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ABSTRACT: Generative image steganography is a technique that directly generates stego images from secret infor-
mation. Unlike traditional methods, it theoretically resists steganalysis because there is no cover image. Currently,
the existing generative image steganography methods generally have good steganography performance, but there is
still potential room for enhancing both the quality of stego images and the accuracy of secret information extraction.
Therefore, this paper proposes a generative image steganography algorithm based on attribute feature transformation
and invertible mapping rule. Firstly, the reference image is disentangled by a content and an attribute encoder to
obtain content features and attribute features, respectively. Then, a mean mapping rule is introduced to map the binary
secret information into a noise vector, conforming to the distribution of attribute features. This noise vector is input
into the generator to produce the attribute transformed stego image with the content feature of the reference image.
Additionally, we design an adversarial loss, a reconstruction loss, and an image diversity loss to train the proposed
model. Experimental results demonstrate that the stego images generated by the proposed method are of high quality,
with an average extraction accuracy of 99.4% for the hidden information. Furthermore, since the stego image has a
uniform distribution similar to the attribute-transformed image without secret information, it effectively resists both
subjective and objective steganalysis.

KEYWORDS: Image information hiding; generative information hiding; disentangled attribute feature transformation;
invertible mapping rule; steganalysis resistance

1 Introduction
Image information hiding is a technique for embedding secret information into an image, playing a

crucial role in covert communication [1]. Existing methods can be categorized into cover modification-based
methods and cover construction-based methods, depending on whether the cover image is modified [2].
Cover modification-based image information hiding typically alters the pixels or coefficients of the cover
image to conceal secret information [3]. These modifications are imperceptible to the human eye but can
be susceptible to detection by steganalysis [4]. To enhance resistance against steganalysis, researchers have
developed cover construction-based image information hiding methods [5].

Within cover construction-based image information hiding, there are two primary types: mapping-
based image information hiding and generative image steganography. Mapping-based image information
hiding establishes a mapping relationship between the secret information and the image [6]. However, the
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limited capacity of this method often requires multiple images to fully represent the secret information,
significantly impacting its practicality. To address the low-capacity issue in mapping-based approaches,
generative image steganography has been proposed, offering a solution for embedding larger amounts of
secret information [7].

Generative image steganography embeds secret information during the image generation process.
Early techniques used traditional image generation algorithms such as texture fusion [8–12], Turkish
marbling [13,14], and fractals [15] to hide information. However, these methods generated secret images with
simple content and texture. As deep learning continues to progress, new deep neural network architectures
have been introduced, capable of generating a variety of high-quality images, which is compatible with the
theory of generative image steganography. Consequently, researchers have utilized generative adversarial
networks (GANs) [16–19], glow models [20,21], diffusion models [22,23], and autoencoders [24,25] to
generate images and hide information. Compared to methods like texture fusion, these approaches generate
more complex and diverse stego images, but they still require improvements in the quality of stego images
and the accuracy of secret information extraction.

To improve imperceptibility and extraction accuracy of secret information, we propose a generative
image steganography algorithm based on attribute feature transformation and invertible mapping rule.
Firstly, we propose the image disentanglement to disentangle a reference image into content features and
attribute features. Secondly, we propose a new invertible mapping rule to map the secret information into
the new attribute feature. Finally, we substitute the original attribute feature with the new attribute feature to
generate the stego image. The primary contributions of this paper are as follows:

(1) Attribute feature transformation is implemented for generative image steganography. By separating
content features and attribute features through image disentanglement and hiding secret information
within attribute features, the algorithm realizes information hiding in the process of attribute feature
transformation, generating high-quality stego images.

(2) An invertible mapping rule for secret information and attribute features is proposed. The secret
information is encoded into a noise vector consistent with the distribution of attribute features using
the mean mapping rule, which is then input to the generator to obtain the stego image. Due to
the fact that the noise vector is consistent with the attribute feature distribution, it effectively resists
steganalysis detection.

(3) Three types of loss functions are proposed to train the model: reconstruction loss, adversarial loss,
and image diversity loss. These three losses ensure the extraction accuracy of secret information, the
quality of the generated stego image, and its diversity, respectively. They also can help the model to
converge quickly.

(4) A generative image steganography framework based on attribute feature transformation and invert-
ible mapping rule is proposed. With the image disentanglement and mapping rule, the proposed
framework can achieve high extraction accuracy of secret information and steganalysis resistance.
Experimental results demonstrate that the proposed algorithm improves the extraction accuracy and
the quality of generated images compared to existing generative image steganography algorithms.

2 Related Work
Generative image steganography can be classified into two classes: one based on artificial design and

the other based on deep learning.
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(1) Generative Image Steganography Based on Artificial Design
Initially, researchers developed artificially designed generative algorithms to generate stegos. Inspired

by texture fusion, Otori et al. [8] proposed a method to hide secret information during texture synthesis.
However, it has a limited hiding capacity. Wu et al. [9] introduced a block-based image information hiding
method. This algorithm sorts candidate blocks by mean square error; it improves capacity but reduces
imperceptibility. Xu et al. [10] proposed an image steganography that deforms an image containing secret
information to generate a stego image. However, the secret information must be an image, which limits
the hiding ability of this method. Zhou et al. [11] proposed an image steganography algorithm based on
seed region growing and least significant bit (LSB). This algorithm uses a seed region growing algorithm to
determine the order of texture synthesis, improving imperceptibility but lacking robustness. Wei et al. [12]
addressed the robustness issue by proposing a texture synthesis steganography algorithm based on super-
pixel structure and SVM. Lee et al. [13] developed a generative image steganography algorithm based on
pattern synthesis. However, the resulting image texture is simple, and its imperceptibility is limited. Li
et al. [14] proposed a method based on fingerprint image construction. This method maps secret information
into the detailed information of the fingerprint during the synthesis process, which can improve robustness
and imperceptibility. However, its capacity remains limited. Zhang et al. [15] introduced a generative image
steganography algorithm based on fractal theory. This algorithm hides secret information in the generation
process of recursion and escape time, but it has deficiencies in the extraction accuracy of secret information.

In summary, early generative image information hiding methods based on artificial design generally
suffer from poor quality of stego images, insufficient imperceptibility, and low capacity due to the limitations
of image generation algorithms and information hiding methods.

(2) Generative Image Steganography Based on Deep Learning
With the swift advancement of deep learning, image generation techniques have made significant break-

throughs. Deep neural networks can generate highly realistic images. Thus, generative image steganography
based on deep learning has emerged as a prominent research topic. Early on, scholars primarily used GANs
for image construction and secret information hiding. For instance, Duan et al. [16] were the first to propose
a generative image steganography method using GAN. It improves the quality, imperceptibility, and capacity
compared with artificially designed methods. However, the information extraction relies on pairing with
a generator, resulting in poor generalization. Hu et al. [17] introduced a generative image steganography
method based on Deep Convolutional GAN (DCGAN). While this algorithm has better generalization
compared to [16]. However, it suffers from poor image quality and insufficient extraction accuracy. Wei
et al. [18] introduced a generative steganography network that consists of a generator, discriminator,
steganalyzer, and extractor. Since the generation processes for the cover image and the stego image are
identical, it can effectively resist steganalysis. However, as the hiding capacity increases, the extraction
accuracy of secret information significantly decreases. Peng et al. [19] proposed a method combining GAN
with gradient descent approximation. Although this algorithm has high capacity and extraction accuracy, it
suffers from high complexity due to the updating of the noise vector. In [20,21], flow model based generative
image steganography methods have been proposed. Similarly, some diffusion model based methods have
been developed [22,23]. They typically map secret information into noise vectors, inputting them into the
diffusion model to obtain the stego image. These approaches generally achieve high image generation quality
and extraction accuracy, but at the cost of high complexity. Zhou et al. [24] proposed a generative image
steganography method that relies on semantic object contours. This method inputs secret information into a
long short-term memory (LSTM) network to generate contour lines, which are then synthesized with a GAN
to produce the stego image. However, the visual quality of the generated images and the extraction accuracy
of the secret information need further improvement.
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Some scholars have explored hiding information through intermediate features of the image generation
process. For example, Liu et al. [25] proposed a generative image steganography based on image disentangle-
ment. Sun et al. [26] proposed a method based on guidance feature. These methods have high robustness, but
the generated images are relatively homogeneous, and the extraction accuracy of secret information can still
be further improved. We summarize special characteristics of some typical generative image steganography
methods in Table 1.

Table 1: Summary of some typical generative image steganography methods

Catagory Refs. Years Implement details Advantages Disadvantages
[8] 2007 Hiding

information by
texture synthesis

Low complexity Low capacity

[9] 2015 Hiding
information in

overlapping region

Higher capacity Low
imperceptibility

Artificial design
based methods

[14] 2019 Fingerprint image
construction and
image synthesis

Higher robustness
and

imperceptibility

Low capacity

[15] 2020 Embedding by
fractal generation

process

High capacity and
robustness

Low
imperceptibility

[18] 2022 Mapping secret
information to

noise and generate
stego by GAN

High steganalysis
resistance

Insufficient
extraction
accuracy

[21] 2022 Generate stego
image by flow

model

High
imperceptibility

High complexity

Deep learning
based methods

[23] 2023 Using diffusion
model to embed

secret information

High capacity and
robustness

High complexity

[25] 2022 Embed secret in
structure feature

and generate style
transferred stego

High capacity Insufficient
imperceptibility

and accuracy

[26] 2023 Embed secret in
style feature and

generate style
transferred stego

High robustness Insufficient
extraction
accuracy

In summary, due to the constraints of image generation mechanisms and the limitations of methods for
embedding secret information, most existing generative image information hiding algorithms struggle with
issues related to the quality of stego images and the accuracy of secret information extraction. To address
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these issues, this paper proposes a generative image information hiding framework based on attribute feature
transformation and invertible mapping rule.

3 Preliminaries

3.1 Generative Image Steganography Theory
Image steganography and hiding detection improve performance through a dynamic interplay. On one

hand, scholars develop novel image steganography methods, which optimize the quality of the stego images
to resist detection. On the other hand, hiding detection methods extract more precise features to distinguish
between the stego image and the cover image. Let C represents the cover image, C′ represents the stego image,
and S represents the secret information image. Conventional image information hiding can be expressed
by Eq. (1):

C′ = EMD (C , S) (1)

where EMD (⋅) denotes the information hiding method, which modifies the cover image C to get the stego
image C′ based on the secret information S. While the hiding detection algorithm is used to determine
whether an image contains secret information. Assuming that the hiding detection method is De (⋅), X is
the input image to be detected, and the classification probability of the image De (X) can be obtained by the
information hiding detection method:

De (X) = [p0, p1]T (2)

where p0 and p1 represent the probabilities that the image to be detected is a cover and a stego, respectively.
The final discrimination result F (De (X)) is represented by the following equation:

F (De (X)) =
⎧⎪⎪⎨⎪⎪⎩

cover i f p0 > p1

stego i f p1 ≤ p0
(3)

Usually, we measure the performance of information hiding detection through PE , and its formula is as
follows:

PE = (PFA + PMD)/2 (4)

where PFA denotes the false alarm rate and PMD denotes the miss detection rate. From the above analysis,
traditional image information hiding methods, which modify the cover image to obtain the stego image, lead
to minor variations in the distributions of the cover and stego images. These differences can be easily detected
by state-of-the-art hiding detection algorithms. Therefore, effective resistance to detection can theoretically
be achieved only when no cover image exists or when the distributions of the cover image and the stego
image are identical. The following equation expresses generative image steganography:

C′ = HID (S) (5)

where HID (⋅) represents a generative information hiding algorithm. From Eq. (5), it can be noticed
that there is no cover image in generative image steganography. Instead, it generates the stego image C′
directly from the secret information. Consequently, the information hiding detection method DE (⋅) cannot
recognize the stego image. However, directly generating a stego image from the secret information is a big
challenge. A compromise approach is using the intermediate features that are generated according to the
secret information and then synthesizing the stego image by these intermediate features. Inspired by attribute
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transformation, we propose to map secret information to attribute features and then generate stego by the
attribute feature.

3.2 Information Hiding Based on Disentangled Feature
It is mentioned in [24] that assuming there exists a data space ε that can be encoded to a group of

different feature spaces { f 1 , f 2, . . . , f n}. For a given feature space f i , if it always satisfies:

P ( f i) = P ( f i ∣ f j) (6)

where 1 ≤ j ≤ n and j ≠ i, the features in this space can be considered independent of those in other spaces
and are referred to as disentangled features. Conversely, features that are dependent are called entangled
features. However, extracting entangled features from the stego image is challenging. In existing generative
information hiding methods based on attribute transformation, the stego attribute feature and the reference
image are typically input together into the generator to produce the attribute-transformed stego image, as
illustrated in Fig. 1.

Figure 1: Existing generative image steganography framework

However, since the reference image itself contains attribute features, it means that the feature space
in this information hiding system is entangled. Therefore, accurately recovering the attribute feature from
the stego image is challenging. To address this, we disentangle the reference image x into the attribute
feature and the content feature. The stego attribute feature and the content feature are then input into the
generator to get the stego image, as shown in Fig. 2. As illustrated in the figure, unlike existing generative
image steganography methods based on attribute transformation, this paper disentangles the image into two
independent features and encodes the secret information into one of these features. It significantly enhances
the extraction accuracy of secret information.

4 The Proposed Generative Image Steganography Method
In this paper, we construct disentanglement features during attribute transformation and use these fea-

tures to hide secret information and generate stego images. Attribute feature transformation is a technology
that uses deep neural networks to convert image attributes. It is related to image-to-image translation. The
specific framework is shown in Fig. 3.
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Figure 2: The proposed generative image steganography framework

On the sender side, the reference image x is first disentangled into independent content features f c by
the content encoder Ec(⋅). Meanwhile, we map the secret information m into the stego attribute feature f s by
the proposed mean mapping rule map (⋅). The stego attribute feature f s and the content feature f c are input
to the generator G (⋅) to synthesize the transformed stego image x′. Simultaneously, we randomly generate a
set of attribute feature f a2, which are also input into the generator G (⋅) together with the content features f c

to generate another transformed image x
′

2. This process is used to construct the diversity loss to heighten the
diversity of the generated images. On the receiver side, the transformed stego image x′ is disentangled into
the stego attribute features f s and content features f c by the attribute encoder Ea(⋅) and content encoder
Ec(⋅), respectively. The secret information m′ is recovered by the inverse mapping rule demap(⋅) from the
stego attribute feature f s . Finally, a discriminator D (⋅) is used to construct adversarial loss. As depicted in
the figure, the main components of the proposed method include the invertible mean mapping rule, the loss
function, and the structure of the encoder and generator.

4.1 Invertible Mean Mapping Rule
Invertible Mean Mapping Rule is a mechanism that maps secret information to a noise vector that

satisfies a specific distribution. Meanwhile, the secret information can be extracted from the noise vector. It
consists of a mean mapping rule and an inverse mapping rule.

(1) Mean Mapping Rule map (⋅)
To guarantee the accuracy of secret information extraction and the imperceptibility of the stego image,

we propose a mean mapping rule. This rule maps the secret information into noise vectors that are consistent
with the distribution of attribute features. The detailed process is as follows:

Step 1. Divide the secret message into n segments; the length of each segement is l :

m = {m1 , m2, m3, . . . , mn} (7)

Step 2. Convert all the segments from binary to decimal and map it between−d and d with the following
formula:

f s
k = (2 × ten (mk) + 1

2l − 1) × d (8)
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where mk is the kth segment, f s
k is the kth converted and mapped segment, and ten (⋅) represents a function

for converting binary to decimal.

Figure 3: The overall structure of the proposed generative image steganography method
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Step 3. By combining all the converted and mapped segments together in order, the stego attribute
feature f s can be obtained:

f s = { f s
1 , f s

2 , f s
3 , . . . , f s

n} (9)

When l = 3, d = 2, an example of the proposed mapping rule is presented in Table 2.

Table 2: The mapping rule when l = 3, d = 2

m 000 001 010 011 100 101 110 111
f −1.75 −1.25 −0.75 −0.25 0.25 0.75 1.25 1.75

(2) Inverse Mapping Rules demap (⋅)
To accurately extract the secret information hidden in the stego attribute feature f s , an inverse mapping

rule based on the mean mapping rule is designed. The specific procedure is as follows:
Step 1. Extract each subvector from the stego attribute feature f s :

f s = { f s
1 , f s

2 , f s
3 , . . . , f s

n} (10)

Step 2. Each subvector is converted into a binary number of length l using the following formula:

m
′

k = bin
⎛
⎝
( f s

k + d) × 2l − d
2d

⎞
⎠

(11)

where f s
k is the kth subvector, m

′

k is the kth recovered secret information segment, and bin (⋅) represents a
function for converting decimal to binary.

Step 3. By combining m
′

k together in order, the hidden secret information m′ can be recovered as:

m′ = {m
′

1 , m
′

2, m
′

3, . . . , m
′

n} (12)

When l = 3, d = 2, an example of the inverse mapping rule is presented in Table 3.

Table 3: The inverse mapping rule when l = 3, d = 2

f −2~−1.5 −1.5~−1 −1~−0.5 −0.5~0 0~0.5 0.5~1 1~1.5 1.5~2
m 000 001 010 011 100 101 110 111

The invertible mapping rule is closely related to the extraction accuracy of secret information. As
l in Eq. (8) increases, the capacity grows, but the extraction accuracy of the secret information gradu-
ally decreases.

4.2 Loss Function
In order to guarantee the preciseness of secret information extraction and the quality of the stego images,

we propose three types of loss functions to train the model: adversarial loss Ladv , reconstruction losses
Lc and Ls , image diversity loss Ld .
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(1) Adversarial Loss
To improve the quality of the generated transformed stego images, we first define the adversarial loss

Ladv between the generator and discriminator according to generative adversarial theory [16], which is shown
as follows:

Ladv = E [logD (x)] +E [log (1 − D (G ( f c , f s)))] (13)

where D (x) represents the discrimination results of the reference image x. D (G ( f c , f s)) represents the
discrimination results of the stego image generated by the generator G (⋅).

(2) Reconstruction Loss
To guarantee the content of the transformed stego image remains unchanged, we use the content feature

reconstruction loss Lc :

Lc = ∥Ec (x) − Ec (x′)∥1 (14)

where ∥ ∥1 represents L1 Loss. Ec (x) and Ec (x′) represent the content features extracted from the reference
image x and the stego image x′. Meanwhile, since attribute features are mapped from secret information, the
recovery rate of attribute features will directly affect the extraction accuracy of secret information. In order to
enhance the extraction accuracy of secret information, we further design the attribute feature reconstruction
loss Ls :

Ls = E [∥ f s − Ea (x′)∥1] (15)

where Ea (x′) represents the attribute features extracted from the stego image x′.
(3) Image Diversity Loss
We propose an image diversity loss through f s and f a2 to enrich the visual effects of the generated

transformed stego images:

Ld = E

⎡⎢⎢⎢⎢⎣
1/
∥G ( f c , f s) − G ( f c , f a2)∥1

∥ f s − f a2∥1

⎤⎥⎥⎥⎥⎦
(16)

where G ( f c , f s) and G ( f c , f a2) represent the two transformed images with different attribute features
generated by the generator G (⋅).

Finally, the overall loss L of the proposed model can be obtained through three types of losses:

L = λ1Ladv + λ2Lc + λ3Ls + λ4Ld (17)

where λ1, λ2, λ3 and λ4 are the weights of each loss function.

4.3 The Structure of Encoder and Generator
(1) Content Encoder
Fig. 4 illustrates the content encoder structure of the proposed model, which primarily consists of

ReflectionPad2d layers, Conv2d layers, InstanceNorm2d layers, and ReLU layers.
(2) Attribute Encoder
Fig. 5 shows the attribute encoder structure of the proposed model, which primarily consists of

ReflectionPad2d layers, Conv2d layers, ReLU layers, and AdaptiveAvgPool2d layers.
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Figure 4: Content encoder structure

Figure 5: Attribute encoder structure

(3) Generator
Fig. 6 shows the generator encoder structure of the proposed model, which is mainly composed of

ReflectionPad2d layers, Conv2d layers, InstanceNorm2d layers, ReLU layers and ConvTranspose2d layers.
Where⊕ represents the connection operation between two tensors. The attribute features are connected with
the content features every two layers, and finally a transformed stego image is generated.

4.4 Information Hiding and Extraction Process
(1) Information Hiding Stage
The detailed process of information hiding is as follows:
Step 1. The sender inputs the reference image x into the content encoder Ec(⋅) and disentangles it into

the content feature f c :

{ f c} = {Ec (x)} (18)
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Figure 6: Generator structure

Step 2. The secret information m is mapped to the stego attribute feature f s using the mean mapping
rule map (⋅):

f s = map (m) (19)

Step 3. The stego attribute feature f s is input into the generator G (⋅) along with the content feature f c

to generate the transformed stego image x′ through attribute feature transformation.

x′ = G ( f c , f s) = G (Ec (x), map(m)) (20)

Through the above steps, secret information can be hidden during the attribute feature transformation
process, which can get a high-quality transformed stego image.

(2) Information Extraction Stage
The specific process of information extraction is as follows:
Step 1. After receiving the transformed stego image x′, the receiver inputs it into the attribute encoder

Ea(⋅) and disentangles it to obtain the stego attribute feature f s :

f s = Ea (x′) = Ea (G ( f c , f s)) (21)

Step 2. The secret information m′ is reconstructed from f s by the inverse mapping rule demap (⋅):

m′ = demap ( f s) = demap (Ea (x′)) (22)

Through the above steps, secret information can be extracted from the transformed stego image.
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5 Experiment Results and Analysis

5.1 Experiment Environment and Parameter Settings
The experiments were conducted on a server equipped with an Intel(R) Core(TM) i9-12900KF CPU

at 3.19 GHz, an NVidia GTX3090Ti GPU, 32 GB of RAM, and the Windows 10 operating system. The
testing environment includes Python 3.6.13 and Pytorch 1.10.2.The learning rate lr is initially set to 0.0001,
the training weights λ1, λ2, λ3 and λ4 of the loss function are 0.1, 0.1, 10 and 0.1, respectively, and the L1
regularization loss function is used. The parameter d in Eq. (8) takes the value of 2, and l is set as 1, 2, 3,
and 4 when capacity is 16, 32, 48, and 64, respectively. The network is trained for 14,000 epochs, and the
network parameters are trained by the Adam optimization algorithm. The training ratio of the generator to
the discriminator is 1:1. The datasets are Yosemite and Landscape Pictures [27] and the batch size is set to 16.
We analyze the proposed model from hidden capacity, extraction accuracy, image quality, and steganalysis.

5.2 Analysis of Hiding Capacity and Extraction Accuracy
Since the hiding capacity of generative image steganography differs from that of traditional image

information hiding. We use bits per image (bpi) to measure the hiding capacity. The formula for bpi is
shown in Eq. (23):

bpi = bits
NS

(23)

where NS denotes the number of tested stego images and bits represents the total number of bits hiding in
NS stego images. Additionally, we use acc to measure the extraction accuracy of secret information with
different capacities, which is shown in Eq. (24):

acc =
∑N S

i
nri
b pi

NS
× 100% (24)

where nri represents the number of bits of secret information correctly extracted from the ith stego image.
In the experiments, the extraction accuracy with capacities of 16, 32, 48, and 64 bpi on Yosemite and

Landscape Pictures datasets is tested, respectively. The results are presented in Table 4.

Table 4: Hiding capacity and extraction accuracy

Dataset Hiding capacity (bpi) Extraction accuracy (acc)
16 100%

Yosemite 32 99.9%
48 99.7%
64 99.4%

16 100%
32 99.9%

Landscape pictures 48 99.8%
64 99.3%

From the table, it can be found that due to the independence of the feature disentanglement and the
robustness of the proposed mean mapping rule, a high extraction accuracy of secret information can be
obtained under different hiding capacities. When bpi is 16, the extraction accuracy of our model can reach
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100% on both datasets. When bpi gradually increases, the extraction accuracy is slightly reduced. The reason
is that the proposed model hides the secret information in float tensor data and then uses the generator to
convert the data into an integer image. The entire conversion process has truncation loss. However, it’s worth
noting that when bpi increases to 64, the extraction accuracy of secret information still remains above 99%.

5.3 Analysis of Objective Visual Quality
Objective visual quality of the generated stego image is an important metric for evaluating the security

of generative information hiding. However, since the stego image generated by the proposed algorithm
is an attribute-transformed image, traditional image quality indicators such as SSIM and PSNR are not
suitable to measure its performance. Therefore, we use three no-reference image quality assessment metrics:
NIQE [28], PI (Perceptual Index) [29], and BRISQUE [30]. Among them, NIQE relies on the statistical
characteristics of natural images to evaluate the quality of images and is particularly suitable for general
distortion types. BRISQUE uses the spatial statistical characteristics of images for reference-free quality
evaluation. PI is based on a perceptual model and comprehensively considers a variety of low-level visual
features to provide a quality evaluation that is more in line with human perception. Lower values in these
metrics indicate higher quality of the generated images. In the experiment, we analyze the objective visual
quality of the generated stego images under different hiding capacities on the Yosemite and Landscape
Pictures datasets. The reference image (Reference) represents the original image in the dataset. Table 5
displays the specific results.

Table 5: Objective visual quality

Dataset Hiding capacity (bpi) NIQE (↓) PI (↓) BRISQUE (↓)
Reference 5.5 3.4 14.1

16 4.8 3.2 14.6
Yosemite 32 4.7 3.2 14.5

48 4.8 3.3 14.5
64 4.7 3.2 14.4

Reference 7.4 4.6 22.8
16 5.0 3.9 9.7

Landscape
pictures

32 5.1 3.9 9.4

48 5.1 3.8 9.6
64 5.0 3.8 9.6

Based on the results in Table 5, it is clear that for the Yosemite dataset, the NIQE and PI of the
transformed stego images generated by our method are lower than those of the reference images, while the
BRISQUE metrics are slightly higher. For the Landscape Pictures dataset, all three metrics of the transformed
stego images are lower than those of the reference images. It indicates that the objective visual quality of
images generated by our algorithm is high. This is because our method hides the secret information only in
the attribute feature without interfering with the content feature. Meanwhile, the design of the image diversity
and adversarial loss also contributes to the high quality of the generated stego images.
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5.4 Analysis of Subjective Visual Quality
To further assess the visual quality of the stego images generated by our algorithms, the analysis of

subjective visual quality is given. Fig. 7 shows some examples of transformed stego images generated on the
Yosemite and Landscape Pictures datasets when the bpi is 64. As presented in Fig. 7, the transformed stego
images generated by the proposed algorithm have excellent quality. Meanwhile, the visual effect is obviously
different from that of the reference image. Despite these differences, the image’s content information remains
unchanged. It indicates that the proposed algorithm successfully achieves the disentanglement of attribute
and content features. This ensures that the attribute feature can be modified without altering the content,
resulting in a high-quality transformed stego image.

Figure 7: Example of transformed stego images

Additionally, we conducted two sets of subjective visual experiments: (1) the effect of hiding different
secret information with the same reference images. (2) the effect of hiding the same secret information with
different reference images. Figs. 8 and 9 present the obtained results. In Fig. 8, the first column displays
two reference images, while the second to fourth columns show the transformed stego images generated
by different secret information. It can be realized that the visual effects of the transformed stego images
produced from the same reference image vary with different secret information, primarily in terms of color
and shades. In Fig. 9, the first column presents different reference images, and the second column shows the
transformed stego images generated by the same secret information. The results indicate that the visual effects
of the transformed stego images generated by the same secret information have consistent style attributes.

In summary, the transformed stego images generated by our algorithm have excellent performance in
terms of both subjective and objective visual quality. This further indicates that the algorithm can effectively
resist subjective steganography analysis, and it is difficult to detect whether the generated images contain
secret information through human vision.

5.5 Analysis of Steganalysis Resistance
Steganalysis resistance is also performed on the Yosemite and Landscape Pictures datasets for trans-

formed stego images generated with the capacities of 16, 32, 48, and 64, respectively. Meanwhile, three
state-of-the-art steganalysis networks XuNet [31], SRNet [32], and SiaStegNet [33] are regarded as stegan-
alyzers to measure the effectiveness of the proposed algorithm. Since the method proposed in this paper
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belongs to generative image steganography without the cover image, we define the positive samples of the
steganalyzer as the attribute-images without hiding secret information and the negative samples as the
attribute transformed stego images. Finally, we use PE , whose formula appears in Eq. (4), to measure the
steganalysis resistance performance. When the value of PE approaches 0.5, it indicates excellent steganalysis
resistance performance. Table 6 presents the experimental results.

Figure 8: The visual effect of hiding different secret information with the same reference images

Figure 9: The visual effect of hiding the same secret information with different reference images

Table 6: The results of steganalysis resistance

Dataset Hiding capacity (bpi) Steganalysis PE (→0.5)
16 XuNet 0.49

SRNet 0.50
SiaStegNet 0.53

32 XuNet 0.51

(Continued)
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Table 6 (continued)

Dataset Hiding capacity (bpi) Steganalysis PE (→0.5)
SRNet 0.51

SiaStegNet 0.49
Yosemite 48 XuNet 0.50

SRNet 0.49
SiaStegNet 0.48

64 XuNet 0.51
SRNet 0.49

SiaStegNet 0.51

Landscape pictures

16 XuNet 0.52
SRNet 0.50

SiaStegNet 0.49
32 XuNet 0.53

SRNet 0.49
SiaStegNet 0.51

48 XuNet 0.52
SRNet 0.49

SiaStegNet 0.51
64 XuNet 0.48

SRNet 0.51
SiaStegNet 0.52

As shown in Table 6, it is clear that the proposed algorithm outperforms steganalysis across various
datasets and hiding capacities. The values of PE are maintained at about 0.5. The reason is that we utilize
the uniformly distributed noise vector as a stego attribute feature, ensuring that the distribution of the
transformed stego images aligns with that of ordinary transformed images. Consequently, the proposed
algorithm could effectively resist steganalysis.

5.6 Analysis of Computational Complexity
In deep neural network models, computational complexity is a key factor that shows the application

effectiveness of the model. Therefore, we enumerate our model’s computational and training complexity from
various perspectives, and Table 7 displays the results.

Table 7: Computational and training complexity

Index Result
Total parameters 27.06 M

FLOPs 778.29 G
Input size 2.30 MB

Forward/backward pass size 7297.22 MB
Parameters size 103.24 MB

(Continued)
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Table 7 (continued)

Index Result
Estimated total size 7402.76 MB

Training time 83.33 epoch/h

As shown in Table 7, the FLOPs and total parameters of the proposed model fall within an acceptable
range. The time complexity and space complexity are not particularly high.

5.7 Analysis of Diversity Loss
To demonstrate the influence of image diversity loss Ld , we retrained our model without image diversity

loss Ld , and the visual quality of the generated stego image, both with and without image diversity loss, is
displayed in Table 8.

Table 8: The visual quality of the generated stego image with and without image diversity loss

NIQE (↓) PI (↓) BRISQUE (↓)
With Ld 4.7 3.2 14.4

Without Ld 4.8 3.2 14.6

It is found from the table that image diversity loss Ld does indeed affect the visual quality of the generated
stego image. With Ld , the three metrics NIQE, PI, and BRISQUE all obtain the best results compared with
no Ld .

5.8 Analysis of Comparison
To further demonstrate the superiority of the proposed algorithms in terms of extraction accuracy of

secret information, visual quality of stego images, and steganalysis resistance, we conducted comparative
experiments against RoSteALS [3], IDEAS [25], and RoSteGFS [26] on the Yosemite and Landscape Pictures
datasets. Among them, RoSteALS is a traditional image steganography algorithm designed to achieve high
steganography security, and it contains a simple network structure with few parameters. While IDEAS maps
the secret information into structure feature, therefore it can obtain larger capacity. RoSteGFS maps the secret
information into guidance feature without consideration of image disentanglement. In the experiments, the
hiding capacity for each algorithm was set to 64 bpi. The best results are highlighted in bold, and the less
optimal ones are underlined. The detailed comparison outcomes are provided below.

(1) Comparison of Extraction Accuracy
Table 9 presents a comparison of the extraction accuracy of each algorithm on the two datasets with a

capacity of 64 bpi. It is evident that the proposed algorithm surpasses all others in terms of secret information
extraction accuracy. Specifically, the proposed algorithm achieves extraction accuracies of 99.4% and 99.3%
on the Yosemite and Landscape Pictures datasets, respectively. This superior performance is attributed to
the proposed feature disentanglement and invertible mapping rule, which enable the proposed algorithm to
achieve high extraction accuracy.
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Table 9: The comparison results of the extraction accuracy of secret information

Dataset Model Extraction accuracy (acc)

Yosemite

RoSteALS [3] 99.0%
IDEAS [25] 99.1%

RoSteGFS [26] 98.5%
Ours 99.4%

Landscape pictures

RoSteALS [3] 99.1%
IDEAS [25] 99.0%

RoSteGFS [26] 98.5%
Ours 99.3%

Compared with the proposed method, the extraction accuracy of secret information in the other three
methods is slightly inferior. Firstly, RoSteGFS is an entanglement method; the stego image is generated by
inputting a reference image and a stego guidance feature. Therefore, the guidance feature of the reference
image will affect the extraction of the stego guidance feature, which results in a decrease in extraction accu-
racy of secret information. Secondly, the hiding information method in IDEAS maps the secret information
to structure features. However, the structure feature seems more difficult to recover, and the mapping rule
in IDEAS are also not robust. Finally, RoSteALS is a traditional image information hiding algorithm. Its
information hiding network structure is simple and easy to train, but its special iterative extraction method
results in insufficient extraction accuracy of secret information. Overall, the secret information extraction
accuracy of the proposed method outperforms the other three methods.

(2) Comparison of Objective Visual Quality
In the experiments, we assess the objective visual quality of the four algorithms on the Yosemite and

Landscape Pictures datasets with a hidden capacity of 64 bpi. We utilize the three no-reference image
quality assessment metrics described in Section 5.3 for objective visual comparisons. The results are displayed
in Table 10. From this table, it is evident that the proposed algorithm outperforms IDEAS and RoSteALS in
terms of objective visual quality on both datasets. On the Landscape Pictures dataset, the proposed algorithm
achieves the best NIQE and BRISQUE values, and the PI is slightly lower than RoSteGFS. On the Yosemite
dataset, the proposed algorithm performs comparably to RoSteGFS, which results from the well-designed
network structure, mapping rule, and disentangled model. While in IDEAS, secret information is mapped
to structure features, changing structure features leads to insufficient quality of stego images. In RoSteALS,
secret information is directly hidden in the cover image. The modification of information hiding results in
lower quality compared to our model.

Table 10: The comparison results of objective visual quality

Dataset Model NIQE (↓) PI (↓) BRISQUE (↓)

Yosemite

Reference 5.5 3.4 14.1
RoSteALS [3] 5.3 3.4 13.2
IDEAS [25] 5.0 3.4 13.7

RoSteGFS [26] 4.5 2.8 14.6
Ours 4.7 3.2 14.4

(Continued)
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Table 10 (continued)

Dataset Model NIQE (↓) PI (↓) BRISQUE (↓)

Landscape pictures

Reference 7.4 4.6 22.8
RoSteALS [3] 6.3 4.2 22.1
IDEAS [25] 6.6 4.1 27.2

RoSteGFS [26] 5.0 3.2 17.9
Ours 5.0 3.8 9.6

(3) Comparison of Subjective Visual Quality
Since IDEAS alters the structure feature of the image, the content of the stego is fundamentally different

from that produced by other models. Meanwhile, RoSteALS is a traditional image information hiding
algorithm. Therefore, it is also not suitable for subjective visual comparison with the proposed model.
Therefore, we only compare the subjective visual quality of the proposed model with RoSteGFS. The results
are shown in Fig. 10.

Figure 10: Comparison results of subjective visual quality. RoSteGFS is from [26]

From Fig. 10, it can be observed that compared with RoSteGFS, the proposed model exhibits greater
visual differences in the generated stego images, particularly due to the proposed image diversity loss.
Additionally, the proposed model introduces less noise in smoothing texture regions and better visual quality
since the proposed model uses disentanglement features to hide information. In summary, the proposed
model demonstrates superior performance in both subjective and objective visual quality compared to
existing generative image steganography algorithms.

(4) Comparison of Steganalysis Resistance
In this experiment, we compare the four algorithms on the Yosemite and Landscape Pictures datasets

for steganalysis resistance with a hidden capacity of 64 bpi. PE is used to measure the steganalysis resistance,
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and the results are presented in Table 11. By comparing the results on both datasets, it can be seen that
the four algorithms exhibit consistent performance. Among them, RoSteGFS, IDEAS, and the proposed
algorithm are generative image steganography methods; their PE values are around 0.5 due to the absence
of cover images. This indicates that the proposed method can completely resist steganalysis. In contrast,
RoSteALS is a traditional image information hiding method; the PE is less than 0.1, demonstrating its poor
steganalysis resistance.

Table 11: The comparison results of steganalysis resistance

Dataset Method Steganalysis PE (→0.5)

Yosemite

RoSteALS [3] XuNet 0.07
SRNet 0.02

SiaStegNet 0.01
IDEAS [25] XuNet 0.52

SRNet 0.52
SiaStegNet 0.49

RoSteGFS [26] XuNet 0.51
SRNet 0.50

SiaStegNet 0.48
Ours XuNet 0.51

SRNet 0.49
SiaStegNet 0.51

Landscape pictures

RoSteALS [3] XuNet 0.03
SRNet 0.01

SiaStegNet 0.01
IDEAS [25] XuNet 0.51

SRNet 0.48
SiaStegNet 0.49

RoSteGFS [26] XuNet 0.51
SRNet 0.49

SiaStegNet 0.49
Ours XuNet 0.48

SRNet 0.51
SiaStegNet 0.52

6 Conclusion
In this paper, we propose a generative image steganography model based on attribute feature transfor-

mation and invertible mapping rule. After analyzing existing generative image steganography algorithms, we
reveal significant issues such as insufficient imperceptibility and robustness when embedding information
into non-disentangled features. To address these issues, we encode the secret information into a noise vector
that conforms to the attribute feature distribution by feature disentanglement and mean mapping rule. This
noise vector is then fused with the content features of a reference image to produce the stego image. It can be
further demonstrated through experiment results that the proposed feature disentanglement and invertible
mapping rule achieve higher extraction accuracy and superior image quality compared to existing generative
image steganography methods. However, the proposed method also has limitations, such as the balance
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between capacity and extraction accuracy, and the generalization of other types of datasets. Therefore, our
future work will focus on its generalization and larger capacity.
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