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ABSTRACT: The adoption of deep learning-based side-channel analysis (DL-SCA) is crucial for leak detection in
secure products. Many previous studies have applied this method to break targets protected with countermeasures.
Despite the increasing number of studies, the problem of model overfitting. Recent research mainly focuses on exploring
hyperparameters and network architectures, while offering limited insights into the effects of external factors on side-
channel attacks, such as the number and type of models. This paper proposes a Side-channel Analysis method based on
a Stacking ensemble, called Stacking-SCA. In our method, multiple models are deeply integrated. Through the extended
application of base models and the meta-model, Stacking-SCA effectively improves the output class probabilities of
the model, leading to better generalization. Furthermore, this method shows that the attack performance is sensitive
to changes in the number of models. Next, five independent subsets are extracted from the original ASCAD database
as multi-segment datasets, which are mutually independent. This method shows how these subsets are used as inputs
for Stacking-SCA to enhance its attack convergence. The experimental results show that Stacking-SCA outperforms
the current state-of-the-art results on several considered datasets, significantly reducing the number of attack traces
required to achieve a guessing entropy of 1. Additionally, different hyperparameter sizes are adjusted to further validate
the robustness of the method.
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1 Introduction
Side-channel Analysis (SCA) represents a powerful cryptographic algorithm attack. The adversary

exploits the information leaked from the physical implementation to target the secret key. During this attack,
the adversary attempts to recover certain information related to the secret key. In recent years, there has
been increasing attention paid to using the DL-SCA method for cryptographic attacks. This method can
transform the traditional SCA into a classification problem. Therefore, an increasing number of scholars have
conducted extensive research, which involves mathematical analysis methods and the construction of deep
learning networks, to reveal cryptographic keys.

Currently, there are two main types of SCA: profiled SCA [1,2] and non-profiled SCA [3,4]. The former
is the most powerful type of SCA. In the profiled SCA, the adversary can establish a mathematical model by
collecting sensitive information, such as power consumption leaked from the target device. Subsequently, in
the attack phase, they use the established model to execute the attack. Common methods include template
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attacks [5] and simple power attacks [6]. On the other hand, non-profiled SCA refers to the adversary directly
performing operations on the target device and referring to the key by exploiting the leaked side-channel
information. During the implementation process, the adversary can conduct attacks by collecting the power
consumption information leaked from each plaintext. Moreover, they can obtain the key by calculating the
correlation between the leakage points and the sensitive data. Such attack methods mainly include correlation
power analysis [7], electromagnetic attack [8], and others. All of these methods use some mathematical
analysis techniques to directly obtain the secret key.

Through the survey of relevant works in recent years, DL-SCA research has received widespread
attention. Since Maghrebi et al. [9] first proposed using deep learning to perform complex SCA, this field
has attracted significant interest from researchers. Many methods aim to build new models for analyzing
[10–12], leveraging the powerful learning abilities of these models to better capture the efficient features in
the dataset. For the complete traces of long time series, successful attacks can be achieved using the window
trimming technique [13–15], where the window is typically selected from the location of the leakage. This
method alleviates the effort required by the model. Most importantly, pre-selection techniques are usually
preferred when working with protected datasets. Additionally, Perin et al. [16] proposed a metric to indicate
when the model converges. Zhang et al. [17] introduced a new loss function to evaluate the performance of
deep learning models in the context of SCA. The study shows that this metric can significantly improve attack
efficiency when dealing with data imbalance problems. Remarkably, study [18] is the first end-to-end deep
learning attack implemented on complete power consumption traces, without any preprocessing techniques,
and the model complexity is unimaginable. However, this method is not the optimal solution for the attack,
especially when encountering datasets with high noise and strong protective countermeasures.

Recently, ensemble learning methods have been introduced into SCA research. Authors in [19] used
Bagging is used to improve the output class probability of the models, achieving better attack performance
by integrating several trained models. The authors of [20] proposed a CNNP model, a variant of CNN,
to reduce the application requirements of deep learning in SCA. Although existing research has made
significant progress in deep learning and ensemble learning methods, there are still some research gaps for
improvement. First, there is a lack of research on the interpretability of Stacking integration, and the internal
framework logic remains insufficiently explained. Second, current research mainly focuses on standard
datasets and has not yet covered a wider range of practical application scenarios. Adapting ensemble learning
methods to different hardware platforms remains a challenge that needs to be overcome. Therefore, this paper
proposes a SCA method based on a Stacking ensemble, called Stacking-SCA. Our method further explores
the extended application of the base models and meta-model in Stacking. Next, the internal structure of the
Stacking is optimized, and the original ASCAD database is divided into five subsets as mutually independent
multi-segment datasets. Experiments are conducted on multiple hardware platform datasets to verify the
feasibility and robustness of the method.

The contribution of this paper is as follows:

• Introducing an ensemble method called Stacking-SCA. This method improves the generalization
capability of models through deep model integration, exploring its potential in side-channel analysis.
Stacking-SCA comprehensively expands the base models and meta-model, fully demonstrating the
advantages of integrating multiple deep learning models.

• Adopting an alternative strategy to optimize the cross-validation process. Specifically, our method
demonstrates that extracting five subsets from the original ASCAD database as inputs to Stacking-SCA
can improve model generalization.
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• Conducting extensive experimental analysis and comparisons on three publicly hardware platform
datasets. Compared to related state-of-the-art works and other ensemble techniques, our approach
demonstrates superior performance in key recovery.

The rest of the paper is structured as follows: Section 2 discusses the datasets of our experiments, SCA
and deep learning, and ensemble methods. In Section 3, the Stacking-SCA method and the multi-segment
datasets are discussed. Moreover, the structural design of the base model and the meta-model are also
given in detail. Section 4 provides experimental results on three datasets and compares them with some
state-of-the-art works. Finally, Section 5 concludes the paper and provides some potential future research
directions. Table 1 lists the abbreviations used in this paper.

Table 1: List of abbreviations

Abbreviations Description Abbreviations Description
SCA Side-channel Analysis SNR Signal-to-noise Ratio

DL-SCA Deep Learning-based
Side-channel Analysis

AES Advanced Encryption Standard

SR Success Rate CNN Convolutional Neural Network
GE Guessing Entropy MLP Multilayer Perceptron

SVM Support Vector Machine XGB Extreme Gradient Boosting
RF Random Forest NB Naive Bayes

2 Background

2.1 Ensemble Methods in Machine Learning
Boosting: This type of ensemble is suitable when there are dependencies between individual learners,

requiring a sequential generation and serialization method. Its main working principle involves training a
base learner from an initial training set, and adjusting the sample distribution based on the performance of
the base learner. Finally, it produces a classifier with optimal metrics selected from the training data.

Bagging: It is considered a collective ensemble learning algorithm in the field of machine learning,
which can be combined with other classification and regression algorithms. This method involves the
averaging or linear combination of the predictions from individual classifiers. Bagging helps reduce the
variance among different classifiers and avoids the risk of overfitting.

Stacking: This method mainly involves training several base models and combining them into a meta-
model to enhance predictive performance. In the first stage, the dataset is divided through cross-validation
and used to train base classifiers. In the second stage, a meta-level classifier is trained to combine the output
of the base classifiers. Moreover, the Stacking method reduces bias and improves generalization compared
to using a single learning algorithm. Stacking commonly uses several types of base models to build different
predictors. The meta-model can be any machine learning model, such as neural networks, and others. The
goal of the meta-model is to combine the prediction results of different base models and optimize the overall
predictive performance. Table 2 shows the ensemble methods used in machine learning.
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Table 2: Ensemble methods in machine learning

Reference Machine learning technique Datasets Performance measures
[21] Boosting based CNN SEMAINE, DISFA

database
F1 score, FC score

[22] A comparative analysis of
learning-machine-based SDP

systems

CM1, KC1, KC2,
JM1, PC1

Accuracy, Precision,
Recall

[23] LASSO SVM-based model for
software defect prediction using

a reduced-dimension dataset

PC1 Precision, Recall, F-
measure, Accuracy

[24] Deep networks with Stochastic
depth (Random skipping of

blocks)

CIFAR-10,
CIFAR-100,

SVHN, ImageNet

Validation error,
Test error

[25] RF, SVM, Naive Bayes CM1, JM1, MC2,
MW1, PC1, PC3

predicted positive
Value, AUC

[26] Feature selection-based SDP
Stacking ensemble classification

CM1, PC1, KC1,
KC2

Accuracy, recall,
precision, F-Measure

2.2 Profiled Deep Learning Side-Channel Attacks
The application of deep learning to perform profiling side-channel attacks is analyzed. Firstly, the

attacker requires access to a pair of identical devices, called the target device and profiling device. The target
device performs the encryption operation. In this process, the attacker collects sensitive information leaked
from the implementation for analysis. This is specifically represented as follows:

• Profiling device: The attacker acquires side-channel traces from this device and collects information
about intermediate calculations leaked during the encryption operation. They mainly analyze the power
consumption associated with all possible hypothetical key values.

• Target device: The attacker categorizes the input traces to fully recover the key based on the sensi-
tive information.

In the profiling phase of SCA, the deep learning network utilizes random variables X (side-channel
traces) and features F as inputs. According to the training rules of the neural network, side-channel traces
are classified based on the corresponding key value, and the class label Y is estimated to obtain the output
probability pi,j. The label of each trace i is calculated by the function f(Pi, K) of the leakage model, where
Pi represents the input plaintext and K represents the random key (K ∈ [0, 255]). Inputting N side-channel
traces, the deep neural network outputs the maximum sum of candidate probabilities Sk, corresponding to
the correct key, which is defined as follows:

Sk =
N
∑
i=1

log(pi,j) (1)

The value pi,j represents the probability of key k, achieved by using the attack trace, leakage model, and
input data (corresponding to the input of each hypothesis value).
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2.2.1 Metric
In the attack phase, the attacker collects an attack set of size Q, consisting of plaintext inputs and

corresponding attack traces. Typically, the adversary does not focus on the training and attacking phase, their
main goal is to recover the secret key. The commonly used metrics are success rate (SR) and guessing entropy
(GE). This paper mainly uses the GE for evaluation. The GE metric is defined as follows:

GE = 1
a∑a rankk∗(g) (2)

where k* is the correct key, a denotes the number of attacks, and g denotes the key guessing vector, denoted
as g = [g1,g2, . . . , g∣k∣]. The average position of k* in g is determined by ranking the predicted values. In
our experiments, the dataset is randomly shuffled 100 times, and compute the average GE value to obtain
significant results.

2.2.2 Solution
To address the challenges encountered in Profiled DL-SCA, the following strategies are proposed:
(1) Data Preprocessing
In the presence of facing complex and noisy side channel data, preprocessing techniques can be applied

to reduce the impact of external factors. Standardization, normalization, and denoising procedures help
mitigate the effects of noise, improving the convergence speed and training stability of the model.

(2) Feature Engineering
Feature engineering techniques can be used to remove irrelevant or redundant features, thereby

reducing the model’s susceptibility to noise or adversarial attacks. Methods such as principal component
analysis (PCA) and Linear Discriminant Analysis (LDA) can help retain important signal features and reduce
the complexity of attacks.

(3) Hyperparameter Tuning and Model Selection
Hyperparameter tuning plays a crucial role in enhancing the robustness of DL-SCA. By accurately

adjusting hyperparameters such as learning rate, batch size, and regularization coefficient, the robustness of
the model against noise and interference is improved. Tuning hyperparameters across different datasets has
significantly improved the generalization ability of the model.

2.3 Dataset
2.3.1 ASCAD

The ASCAD [27] dataset consists of measurement values obtained from an 8-bit AVR microcontroller,
which implements the masked AES-128 algorithm. It contains two types: one with random keys and random
plaintexts, comprising a total of 200,000 traces for analysis and 100,000 traces for attack. Each trace in
this dataset contains 1400 features. The second one consists of the fixed key and random plaintexts, with
50,000 traces used for profiling and 10,000 traces for attacking. Each trace in this dataset has 700 features.
Additionally, the third key byte is attacked according to the choice of the leakage model.

2.3.2 DPAV4
The DPAv4 [28] contains measurements obtained from the implementation of AES-256 RSM (rotated

S-box). It consists of 34,000 power traces with a fixed key and first-order masking. Each trace in this dataset
contains 2000 features. It is an AES software implementation where most of the leakage operations are caused
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by S-box operations, rather than register writes. The mask is known, therefore it is considered an unprotected
dataset. For convenience, we select the first round of S-box operation for the attack.

2.3.3 AES_HD
This dataset [29] is implemented on the unprotected AES-128 algorithm on the target device Xilinx

Virtex-5 FPGA, as part of the SASEBO GII SCA evaluation board. This dataset includes 75,000 measure-
ments, with the training set containing 50,000 traces and the attack set containing 25,000 traces. Each trace
consists of 1250 features. The Hamming distance leakage model targets the last round register writes and
performs attacks on the first byte.

3 Methodology

3.1 Model Ensembles with Stacking-SCA
Generally, the generalization capability of a model directly affects the successful key recovery. In the

domain of SCA, test accuracy is commonly used as the criterion for evaluating generalization. Therefore,
neural networks with very high test accuracy represent strong generalization ability. The generalization phase
starts when the training set reaches sufficient accuracy. This phase may start soon after training or take a long
time to reach. Interestingly, metrics such as key ranking, and success rate, are used as evaluation criteria, but
they are difficult to accurately evaluate during the training phase.

The most significant factor is the output class probability of the model, which represents the probability
of each key in the test set. In practice, this metric demonstrates good effectiveness and feasibility. If the
model achieves sufficiently good generalization, the maximum output class probability corresponding to the
correct key byte becomes higher. Therefore, in order to achieve this goal, a Stacking method based on SCA is
introduced, called Stacking-SCA. In contrast to Bagging, it adopts the cross-validation structure and a meta-
model. The advantages are very significant. This method enhances the model’s generalization and stability
by effectively capturing the complex structure of the data through the stacking and combination of deep
learning models.

In this method, the two core concepts of the base model and the meta-model are used, and their
definitions are as follows:

• Base model: The base model is the basic component of the stacking ensemble method, called the
first layer model. It usually consists of multiple independently trained models (such as decision trees,
support vector machines, neural networks, etc.). These base models make predictions by learning from
different features or subsets of the data. This method improves the overall performance by combining
the prediction results of these models.

• Meta-model: As the second-layer model, the meta-model takes the prediction results of the base models
as input to generate the final prediction. The meta-model usually uses a simple model (such as MLP) for
prediction. During the training process, the meta-model does not directly train the original data, but
uses the prediction results of the base model as input for secondary training to learn to combine these
prediction results.

For a very large training set, increasing the number of models undoubtedly introduces complexity. Note
that the hyperparameter architectures of the neural network are not extensively considered, which requires
substantial time and computational resources. One might be concerned about whether the presence of poorly
performing models in training would have a significant impact on the generalization of the overall model.
What’s more, in ensemble approaches, multiple models are integrated. For underperforming models, the
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effects introduced by these models will be removed by models with generalization. This illustrates that the
integration of multiple models in the ensemble, such as five models, can significantly improve performance.

Assuming each model outputs the class probability as p(x∣y), k represents the number of models, the
final ensemble prediction for m models can be expressed as:

Λypre = argmax
y

k
∑
i=1

p (x∣y, m) (3)

Supposing a set of i base models M1,M2, . . . , Mi, and the predicted values of the i base models on the
test set, denoted as t1,t2, . . . , ti. Let v1,v2, . . . ,vj denote the predicted values on the validation set. Then, the
training set Xtra to train the base models. The Dtra represents the training inputs to the meta-model, which
is defined as follows:

Dtra (x) =
k
∑
i=1

tiMi (x), x ∈ Xtra (4)

The test set of meta-model is denoted as Dtest, where k represents the number of base models. Then, let
us denote the Dtest vector that relates to the average values of the base model test weights, such that

Dtest (x) =
1
k

k
∑
j=1

vjMj (x), x ∈ Xtra (5)

Next, the above Eq. (3) is modified, as it does not reflect the situation when the best model outputs.
The modified key ranking of class output probabilities provides richer information about the generalization
ability of the model. Here, mt represents the meta-model. Based on the generated Dtra and Dtest , the overall
probability obtained after multiple integrations is calculated as follows:

Pbest = argmin (Dtra , mt, Dtest) (6)

In Eq. (6), where argmin (Dtra, mt, Dtest) refers to output probability values computed on the test set,
Dtest , after training the mt with the training set Dtra.

The Stacking-SCA training process can be divided into two main steps:
1. Data partitioning and base model training. First, the selected dataset is divided into training and test

sets, typically using K-fold cross-validation. In each fold, the training dataset is split into K subsets, where
K-1 subsets are used as training sets to train multiple base models. The remaining single subset is used as the
test set, and the prediction results of the base models on the test set are used to evaluate the performance of
the base learners.

2. Meta-model training and testing. In this stage, the base model prediction and the corresponding true
labels are combined as the training input of the meta-model. This training set contains the original features
and incorporates the prediction results of the base models as new features. Additionally, an independent
validation set is used. The validation set is predicted using the base models in the same manner as in the first
step. Note that there is no need to perform any processing of the validation set, and predict all the data each
time. The predictions from the base models are combined to generate the final output class probabilities for
each hypothesis key in the meta-model.

Fig. 1 shows the framework of our Stacking-SCA method. In the figure, the power consumption traces
and labels are used as inputs, which are divided into training and test sets through cross-validation. The base
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models of different architectures are represented as M1, M2, . . . , Mk, but they are not significantly different
in the graph. Dtra and Dtest are used for meta-model training and testing. Specifically, the Dtra is used to train
the meta-model, and Dtest to generate the final prediction results. The predicted vector values are denoted by
P1, P2, . . . , Pk. In the process of meta-model, it corresponds to the representation in Eq. (6).

Figure 1: Stacking-SCA framework

3.2 The Multi-Segment Datasets for Stacking-SCA
Note that in the context of neural networks, it’s crucial for each model’s training set to be distinct,

enabling the learning of diverse features. If the training sets exhibit similarities, the neural network could
learn similar representations from these sets, potentially impacting the performance of the overall model.
In the cross-validation phase of Stacking-SCA, it is unavoidable that subsets with similar data distributions
will be used for training the base models. In this case, the meta-model may excessively depend on these
similar prediction results, thereby increasing the risk of overfitting. To address this problem, multi-segment
datasets are used as inputs, comprising mutually independent subsets. Simultaneously, the cross-validation
phase is omitted. The motivation for these multi-segment datasets is derived from the dataset selection and
mathematical analysis method proposed by Ou et al. [30] in their study. Five subsets with a sufficiently high
signal-to-noise ratio (SNR) are extracted from the original ASCAD database as inputs for the Stacking-SCA.
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The high SNR implies that the attacker can extract useful information from the side channel more easily,
facilitating attacks and acquisition of sensitive data. Among these, employing the five-fold cross-validation
is widely considered a balanced choice.

Getting the power traces Ti and the label V, the SNR for each dimension is calculated according to the
SNR formula as follows:

SNRi =
Var [E (Ti∣V)]
E [Var (Ti∣V)]

(7)

where Ti represents the i-th column of the original traces T, and each column has 60,000 dimensions. The
Ti is divided into 256 different categories according to the middle-value V, then calculate the expectation
and variance of each category. Moreover, the variance expectation and expected variance are computed
respectively, and the SNR result is obtained by dividing the two.

In Fig. 2, the first subplot illustrates the overall SNR analysis results of the original ASCAD power
traces. The subsequent five subplots, from the second to the sixth, show the results of the selected datasets
within the five peak ranges in the first subplot, respectively. Each peak interval includes 700-dimensional
power consumption. This training approach differs from the previous Stacking-SCA procedure. With
traditional cross-validation, significant differences in data distribution among the five subsets may lead to
inconsistent performance of the base models, thereby affecting the overall prediction quality of the meta-
model. Therefore, the cross-validation process is optimized. Specifically, an alternative strategy is used by
using five subsets with substantial information as input to achieve the effect of cross-validation. The different
input subsets provide diverse perspectives and features, allowing the meta-model to more effectively integrate
the diverse outputs of the base models. Each subset is divided into two parts with a ratio of 4:1 for training the
base models, where one part is used as the training set and the other as the test set. Each subset is dedicated
to training a base model. Finally, the predictions are collected from the five base models as input to the
meta-model.

Figure 2: (Continued)
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Figure 2: Setall is the total SNR result, set1 to set5 are the SNR results from the five peak intervals in setall, respectively

3.3 Model Architecture Design
3.3.1 Base Model Design

The CNN is the basic component of the base model, which is widely used in various fields. CNN is
selected as the base model primarily due to its outstanding performance in processing high-dimensional
and complex spatial data structures, allowing it to efficiently extract features with fewer parameters. Fig. 3
illustrates the overall architecture of the CNN. Each convolutional block consists of a one-dimensional
convolutional layer, a batch normalization layer, and a one-dimensional pooling layer. Inputting the power
traces, the base models calculate the base predictions, which are used as inputs for the meta-model. Moreover,
in the base model design, a batch normalization layer is adopted between the convolutional layer and pooling
layer to normalize the inputs, improving the network stability and convergence speed.

Figure 3: The CNN architecture
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Note that CNN models [31] are used as base models under different constraint conditions. The
hyperparameters of the base models are randomly selected from the predefined ranges listed in Table 3. The
design of CNN models and the selection of hyperparameters are crucial in deep learning, as they directly
affect the model performance and generalization ability. These ranges are determined based on the results
of related works. For the selection of the learning rate, its importance in gradient descent optimization is
considered. Therefore, the learning rate is set within the range of 0.0001 to 0.001. A strategy of increasing
the convolution kernel size is adopted. Specifically, the kernel size is always twice that of the previous
layer. This design allows the model to capture feature patterns over a larger range while maintaining local
features. The number of convolutional blocks is randomly selected from {1,2,3,4,5}. The fully connected
layers consist of many neurons, with their quantities randomly chosen from {10,20,30,40,50}. In the design
of hyperparameter architecture, certain parameters are fixed to reduce the search space and simplify the
experimental design. For the optimizer, the Adam optimizer is used, and the weight initialization adopts the
He uniform method.

Table 3: Hyperparameter search space for convolutional neural network

Hyperparameter Min Max Step
Learning rate 0.0001 0.001 0.0001

Convolutions layers 1 5 1
Filters 8 32 4

Kernel size 10 20 2
Stride 5 10 5

Dense (fully-connected) layers 2 3 1
Neurons (for dense or fully-connected layers) 10 50 10

3.3.2 Meta-Model Design
The architecture of the MLP [19] used in this work is shown in Fig. 4. The MLP serves as the basic

component of the meta-model in Stacking-SCA. The goal of the meta-model is to combine the predictions of
multiple base models to generate the final prediction, rather than independently learning complex patterns.
It consists of an input layer, an output layer, and several hidden layers. The design structure of the meta-
model is relatively simple. In the input layer, the predictions from the base models serve as the input features
to the meta-model, with a feature dimension of 256. “BN” denotes the batch normalization operation. The
intermediate fully connected layers consist of three layers with ReLU activation, with sizes of 512, 512, and
256, respectively. The output layer has 256 dimensions, representing the probability corresponding to each
intermediate value, serving as the predictions of the meta-model.

In Table 4, the range of MLP hyperparameters is indicated, which has a relatively limited number of
combinations. It’s important to note that these ranges were selected as a rough estimate, aiming to achieve
a good attack performance based on the results from related works. The architecture design of the MLP
model is based on four hyperparameters. Network architectures with up to five fully connected layers are
randomly selected. The number of neurons in each layer is chosen from the range {100, 200, 300, 400, 500}.
Additionally, different activation functions are allowed to be searched, which can be randomly selected from
{RELU, Tanh, ELU, SELU}. The Adam is used as the optimizer hyperparameter. The weight initialization uses
the He uniform method, which mitigates the problem of gradient vanishing in deep networks and provides
an effective starting point for model training.
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Figure 4: The MLP architecture

Table 4: Hyperparameter search space for multilayer perceptron

Hyperparameter Min Max Step
Learning rate 0.0001 0.001 0.0001

Dense (fully-connected) layers 1 5 1
Neurons (for dense or fully-connected layers) 100 500 100

Activation function (all layers) RELU, Tanh, ELU, or SELU

4 Experimental Results

4.1 Comparison of Ensembles on Traditional Machine Learning and Deep Learning Models
In this section, the performance of Stacking-SCA using traditional machine learning models and deep

learning models (CNN and MLP) is compared, and the accuracy of the recovery traces under different feature
dimensions. To ensure fairness, the selection of the base models is changed, and the meta-model is fixed to
a simple MLP architecture. Experiments are conducted on the ASCAD dataset, and the integration of up to
five models is considered.

In Table 5, the accuracy results of all tested methods on the protected implementation dataset are
summarized. The success rate is used as a commonly used metric in SCA, to evaluate model performance,
where the SR is defined as the number of correctly classified traces divided by the total number of attack
traces. The experimental results show that CNN can achieve a success rate of 1 with fewer traces, significantly
outperforming other models. For machine learning models, SVM demonstrates more stable accuracy when
integrating more models. XGB performs best when three models are integrated, while both SVM and RF
show significant improvement with five integrated models. In contrast, CNN is particularly suitable for
handling high-dimensional and nonlinear data, exhibiting superior performance in feature selection and
classification. Notably, despite the increased complexity that comes with adding more ensemble models,
CNN still achieves a success rate of over 65%.
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Table 5: SR results for the ASCAD dataset

Number of ensemble models CNN SVM RF XGB NB
1 (single model) 60% 34% 40% 33% 39%

2 62% 36% 42% 34% 42%
3 65% 44% 43% 42% 45%
4 68% 36% 46% 34% 44%
5 70% 38% 48% 43% 47%

4.2 Results of the Stacking-SCA Method on Publicly Available Datasets
This section provides the experimental results of the Stacking-SCA methodology. Three publicly

available datasets are considered. In our experiment, only the ID leakage model is considered to avoid the
impact of data imbalance. For all experimental datasets, the attack is performed on a single key byte to
calculate the GE. Additionally, experiments are conducted using ensembles of five and ten models, along
with a single best model, and perform comparisons. Finally, the performance of our method is compared
with other state-of-the-art works on the same datasets. Our experimental setup is deployed on a computer
equipped with an NVIDIA GeForce GTX 3080Ti GPU. The deep learning models are implemented using
Python3.8 version, with Tensorflow GPU 2.5 and Keras 2.5.1. To accommodate the requirements of the
datasets, sufficient memory space is allocated for each task and the maximum virtual memory usage is
increased to 50 GB.

4.2.1 ASCAD
The ASCAD dataset is divided into three subsets: 40,000 traces are used for training, 10,000 for testing,

and 10,000 for attacking. Moreover, our learning rate is set to 5e-3, and the base model is trained for 50
epochs with a batch size of 50. The meta-model is trained for 10 epochs with a learning rate of 0.0001 and a
batch size of 512.

To demonstrate the generalization capabilities of the ensemble approach, multiple hyper-parameter
experimental designs are explored and the main internal structure is modified to consider the effects of
multiple convolution kernels. As depicted in Fig. 5, representative ensembles of 3 models and 5 models are
selected for attack testing. The hyperparameter settings for the convolution kernels are in the range of [1, 3],
as most recent related works have used convolutional kernel parameters within this range. For most cases,
these parameters show good convergence, with a single convolution kernel showing the best performance,
successfully achieving key recovery only after about 200 traces.

In Fig. 6, a comparison between ensembles ranging from two to ten models and the single best model
is shown. The results show that Stacking-SCA achieves better performance when using an ensemble of
five models, outperforming the single best model. However, as the number of ensemble models increases,
the complexity also increases, impacting the training of the model. Specifically, for the ensemble of five
models, the best performance reaches GE = 0 with approximately 160 traces. This difference becomes more
pronounced as the number of traces increases in the training phase. For an ensemble of seven models,
the performance shows a significant decline. Although increasing the number of base models can improve
the attack performance, the results demonstrate that adding more models does not significantly improve
generalization as expected. For an ensemble of three models, the model performance is unsatisfactory. It is
speculated that the small number of ensembles may affect the overall effect, particularly when encountering
more poorly performing models. Regarding the special performance of the ensemble of nine models, stable
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performance with a favorable trend is observed. Finally, our results are compared with Pieck et al. [31]
who used the Bagging method on the ASCAD dataset. They chose to use between 10 and 50 models in the
ensemble and select the best results among them. What is more, the Bagging method performs best with the
ensemble of ten models, while keeping the original experimental settings. However, this approach requires
250 traces to reach a GE of 0 compared to our method. This result is not surprising, because Bagging typically
considers the voting results of multiple models, and lacks the processing of data among the overall models.

Figure 5: Ranking of CNN models using different convolution filter kernels with ensembles of 3 and 5 models on
ASCAD

Figure 6: Guessing entropy results for Stacking-SCA on ASCAD

Next, in Table 6, a comparison is presented between our results in this paper and the results of state-of-
the-art works. They are all experimented on the ID leakage model. Note that it is unfair to compare model
training parameters with other architectures, because the number of trained models is already unequal.
Zaid et al. [31] proposed a minimal CNN architecture, while in terms of performance, our method achieves
better results. Rijsdijk et al. [32] employed reinforcement learning with a minimal reward function to reduce
training parameters. Still, our performance difference with it is not so pronounced. Wouters et al. [33]
optimized the internal structure, while our method achieved significantly better without optimizing the
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network size. It is believed that further enhancement of Stacking results could be achieved by considering
more relevant expertise. The recent paper [34] investigates stacking on meta-model. Our approach differs
by adjusting both the base models and the meta-model, and conducting a systematic analysis of the overall
model performance.

Table 6: Comparison of performance on ASCAD

References Zaid et al.
[31]

Rijsdijk et al.
[32]

Wouters et al.
[33]

Llavata et al.
[34]

Perin et al.
[19]

Our
methodology

(ensembles
5 models)

Method Visualization
techniques

Reinforcement
learning

Preprocessing
techniques

Ensemble
learning

Bagging Stacking-SCA

GE 191 202 150 203 250 160

4.2.2 DPAv4
The 5000 measurements are taken, with the training set containing 4000 traces, and the test and attack

sets containing 500 traces each. Finally, 50 epochs are run for each base model with a learning rate of 1e-3,
and a batch size of 512. For the meta-model, our learning rate is set to 0.0001. The training runs for 30 epochs
with a batch size of 512. Fig. 7 shows another generalization case, where a three-layer CNN achieved the
best prediction results. However, the performance of an ensemble of five models using only one convolution
kernel exceeds our expectations, which may be related to the complexity of the convolutional layers.

Figure 7: Ranking of CNN models using different convolution filter kernels with ensembles of 3 and 5 models on
DPAv4

The results of our experiments are summarized in Fig. 8. The experimental results demonstrate that an
ensemble of nine models achieves the best performance, requiring only three power traces to successfully
recover the key. The overall attack performance is robust, effectively recovering the key with a minimal
number of traces. Compared to the best single model experiment, the integration of multiple models
converges significantly faster in terms of attack performance. Additionally, the difference between the
ensemble of five and ten models is not particularly pronounced, which may be related to the complexity
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of the dataset. Next, the results of the Bagging method are presented on this dataset. Note that our dataset
version differs from the one adopted by Pieck et al., as they used the DPAv4 subset with 2000 features in
each trace. However, the performance of Bagging is significantly different from ours, as it requires 40 traces
to reach GE of 0. This is mainly because the method is not very robust in combination with the models, and
it is difficult to achieve good performance when the trained models have generalization problems.

Figure 8: Guessing entropy results for Stacking-SCA on DPAv4

Table 7 shows the attack performance of some related results from state-of-the-art works. Our method
reaches GE of 0 with fewer traces compared to several other architectures. Additionally, our method
is compared with the machine learning techniques employed by Picek et al. [35], and noted that the
performance related to deep learning techniques is more effective. Finally, Zaid et al. [31] achieved the optimal
performance on this dataset at that time, which is comparable to our results.t be a new paragraph. Please
punctuate equations as regular text.

Table 7: Comparison of performance on DPAv4

References Picek et al.
[35]

Zaid et al.
[31]

Perin et al.
[19]

Our
methodology
(ensembles 9

models)
Method Data sampling

techniques
Visualization

techniques
Bagging Stacking-SCA

GE 7 3 10 3

4.2.3 AES_HD
Here, a total of 75,000 measurements are used, with 45,000 traces for training and 5000 traces for testing.

Moreover, 25,000 traces are used for attacking. Then, the epoch of the base model is set to 20 with a batch
size of 256, and a learning rate of 1e-3. As for the meta-model, our learning rate is set to 0.001. The training
process is trained for 10 epochs with a batch size of 256. Fig. 9 indicates an example with relatively unclear
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convergence, where the key recovery is poorer when using three convolution kernels. Overall, the CNN with
one convolution filter kernel size performs better, indicating that it has achieved better generalization ability.

Figure 9: Ranking of CNN models using different convolution filter kernels with ensembles of 3 and 5 models on
AES_HD

Fig. 10 shows the GE results for each ensemble on the AES_HD dataset. When integrating two models,
the traces do not converge to GE = 0. Therefore, the number of models is increased, and some ensembles
not only outperform the best single model but also the advantages between ensembles seem to be passed
to each other. Interestingly, Stacking-SCA appears to effectively mitigate the impact of weaker models,
demonstrating better robustness. When using an ensemble of eight models, it takes about 1000 traces to reach
GE = 0. In contrast, other ensembles require more traces to achieve the same effect. This indicates that the
ensemble of eight models reaches a local optimum, and further increasing the number of models may reduce
the overall performance. Additionally, the experiments with the bagging method are not conducted on this
dataset. Our analysis shows that the model performs poorly on this dataset, and attempts to train it do not
yield satisfactory results.

Figure 10: Guessing entropy results for Stacking-SCA on AES_HD
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The comparison of attack performance improvements between our method and related works is
summarized in Table 8. Note that the performance of Zaid et al. [31] is similar to our method, which requires
1050 traces to reach GE of 0. Compared to the method proposed by Llavata et al. in [34], our ensemble shows
significantly better performance. Picek et al. [35] achieved good performance on this dataset using adversarial
data imbalance techniques, but our method is significantly more efficient. The success of the ensemble not
only relies on the meta-model but also requires the coordination of the overall model. Interestingly, our
results perform better than Wouters et al. [33], in which they adjusted to the optimal model size, but the
direct comparison with our ensemble differs significantly.

Table 8: Comparison of performance on AES_HD

References Zaid et al.
[31]

Wouters et al.
[33]

Llavata et al.
[34]

Picek et al.
[35]

Our
methodology

(ensembles
8 models)

Method Visualization
techniques

Preprocessing
techniques

Bagging Data
sampling

techniques

Stacking-SCA

GE 1050 1100 1220 1500 1000

4.3 Results of the Stacking-SCA on the Multi-Segment Datasets
Following previous studies, in order to further understand the improvement of Stacking-SCA on

model generalization, our experiments extend the application of this method to multi-segment datasets.
Experiments are exclusively conducted on the ASCAD dataset, and results for the other two datasets are not
provided. This is because the original ASCAD dataset has been extensively shared in the SCA community.
It is difficult for us to assess the performance of other datasets in our experiments, although they may have
similarities in certain aspects.

The five subsets are taken as inputs for Stacking-SCA, and divide each subset into three subsets: 40,000
traces are used for training, 10,000 for testing, and 10,000 for attacking. The base model is trained for 50
epochs, with a learning rate of 1e-3 and a batch size of 256. For the meta-model, 10 epochs are conducted,
with a learning rate of 0.0001 and a batch size of 512. In Fig. 11, the GE results of the Stacking-SCA. Here,
the experimental results show an enhancement in performance compared to the above results, it requires
approximately 140 traces to reach GE of 0, which is 12% more efficient than the results on the ASCAD
dataset.
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Figure 11: Guessing entropy results on the multi-segment datasets

5 Discussion
The Stacking-SCA method improves attack performance by integrating multiple models, which is

usually accompanied by high computational overhead. In some resource-constrained environments, espe-
cially when performing real-time attacks on hardware platforms, the ensemble approach can lead to longer
training times and increased computational burdens. Therefore, as the number of ensembles increases, the
computational complexity also rises. To this end, it is recommended that a limited number of models, such
as 10. This number is sufficient, as these integrated models are already quite complex and powerful, providing
excellent attack performance. For DL-SCA, integrating multiple models is suggested as the standard for
training, but the premise is to take into account resource consumption. This is especially important when
dealing with high-dimensional datasets or limited hardware platforms, as the computational complexity of
the Stacking-SCA may become a limiting factor.

Through experiments conducted on datasets extracted from hardware platforms such as ASCAD and
AES_HD, this method performs excellently in real-world attack scenarios. Although the integration of
multiple models is affected by the characteristics of the hardware platform (e.g., noise and countermeasures),
the overall robustness remains strong. Interestingly, the ensemble model can achieve performance similar
to that obtained through hyperparameter tuning, reducing the effort required for model tuning. This is
closely related to the number of models in the ensemble and the impact of the maximum output class
probability. However, ensemble methods also have certain limitations. Since stacking relies on the meta-
model for the final prediction, overfitting can occur when there is insufficient training data, thereby affecting
generalization. Therefore, it is necessary to find a suitable balance between the training trace and the number
of models.

6 Conclusions and Future Works
This paper proposes a stacking ensemble method called Stacking-SCA. First, the method extends the

overall model within the stacking framework and combines deep learning models to build base models and
the meta-model, thereby improving the model’s output class probability. Experimental results show that the
attack performance is significantly improved within a certain range of the number of models. Next, the input
process of the method is optimized, leading to better generalization performance. Experiments on multiple
publicly available datasets, demonstrate that when a certain number of models are integrated, the method
shows good convergence. Compared to state-of-the-art results, the method shows a significant advantage
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in the GE indicator. This finding not only verifies the effectiveness of the Stacking-SCA method but also
further highlights its potential in improving the performance of SCA. Therefore, the use of neural network
integration is recommended as a priority in experiments, while also comprehensively considering the impact
of model complexity.

In future work, there are some directions worth exploring in this promising field. The future scope
of this work involves exploring the performance of the Stacking-SCA method across diverse hardware
platforms, especially focusing on applications in low-power devices and IoT devices. Additionally, the
potential advantages of ensemble learning in quantum attacks remain an unexplored area.
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