average time taken to obtain the root

key was 0.4 s. When transplanted to the data acquisition board for another fifty tests, due to the startup time
of other peripherals on the board, the average time to obtain the root key was 2.33 s.

4.2 SRAM PUF Security Parameter Generation Security Verification
Using the root key as an example, 500 sets of tests were conducted on four terminals. The expected

Hamming distance between chips is shown in Figs. 4 and 5, which satisfies the requirement of being within
the specified range, with a standard deviation less than 0.5.

Figure 3: SRAM-PUF SPGstartup time
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Figure 4: Expected value of inter-block Hamming distance in 500 tests

Figure 5: Standard deviation of inter-block Hamming distance in 500 tests-12pt

5 Conclusion
This article proposes a security parameter generation mechanism based on SRAM PUF. Firstly, to meet

the enhanced security needs of smart power terminals, it introduces a method for selecting a challenge-
response mechanism and designs the architecture of the security parameter generation function. It also
establishes a security parameter generation framework that covers layers such as the entropy source
acquisition layer, algorithm implementation layer, configuration management layer, and functional service
layer. Secondly, it introduces a series of algorithms for the algorithm implementation layer, including
algorithms for searching stable characteristics, preprocessing state data, generating auxiliary data, fuzzy
extraction, and key derivation functions. Then, it designs the call flow of the security parameter generation
function and the framework for the functional implementation of each stage, and builds a multi-instance
PUF functional integration mechanism. Experiments have proven that results possess excellent reliability,
stability, and security and can effectively support the construction of a terminal trusted root system, laying a
theoretical foundation for subsequent industrial promotion and safe applications. In terms of the application
and promotion of the method, the system is particularly suitable for the context of the orderly opening
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of the power grid and the dramatic increase in the demand for collaborative operation, in which cross-
domain collaboration scenarios of different business terminals of electric power, such as the collaboration
of the distribution automation system and the terminals belonging to the power consumption information
collection system, the security level of the interacting parties is different and the security mechanisms
of some of them are heterogeneous, so it is necessary to construct the identity trust transfer mechanism
across the heterogeneous domains and to continuously assess the trustworthiness of the other party. The
system generates device unique identifiers and authentication CRPs and public keys through the SRAM PUF
function to achieve identity registration and authentication, which effectively improves the authentication
efficiency of terminals interacting with power intelligent terminals in the same region and across domains,
and reduces the authentication overhead.
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