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ABSTRACT: In recent years, convolutional neural networks (CNN) and Transformer architectures have made
significant progress in the field of remote sensing (RS) change detection (CD). Most of the existing methods directly
stack multiple layers of Transformer blocks, which achieves considerable improvement in capturing variations, but at a
rather high computational cost. We propose a channel-Efficient Change Detection Network (CE-CDNet) to address the
problems of high computational cost and imbalanced detection accuracy in remote sensing building change detection.
The adaptive multi-scale feature fusion module (CAMSF) and lightweight Transformer decoder (LTD) are introduced
to improve the change detection effect. The CAMSF module can adaptively fuse multi-scale features to improve the
model’s ability to detect building changes in complex scenes. In addition, the LTD module reduces computational costs
and maintains high detection accuracy through an optimized self-attention mechanism and dimensionality reduction
operation. Experimental test results on three commonly used remote sensing building change detection data sets
show that CE-CDNet can reduce a certain amount of computational overhead while maintaining detection accuracy
comparable to existing mainstream models, showing good performance advantages.

KEYWORDS: Remote sensing; change detection; attention mechanism; channel optimization; multi-scale feature
fusion

1 Introduction
In the field of remote sensing, change detection (CD) is the task of analyzing land surface variations

using remote sensing images from different periods [1,2]. It is not only extensively applied in geological
exploration and ecological water conservation, but also can be employed to evaluate the impact of human
survival activities [3,4]. Building change detection (BCD) plays an indispensable role in understanding
urban scope changes, land use and other fields [5,6]. Advancements in remote sensing satellite and drone
technologies have made it possible to quickly and easily acquire high-resolution space imagery [7]. These data
contain a large amount of rich detail, such as shape, texture and color features. However, due to differences in
shooting equipment, time, angle, etc., change detection does not have a unified standard for detailed features,
and it is difficult to define a unique boundary between buildings and non-buildings [8]. This explains why
the accuracy of change detection does not necessarily improve with the increasing precision of the device.
As remote sensing images from different phases are taken at various times and angles, many pseudo-changes
such as seasonal tree changes, rivers changes and image color changes will bring a lot of difficulties to remote
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sensing building change detection [9]. Detection methods based on convolutional neural networks (CNN)
have shown good results in different tasks using convolution operations and attention mechanisms,but there
are still some difficulties in capturing subtle changes between different image regions.

Recently, deep learning has gained popularity in building change detection (BCD) for its strong ability
in feature extraction and pattern recognition [10]. Since the introduction of Fully Convolutional Networks
(FCNs) into change detection, CNN-based methods have started to dominate this field [11]. CNNs employ
multi-layer convolutions and pooling operations to effectively extract local features from images, enabling the
detection of fine-grained building changes [12,13]. However, CNNs have an inherent limitation—their limited
receptive fields prevent them from capturing long-range pixel dependencies [14]. As urban environments
become more complex, relying solely on local feature extraction is no longer sufficient to address the
full range of challenges in building change detection [15]. Differences in building scale, image acquisition
angles and times, along with pseudo-changes in the surrounding environment (e.g., trees, rivers), can cause
confusion and misclassifications during detection [16].

Unlike CNNs, the Transformer architecture, which has risen in popularity in recent years, demonstrates
significant potential in capturing long-range dependencies and global features [17], also, applied to remote
sensing CD tasks [18]. Compared with traditional CNN, the stacked self-attention module of Transformers
is good at managing long-distance relationships in images, overcoming the limitations of CNN in processing
global information. In current Transformer-based CD studies, an increasing number of researchers utilize
Transformers as encoders to extract robust and representative features, which are then processed by the
Transformer decoder [19]. However, simple symmetric encoder-decoder networks often struggle to effi-
ciently process and transfer these features. As a result, significant challenges remain in effectively capturing
building changes over time from multi-temporal images. Therefore, the effective integration of multi-scale
features, along with advanced spatio-temporal modeling techniques, has emerged as a critical issue in the
field of BCD.

However, as model complexity increases, particularly with the adoption of Transformer architectures,
the multi-layer self-attention mechanisms demand substantial computational resources, resulting in slower
inference speed and higher energy consumption. Although state-of-the-art models deliver excellent perfor-
mance on perform well metrics (e.g., F1-score), their computational overhead and resource demands are
frequently disproportionate to the gains in accuracy. This imbalance is particularly problematic in resource-
constrained environments. Consequently, the deployment of such models on edge devices, mobile devices,
and other low-resource platforms remains restricted. Due to the limited computational power and memory
of these environments, high-resource-consuming models are often impractical for real-world applications.

In this context, reducing the computational cost and resource demands of models while maintaining
reasonable accuracy has become a key challenge in remote sensing image processing. To this end, this study
introduces an innovative network architecture designed to optimize parameter efficiency and reduce the
number of channels, significantly lowering computational overhead while preserving detection performance.

In order to reduce the excessive demand for computing resources in BCD task, this paper proposes a
channel-optimized network—Channel-Efficient Change Detection Network (CE-CDNet). By reducing the
number of channels for data propagation at each level in the network, the computational cost is reduced. At
the same time, the accuracy of CD can be preserved. The main contributions are as follows:

1. We optimized the network structure and channel design, so that the channel-efficient change detection
network (CE-CDNet) effectively reduces the model complexity without sacrificing detection accuracy.
CE-CDNet controls the number of channels in each layer to ensure the consistency of accuracy in
different detection scenarios.
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2. We introduced Channel-Aware Multi-Scale Fusion (CAMSF) to generate attention maps using global
average pooling and global maximum pooling to enhance key features and suppress irrelevant interfer-
ence. Accurately capture subtle and complex changes between images at different times.

3. We introduced the Lightweight Transformer Decoder (LTD), which is effectively captured by the self-
attention mechanism. The LTD module reduces the dimensionality of the feature map and reduces
the computational burden of high-dimensional data. In addition, the multi-head attention mechanism
more effectively analyzes the spatial relationship between image regions.

The rest is arranged as follows: Section 2 reviews related works in change detection, focusing on
traditional methods and deep learning-based approaches, along with recent developments in Transformer
architectures for remote sensing. Section 3 describes the proposed CE-CDNet architecture in detail,
including the feature extraction module, channel-aware multi-scale fusion (CAMSF) module, lightweight
Transformer decoder (LTD) module, and the channel optimization strategy. Section 4 outlines the experi-
mental setup, datasets, evaluation metrics, and presents a comparative analysis of CE-CDNet against existing
models. And presents the results of ablation studies, highlighting the contribution of each module to the
overall performance of CE-CDNet. Finally, Section 5 summarizes the contributions of this paper.

2 Related Works

2.1 Classical Change Detection
Previously, change detection in remote sensing images predominantly relied on traditional image

processing techniques, includes image differencing, image overlay, change vector analysis (CVA), and
principal component analysis (PCA). In addition, the classical method is simpler and more effective. For
example, multivariate change detection (MAD) [20] uses the contrast in different images for detection.
Slow feature analysis (SFA) [21] often performs well in long-term monitoring tasks. In addition, Fourier
domain methods [22] convert data into frequency domain for monitoring and have relatively good results.
Du et al. [23] proposed a difference-based image fusion method that combines the outputs of various simple
change detectors using feature-level and decision-level fusion techniques. Qin et al. [24] proposed an object-
based 3D building detection framework that combines orthophotos and digital surface models (DSMs) to
identify building changes by analyzing height, spectral, and shape features using supervised classification
with decision trees and support vector machines (SVMs). Tan et al. [25] proposed an object-based change
detection method (OB-MMUA) that combines multiple classifiers and multi-scale uncertainty analysis. This
method extracts spectral, texture, shapegray-level co-occurrence matrix (GLCM), and Gabor filter features.
Random forests are used for feature selection, followed by Dempster-Shafer (D-S) evidence theory to merge
SVM, k-nearest neighbor (KNN), and extra-tree classifiers. Yousif et al. [26] proposed a change detection
method for high-resolution synthetic aperture radar (SAR) images, representing pixel-level change signals
and employing Fourier and wavelet transforms to quantify the intensity of changes in objects, thereby
capturing dominant change behaviors while suppressing interference.

Traditional methods detect changes in simple scenarios by directly comparing pixel values, spectral
features, and geometric characteristics across multi-temporal images. However, their effectiveness is limited
in complex environments.

2.2 Change Detection Using Deep Learning
CNNs have been able to effectively capture the detailed changes in buildings by extracting local

image features through convolution operations. The strengths of CNNs in automatic feature extraction
and pattern recognition have led to outstanding performance in various image-related tasks. Similarly, the
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introduction of CNN into change detection has made it possible to effectively capture changes in building
details, bringing considerable progress. Many methods have also emerged that combine multi-scale feature
fusion with spatiotemporal modeling to improve the robustness and accuracy of detection. Li et al. [27]
proposed a multi-scale fully convolutional network (MFCN) that uses multi-scale convolution kernels to
extract detailed features of the target. Zhang et al. [28] proposed to construct a dual-channel network
through transfer learning to generate multi-scale and multi-depth feature difference maps. Incorporating
the attention mechanism also greatly enhanced change detection performance. Shen et al. [29] developed
the global channel attention (GCA) module and multi-scale feature fusion (MSFF) module to enhance
detection accuracy of low-level features and integrate multi-scale information. Chen et al. [30] used dual
attention mechanisms to capture long-range dependencies, enhancing the discriminative power of feature
representation. By using a weighted dual-margin contrastive loss function, they addressed sample imbalance
and reduced the impact of pseudo-changes. Shi et al. [31] proposed combining deep metric learning with
convolutional blocks and attention blocks to learn variation maps. Zhang et al. [32] aimed to reconstruct the
change map by fusing the multi-layer deep features of the original image with the difference features using
an attention module. Additionally, other deep learning methods, such as GNNs, have been explored. Liang
et al. [33] proposed a multi-scale fusion network model based on Graph Neural Networks (GNNs) called
GNN-based multi-scale fusion network model (GCNCD), which learns richer features by message pooling
from neighboring vertices in the graph. Holail et al. [34] proposed an attention-based feature difference
enhancement (AFDE) network that combines spatial channel attention and deep supervision to effectively
address the issue of spatial information loss.

Due to the typically small receptive field of CNNs, the models face difficulties in capturing long-range
dependencies between pixels, which is particularly problematic in building change detection, especially when
dealing with buildings that exhibit significant changes in scale or viewpoint. Moreover, CNNs primarily focus
on extracting local features, which may be insufficient to handle the diverse changes in buildings within
complex urban environments. For example, when changes occur in the surroundings of buildings, such as the
growth or disappearance of trees, or changes in water bodies, CNNs may mistakenly identify these changes
as building changes, affecting the accuracy of the detection results.

2.3 Vision Transformers for Change Detection
Recently, the Transformer architecture has seen successful application across various fields, has grad-

ually been introduced into the field of computer vision. Through its stacked self-attention mechanism,
the Transformer efficiently captures global features and long-range relationships in images, addressing the
shortcomings of CNNs. Recently, Mamba-based methods [35] have emerged and have shown considerable
advantages in the field of change detection. It shows great potential to replace existing solutions. It introduces
linear attention and long-range dependencies to reduce complexity and computational overhead, and
performs extremely well.

Trying to use Transformer as an encoder to extract the change feature image and using the decoder for
change detection is also a new direction [17]. ChangeFormer [36] combined the Transformer’s global feature-
capturing capability with the demands of change detection, showcasing the potential of the Transformer
in this field. TransUNet [37], by combining the Transformer and UNet, demonstrated the strong encoding
capabilities of the Transformer in image segmentation tasks, providing a useful reference for the field of
remote sensing change detection. As a result, many researchers have adopted hybrid approaches combining
Transformers and CNNs. Liang et al. [38] proposed a Transformer-CNN hybrid network for remote sensing
building change detection, which combines CNN and Transformer and fuses the features of both to improve
accuracy. To address the interaction issues between CNNs and Transformers. Zhang et al. [39] introduced
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a hierarchical network with asymmetric cross-attention. Song et al. [40] proposed a method combining
Progressive Sampling (PS) and Transformers, iteratively optimizing the feature information of remote
sensing images. Inspired by visual Transformers. Shi et al. [41] developed a token-based approach for passing
global context information without using additional Transformer decoders or skip connections.

3 Method
This chapter provides a detailed explanation of the overall architecture of the proposed Channel-

Efficient Change Detection Network (CE-CDNet) and the design and implementation of its various modules.
The goal of CE-CDNet is to improve the model’s efficiency by reducing its computational complexity and
resource consumption, without significantly compromising detection accuracy.

3.1 Channel-Efficient Change Detection Network
In remote sensing change detection, although the spatial resolution of acquired images is constantly

improving and the details are becoming clearer. However, the accuracy has not been further improved with
the improvement of technology. On the contrary, the computing resources and accuracy are constantly
increasing. How to balance computer resources and accuracy is an issue that cannot be ignored. Especially
after the transformer-based models have shown strong performance in image processing, the models now
tend to stack transformer blocks and gradually increase the number of parameters in the hope of improving
accuracy. As a result, these models are difficult to deploy on edge devices or resource-constrained environ-
ments.

We propose a Channel-Efficient Change Detection Network (CE-CDNet) that achieves a balance
between accuracy and computing resources by optimizing the number of channels propagated between
networks. CE-CDNet combines the advantages of Transformers and CNNs, significantly reducing the
computational overhead while maintaining high detection accuracy. The design of this network consists
of four main components: a feature extraction module, a multi-scale feature fusion module, a lightweight
Transformer decoder module, and a channel optimization strategy. This combination allows CE-CDNet to
maintain efficiency and accuracy while processing images. The specific process is shown in Algorithm 1.

Algorithm 1: CE-CDNet algorithm table
Input: Remote sensing images T0 and T1.
Output: Change Detection Map (CDM), the final binary result L.
//Feature Extraction
1.1: Read the input images T0 and T1.
1.2: Pass the images through the Siamese feature extractor to obtain feature matrices XT0, XT1.
//Feature Update Using CAMSF Module
2.1: Compute the spatial attention map A using convolutional operations and the attention mechanism.
2.2: Calculate the adaptive multi-scale feature fusion: Z = f (XT0, XT1 , A), where Z represents the updated
feature matrix incorporating attention.
//Global Context Extraction Using Lightweight Transformer Decoder (LTD)
3.1: Encode the multi-scale feature tokens using Trans Encoder.
3.2: Apply self-attention mechanism to capture spatial dependencies.
3.3: Decode tokens using Trans Decoder to generate refined feature maps.
//Change Detection Map (CDM) Generation

(Continued)
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Algorithm 1 (continued)
4.1: Compute the feature distance map Di , j based on the difference between feature representations at
each pixel.
4.2: Compute the threshold θ using global context information extracted by the transformer.
4.3: For each pixel (i , j)):
- If Di , j > θ, then Pi , j = 1 (Change detected).
- Else, Pi , j = 0 (No change).
//Output Binary Map
5.1: Generate the final binary change detection map L.

1. Feature extraction module: This module employs a lightweight CNN architecture to extract multi-
scale features from input multi-temporal remote sensing images. This module minimizes computational
complexity by reducing the number of channels in each layer, while effectively extracting key features
related to building changes, thereby ensuring accuracy.

2. Multi-scale feature fusion module: Adaptively fuses features of different scales to accurately capture
building changes in complex scenes.

3. Lightweight Transformer decoder module: The LTD module optimizes the self-attention mechanism
and dimensionality reduction, effectively captures complex spatial relationships during feature fusion
and upsampling, greatly reduces the computational burden, and achieves efficient change detection.

4. Channel optimization strategy: Channel optimization runs through the entire network design. By
streamlining the number of channels, the computational cost of the model is reduced, and the
adaptability of the model in resource-constrained environments is enhanced.

CE-CDNet receives two images and uses the twin feature extraction method with shared weights in
a dual-branch convolutional neural network to extract features (as shown in Fig. 1). This process generates
feature maps at two scales, with dimensions of 64 × 64 and 256 × 256, and all feature maps in the early stages
of the network have 32 channels. These feature maps are then fused through the Channel-Aware Multi-Scale
Fusion (CAMSF) module, ensuring that building changes are accurately captured at different scales. The
fused feature maps are fed into the Transformer encoder and decoder modules, where spatial attention and
positional encoding are applied, transforming the feature maps into tokens. Further processing occurs in
the Lightweight Transformer Decoder (LTD) module, which optimizes the self-attention mechanism and
performs dimensionality reduction, effectively reconstructing complex spatial relationships in the images.
The final output is a binary change detection map highlighting building changes.

3.2 Channel-Aware Multi-Scale Fusion (CAMSF)
The Channel-Aware Multi-Scale Fusion module is one of the key components of CE-CDNet. The goal is

to minimize the computational overhead while maintaining detection accuracy by fusing features of different
scales. The CAMSF module receives two sets of feature maps from the Siamese feature extraction module,
with dimensions of 64 × 64 and 32 channels, which correspond to the feature representations of the input
images T0 and T1 (as shown in Fig. 2).

First, the feature maps are concatenated to generate a feature map Fcat with 64 channels, where:

Fcat = Concat (F64,1 , F64,2) ∈ R64×64×64 (1)
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Figure 1: Architecture of Channel-Efficient Change Detection Network (CE-CDNet)

Figure 2: Channel summation and feature fusion process in CAMSF module

For enhanced effect, the CAMSF module first applies adaptive weight allocation to the concatenated
feature map Fcat. Through Global Average Pooling (GAP) and Global Max Pooling (GMP), channel-level
attention maps are generated as follows:

Aavg = ReLU (W1 ⋅ (Fcat)) , Amax = ReLU (W1 ⋅GMP (Fcat)) (2)

Next, these attention maps Aavg and Amax are combined with the original feature map, and pixel-wise
weighting is applied to generate a feature map with channel attention Fatt:

Fatt = σ (Aavg +Amax) ⋅ Fcat (3)

Here, σ (⋅) is the Sigmoid activation function, ensuring that important channel information is enhanced,
thus better preserving the key information related to building changes.

After obtaining the feature map with adaptive weights Fatt, the CAMSF module performs multi-scale
fusion. Through weighted fusion, it combines the original feature maps F64,1 and F64,2 to form the final fused
feature map:

Ffusion = α ⋅ F64,1 + β ⋅ F64,2 (4)
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α and β are the weights learned adaptively through network training, balancing the contributions of
different scales during the fusion process to ensure that the final fused feature map fully expresses multi-scale
building change information.

The fused feature map Ffusion, processed by the CAMSF module, contains multi-scale information and
effectively balances the contributions of this information across the channel dimension. This feature map is
then passed to the subsequent Lightweight Transformer Decoder (LTD) module for further building change
detection. By applying adaptive weight allocation and multi-scale feature fusion, the CAMSF module reduces
computational complexity and enhances the feature representation capabilities.

3.3 Channel-Aware Multi-Scale Fusion (CAMSF)
In the CE-CDNet network, the Transformer mechanism is utilized through the Trans Encoder and

Trans Decoder modules to process the global contextual information of the input images, further improving
the model’s performance in complex building change detection tasks. The Trans Encoder captures spatial
dependencies by mapping image features into a set of tokens and enhances global information extraction by
incorporating positional embeddings.

Specifically (as shown in Fig. 3), the Trans Encoder module first performs convolution operations on the
input multi-scale features, generating a spatial attention matrix to weight the features of different regions and
further extract global features through the Transformer mechanism. These token representations incorporate
positional information through positional encoding, enabling the network to understand dependencies
between distant pixels in the image. The Trans Decoder integrates the encoded global information with the
original features and converts the tokens back into spatial features using cross-feature attention mechanisms.
It remaps the tokens into feature maps.

Figure 3: Transformer mechanism for global context extraction in CE-CDNet

The upsampling part of the Decoder module receives input from several key modules, and after fusion
and processing, generates the final result of building change detection (as shown in Fig. 4). First, the input
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to the Decoder comes from the Channel-Aware Multi-Scale Fusion (CAMSF) module, which adaptively
fuses features from multi-temporal images to generate feature maps containing multi-scale building change
information, ensuring that the network can accurately capture changes in buildings across different times
and scales. Second, feature maps from the Visual Geometry Group (VGG) feature extraction module are also
important inputs to the Decoder. These feature maps are extracted through multiple layers of convolution
operations, containing both low-level and high-level information, providing rich details for the final change
detection. Additionally, the token encoding and decoding modules capture global contextual information
of the image through the Transformer structure, ensuring that the network can understand long-range
dependencies in the image. By integrating these inputs from the CAMSF, VGG feature extraction, and token
encoding and decoding modules, the Decoder effectively fuses multi-scale, multi-level feature information
to generate high-precision building change detection results.

Figure 4: Decoder module and lightweight transformer decoder (LTD) in CE-CDNet

The LTD module receives the fused feature map Ffusion from the CAMSF module, with dimensions
64 × 64 × 64. First, a convolution operation is applied to Ffusion to reduce the dimensionality, generating
the encoded feature representation:

Fenc = Conv2d (Ffusion) (5)

After dimensionality reduction, the LTD module applies a lightweight Transformer self-attention
mechanism to capture the global contextual information in the image. The self-attention mechanism linearly
maps the input feature map Fenc to query, key, and value vectors, and calculates the correlations between
features using the following formula:

Attention (Q , K , V) = Softmax(QKT
√

dk
)V (6)

This process enables the LTD module to efficiently extract global information, enhancing the model’s
ability to capture building changes.

After that, the original resolution of the input image is upsampled.
To optimize computational complexity, the LTD module reduces the number of attention heads and

feature dimensions through a lightweight Transformer structure. This approach maintains the ability to
extract global information while significantly improving computational efficiency. As a result, the LTD can
provide high-performance change detection with low computational overhead, even in complex scenarios.
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Finally, the feature map output by the LTD module is mapped into a change detection result map,
marking the building change areas in the two input multi-temporal remote sensing images.

4 Experiments

4.1 Datasets and Evaluation Metrics
We assessed the performance of the CE-CDNet network for building change detection by conducting

experiments on the LEVIR-CD, WHU Building, and SYSU datasets.
1. LEVIR-CD Dataset: A high-resolution remote sensing image change detection dataset specifically

designed for change detection. It covers different areas of many cities in China and contains rich information
on building changes. Its images cover complex urban environments and have high spatial resolution.

2.WHU Building Dataset: Contains a large number of urban building images taken at different times.
The image resolution is up to 0.075 m and contains rich building shape and texture details. Each pair of
multi-temporal images is accompanied by accurately annotated building change areas, and the annotation
accuracy of the entire dataset is very high. In terms of capturing fine details, this dataset is very suitable for
evaluating model performance.

3. SYSU-CD Dataset: The SYSU-CD dataset is a publicly available remote sensing change detection
dataset, captured in Hong Kong between 2007 and 2014. The data is split into a training set (12,000 pairs), a
validation set (4000 pairs), and a test set (4000 pairs), as provided by the researchers.

By testing and validating the CE-CDNet network using these three datasets, we can effectively assess
the model’s robustness and generalization capability in BCD tasks.

We used the following evaluation indicators to measure the performance of the model, including:

1. Precision (P): Precision indicates the proportion of correctly predicted changed areas among all
predicted positive samples.

P = TP
TP + FP

(7)

2. Recall (R): Recall measures the model’s ability to identify true positives, indicating the ratio of correctly
detected positive samples to all actual positives.

R = TP
TP + FN

(8)

3. Intersection over Union (IoU): Measures the overlap between predicted and actual regions by dividing
their intersection by their union.

IoU = TP
TP + FP + FN

(9)

4. F1-score: The F1-score is the weighted harmonic mean of precision and recall, used to balance the
precision and recall of the model. It is particularly suitable for scenarios with imbalanced sample classes.

F1 = 2 × Precision × Recal l
Precision + Recal l

(10)

4.2 Experiment Analysis
In this section, we present and analyze the quantitative results of CE-CDNet on the WHU Building

Change, LEVIR-CD, and SYSU-CD Datasets, along with the corresponding metrics. We first evaluate the
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model’s performance on the WHU Building Change Dataset and the LEVIR-CD Dataset, and conduct a
comparative analysis of its segmentation capabilities with other models.

The specific comparative data results on the WHU dataset are shown in Table 1. By comparing the
performance of multiple models in the task of building change detection in remote sensing images, CE-
CDNet performs well in all four key evaluation indicators, especially in the two indicators of Precision
and Recall, surpassing most other models, highlighting its comprehensive detection capabilities. Compared
with high-precision models such as IFNet and SNUNet, CE-CDNet significantly improves Recall while
maintaining a high accuracy rate, effectively reducing missed detections and ensuring full coverage of
the changed area. In addition, CE-CDNet performs stably in complex scenes, and its false alarm rate
is significantly lower than that of models such as FC-Siam-Conc and DTCDSCN, further improving its
reliability in practical applications. In contrast, although models such as STANet and BIT perform well in
some indicators, they are lacking in detail change area detection and IoU, and are not effective in dealing
with complex building change scenes.

Table 1: Quantitative comparison of change detection models on the WHU dataset

Model Precision (%) Recall (%) IoU (%) F1-score (%)
FC-EF [42] 71.63 67.25 53.11 69.37
FC-Siam-
Conc [42]

60.88 73.58 49.95 66.63

FC-Siam-Diff [42] 47.33 77.66 41.66 58.51
SNUNet [43] 88.04 87.36 78.09 87.7

BIT [44] 86.64 81.48 72.39 83.98
ChangeFormer [36] 91.83 88.02 81.63 89.88
DTCDSCN [45] 63.92 82.30 56.19 71.95

STANet [46] 79.37 85.50 69.95 82.32
IFNet [32] 96.91 73.19 71.52 83.40
HANet [1] 88.30 88.01 78.82 88.16

CGNet [16] 94.47 90.79 86.21 92.59
CE-CDNet 90.59 94.06 85.69 92.30

In addition, from the performance of the LEVIR-CD dataset in Table 2, the accuracy of CE-CDNet
on both datasets (WHU dataset and LEVIR-CD dataset) is quite high, 90.59% and 89.27%, respectively.
Although IFNet has a higher accuracy (96.91%) on the WHU dataset, its recall rate is lower (73.19%), which
may cause the model to miss important change areas. On the WHU dataset, the recall rate of CE-CDNet
is 94.06%, ranking first among all models, much higher than other models (for example, STANet is 85.50%
and BIT is 81.48%). On the LEVIR-CD dataset, the recall rate of CE-CDNet is 92.07%, which is also ahead
of most models (for example, STANet is 91.00% and IFNet is 82.93%). This shows that CE-CDNet can detect
building changes more comprehensively and reduce missed detections.

Table 2: Quantitative comparison of change detection models on the LeViR-CD dataset

Model Precision (%) Recall (%) IoU (%) F1-score (%)
FC-EF [42] 86.91 80.17 71.53 83.40

FC-Siam-Di [42] 89.53 83.31 75.92 86.31

(Continued)
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Table 2 (continued)

Model Precision (%) Recall (%) IoU (%) F1-score (%)
FC-Siam-Conc [42] 91.99 76.77 71.96 83.69

DTCDSCN [45] 88.35 86.83 78.05 87.67
BIT [44] 89.24 87.37 80.68 89.31

STANet [46] 93.81 91.00 77.40 87.26
IFNet [32] 91.78 82.93 78.77 88.13

SNUNet [43] 89.18 87.17 78.83 88.16
HANet [1] 91.21 89.36 82.27 90.28

ChangeFormer [36] 92.05 88.80 82.48 90.40
CE-CDNet 89.27 92.07 82.90 90.65

The visualization results of comparing WHU-CD and LEVIR-CD are shown in Figs. 5 and 6, our model
outperforms other models in both missed detections (green areas) and false detections (red areas). Compared
with the DTCDSCN model and the BIT model, our model consistently reduces the green missed detection
areas in all test scenarios, indicating that it has a stronger ability to detect building changes in complex
urban environments. Specifically, our model is good at accurately identifying changes in areas with rich
building details and complex backgrounds (such as trees and roads), effectively reducing missed detections.
In addition, when examining the false detection areas, the DTCDSCN and BIT models show higher
misclassification rates in some cases, especially in non-building areas such as shadows and roads, causing the
red areas to stand out more. In contrast, our model significantly reduces these false detections, maintaining
a low false detection rate even in scenes with complex backgrounds or subtle changes, demonstrating its
excellent cross-scene generalization ability and detail processing performance. In addition, when analyzing
the white correctly detected areas, it can be found that our model shows higher consistency in accurately
detecting building changes, more comprehensive coverage, and a higher degree of match with the ground
truth labels. Our model shows higher stability and reliability, especially at the edges of buildings and in
complex areas. Overall, this shows that our model not only achieves higher accuracy in the building change
detection task, but also shows strong robustness and generalization ability in complex backgrounds and
multi-scale changing scenes.

a

b

c

d

T1 T2 GT SNUNet BIT
Change

Former
DTCDSCN IFNet HANet CGNet Ours

Figure 5: Qualitative experimental results on WHU-CD. TP (white), TN (black), FP (red), and FN (green)
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Figure 6: Qualitative experimental results on LEVIR-CD. TP (white), TN (black), FP (red), and FN (green)

For example, in the test image c of Fig. 6, the central areas of T1 and T2 have changed a lot, especially
the highlighted part of the suspected building. Our model showed excellent cross-scene detection ability
during detection and avoided false detection. Similarly, in Fig. 6b, due to the close or consistent colors of the
road and the building, there is a problem of inconsistent building edge division in multi-building scenes.
Other models basically have the problem of too large or too small edge division to a large extent, resulting
in insufficient accuracy. Compared with other results, our model has certain optimization in this regard.

In order to further assess the performance of CE-CDNet in diverse environments, we conducted
experiments on the SYSU dataset.

Table 3 shows the quantitative comparison results of different models on the SYSU dataset. CE-CDNet
performs well in various indicators, especially in Recall (76.17%) and IoU (60.77%), which is better than
other models. For example, IoU is significantly higher than ChangeFormer (47.73%) and IFNet (46.60%).

Table 3: Quantitative comparison of change detection models on the SYSU dataset

Model Precision (%) Recall (%) IoU (%) F1-score (%)
Change Former [36] 59.40 70.84 47.73 64.62

FC-conc [42] 81.57 66.69 57.96 73.38
FC-diff [42] 91.27 55.61 52.80 69.11
IFNet [32] 50.56 85.61 46.60 63.57
BIT [44] 75.15 71.58 57.88 73.32

CE-CDNet 75.04 76.17 60.77 75.60

By comparing the results in Fig. 7, it is clear that CE-CDNet outperforms other models in terms of
both missed detections and false detections. Specifically, the green missed detection areas in CE-CDNet are
minimal, indicating its superior ability to accurately detect building changes even in complex environments.
Additionally, the red false detection areas are also relatively small, demonstrating that the model effectively
minimizes misclassification in non-change areas. In contrast, other models exhibit higher rates of missed and
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false detections in certain scenarios, particularly when handling multi-scale building changes and complex
background interference, highlighting some limitations.

a

b

c

d

T1 T2 GT
Change

Former

FC_conc FC_diff IFNet BIT Ours
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d

T1 T2 GT
Change

Former

FC_conc FC_diff IFNet BIT Ours

Figure 7: Qualitative experimental results on SYSU. TP (white), TN (black), FP (red), and FN (green)

Overall, CE-CDNet achieves efficient change detection without sacrificing detection accuracy, effec-
tively segmenting building change areas in complex urban environments. This demonstrates its potential as
an excellent solution for change detection tasks.

Fig. 8 shows the number of network parameters of several building change detection networks, where
the first five networks are CNN-based networks and the others are transformer-based networks. The number
of parameters of CE-CDNet is 17.76 M, slightly higher than the CNN-based methods and lower than the
parameters of transformer-based methods. From the performance on the two datasets listed in Table 4, CE-
CDNet achieves a better balance between parameter overhead and F1.

Figure 8: Comparison of methods by parameters count
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Table 4: Comparison of parameter count and F1 results on WHU and LEVIR-CD datasets (*Giga Floating-Point
Operations Per Second)

Method Params (M) GFLOPs* F1

WHU-CD LEVIR-CD
ChangeFormerV4 [36] 33.61 852.53 87.39 75.87
ChangeFormerV5 [36] 55.27 841.08 87.45 78.23
ChangeFormerV6 [36] 41.03 811.15 83.66 72.71

BIT-101 [44] 43.27 380.62 90.04 82.53
CE-CDNet 17.76 759.23 92.30 90.65

The final comparison results show that CE-CDNet exhibits excellent overall performance in the task.
Through the effective integration of channel optimization, adaptive multi-scale feature fusion (CAMSF), and
the lightweight Transformer decoder (LTD) modules, CE-CDNet significantly improves detection accuracy
and robustness.

4.3 Ablation Studies
To evaluate the impact of each module in the CE-CDNet network on building change detection

performance, we designed an ablation study, analyzing the contribution of each module through a compar-
ison of different model versions. The experiments were conducted using the LEVIR-CD building change
detection dataset.

Initially, the baseline model demonstrated moderate performance, with an IoU of 0.7869, a Precision of
86.87%, a Recall of 89.32%, and an F1-score of 88.08% (as shown in Table 5). These results indicate that while
the model was able to capture local features, it still faced challenges in accurately detecting change regions.

Table 5: Performance comparison of different modules of CE-CDNet on LEVIR-CD and WHU-CD dataset (All values
are in %)

LEVIR-CD WHU-CD

Model Pre. Rec. IoU F1 Pre. Rec. IoU F1
Baseline 86.87 89.32 78.69 88.08 84.44 94.06 80.16 88.99
+CAMSF 87.34 91.98 81.16 89.60 89.09 91.86 82.58 90.46
+LTD 87.76 92.47 81.91 90.05 89.98 91.14 82.74 90.55
CE-

CDNet
89.27 92.07 82.90 90.65 90.59 94.06 85.69 92.30

Upon adding the CAMSF module, which adaptively integrates multi-scale features, the model’s perfor-
mance significantly improved. The Recall increased to 91.98%, IoU rose to 0.8116, and the F1-score reached
89.60%. The CAMSF module enabled the model to better handle multi-scale changes in complex scenarios,
particularly enhancing its ability to detect change regions. After introducing the lightweight Transformer
decoder, the experimental results showed further improvement, with the F1-score rising to 90.05% and IoU
increasing to 81.91%, demonstrating that the Transformer effectively enhanced the capture of global features,
making the model more robust in complex change detection scenarios.



818 Comput Mater Contin. 2025;83(1)

The full CE-CDNet network, which combines the channel optimization strategy, CAMSF module,
and lightweight Transformer decoder, achieved optimal performance, with a Precision of 89.27%, a Recall
of 92.07%, an IoU of 82.90%, and an F1-score of 90.65%. The channel optimization strategy maintained
high precision while reducing computational costs, allowing the model to perform better in resource-
constrained environments.

Overall, the results of the ablation study demonstrate that the CAMSF module improved the model’s
ability to capture fine details through multi-scale feature fusion, while the lightweight Transformer decoder
enhanced the understanding of global information. The combination of these two modules significantly
boosted the overall performance of the model.

In Fig. 9c, we can clearly see that our baseline has many false positives and missed positives when
predicting the edge of the house change. This directly reflects that the baseline model does not accurately
divide the original building edge. After adding CAMSF, the green missed positives in the figure are
significantly reduced, indicating that the module has further improved the detection level. After adding LTD
alone, the number of false positives (red) pixels in the figure is reduced to a certain extent compared to
CAMSF. The complete CE-CDNet further integrates the advantages of these two modules, and the results of
the previous tests are improved.

a

b

c

T1 T2 GT Baseline + CAMSF
+ lightweight

Transformer
CE-CDNET

Figure 9: The horizontal displays a, b, and c respectively show the original change graph, label, and corresponding
model prediction graph of the dataset. Ablation experiments of different modules of CE-CDNet on the LEVIR-CD
dataset. TP (white), TN (black), FP (red), and FN (green)

We selected a case of a small building change. In Fig. 10, there is no building in the area in a, while there
is a building with an unconventional roof in the corresponding area in b. In the previous building detection
network, this area was not paid any attention. In our network, Figs. 10c,d respectively shows the building
detection capabilities of Baseline+CAMSF and Baseline+LTD. After adding these two modules, they both
pay attention to this area, especially in d, which basically draws the outline of the building that is easy to
ignore. In the complete network in e, it can be seen that our network pays more attention to this area. The
building is clearly displayed.
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a b c d e

Figure 10: Heatmap of each module in the ablation experiment. a: Original image T1, b: Original image T2, c: Heatmap
of Baseline+CAMSF, d: Heatmap of Baseline+LTD, e: Heatmap of CE-CDNet

In conclusion, the comparison shown in the figure clearly illustrates the contribution of each module
to the model’s performance. The complete CE-CDNet model exhibits significant advantages in handling
multi-scale features and complex building change scenarios. In contrast, removing specific modules leads to
increased false positives and false negatives, resulting in noticeable performance degradation. This validates
the crucial roles of the CAMSF module and the Lightweight Transformer Decoder (LTD) in achieving the
model’s overall effectiveness in change detection.

5 Conclusions
This paper proposes a channel-optimized change detection network (CE-CDNet) to address the issues

of computational cost and detection accuracy in BCD in high-resolution remote sensing images. By
incorporating the adaptive multi-scale feature fusion module (CAMSF) and the lightweight Transformer
decoder (LTD), CE-CDNet significantly reduces computational costs and resource consumption while
maintaining high detection accuracy. Extensive experimental results demonstrate that CE-CDNet performs
exceptionally well on multiple public datasets, with notable improvements in reducing both false negative
and false positive rates compared to existing mainstream methods. Unlike traditional convolutional neural
networks (CNNs), CE-CDNet takes advantage of its Transformer architecture to effectively model long-range
dependencies. As a result, it exhibits superior capabilities in change detection and shows greater robustness
in complex scenarios.

In summary, CE-CDNet not only excels in detection accuracy and computational efficiency, but
also demonstrates excellent generalization ability and application potential. Future research could fur-
ther optimize the model’s lightweight design and explore its application and expansion in other remote
sensing tasks.
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